Dissertations / Theses on the topic 'Wheel robot'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Wheel robot.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
LEJDEBY, ANGELICA, and KARL HERNEBRANT. "Omni wheel robot." Thesis, KTH, Maskinkonstruktion (Inst.), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-191520.
Full textDet här projektet handlar om att bygga en trehjulig robotbil med Omnihjul. Omnihjul kan göra det möjligt för en robot att köra i sidled utan att först rotera. De kan också möjliggöra för en robot att rotera samtidigt som den kör rakt fram i en rak linje. En Omnihjulrobot kan till exempel vara ett bra val som spårningsrobot. För att den kan köra mer effektivt än en robotbil med vanliga hjul. Det som talar mot Omnihjul är att de har mer friktion och det krävs mer kraft för att rotera hjulen. Den här robotbilen är en hinderundvikande robot som med hjälp av Ultraljudssensorer och IR-sensorer ska kunna köra runt i ett rum utan att krasha in i objekt eller väggar. Med hjälp av Omnihjul ska roboten kunna köra utan att rotera mycket, vilket gör den mer effektiv än en robotbil med vanliga hjul.
Gharib, Alireza. "FOUR SIMULTANEOUSLY STEERABLE WHEEL ROBOT." OpenSIUC, 2019. https://opensiuc.lib.siu.edu/theses/2500.
Full textCarvajal, Michael Angelo. "The design process for wheel-robot integration." Thesis, Massachusetts Institute of Technology, 2009. http://hdl.handle.net/1721.1/54528.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 65-66).
In this thesis, the design process for wheel-robot integration was documented and reflected on. The project focused on redesigned certain aspects a half-scale wheel-robot to be integrated with a half-scale CityCar prototype being built by the MIT Media Lab's Smart Cities Group. Primary attention was spent on analyzing the required steering torque need to maneuver the half-scale vehicle, and on implementing a design where the wheel-robots steered about the axis that passed through the center of gravity of the tire component. Budget and time constraints required quick and easy solutions to the design and integration of the wheel-robot components. A half-scale prototype made by Media Lab graduate student Peter Schmitt was used as a benchmark for the new wheel-robot design and an analysis of Schmitt's prototype is documented. Though many ideas and concept variations were explored during the design process, a complete design of the wheel-robot was not finalized in time for this report. More time must be spent in order to finalized an integration process that can be scaled up to the full-scale CityCar for future use in urban mobility improvement.
by Michael Angelo Carvajal.
S.B.
Sjöstedt, Mikael, and Alexander Ramm. "Reaction wheel balanced robot : Design and sensor analysis of inverted pendulum robot." Thesis, KTH, Maskinkonstruktion (Inst.), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-184504.
Full textEn del robotar kan utföra förbluffande manövrar. Att balansera något instabilt är en av dem. Den här rapporten täcker konstruktionen av en sådan robot och undersöker hur sensorn påverkas av sin position och i sin tur hur balansförmågan påverkas av sensorn. En robot som använde ett svänghjul som hjälp för att balansera byggdes och sensordatan undersöktes. Från resultatet visades att sensorplaceringen var viktig. Den bästa placeringen var den närmast robotens centrum.
Smith, Lauren Melissa. "The Tri-Wheel: A Novel Robot Locomotion Concept Meeting the Need for Increased Speed and Climbing Capability." Case Western Reserve University School of Graduate Studies / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=case1417782329.
Full textPlantenberg, Detlef Holger. "Adaptive motion control for a four wheel steered mobile robot." Thesis, Nottingham Trent University, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.341262.
Full textNorin, Gustav. "Detecting External Forces on an Autonomous Lawnmowing Robot with Inertial, Wheel Speed and Wheel Motor Current Measurements." Thesis, Linköpings universitet, Reglerteknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-137434.
Full textGandhi, Yogesh. "Motion planning and control for Differential Drive Wheel Mobile Robot (DDWMR)." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017.
Find full textWong, Christopher. "Posture reconfiguration and step climbing maneuvers for a wheel-legged robot." Thesis, McGill University, 2014. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=121349.
Full textLes robots à locomotion articulée sur roues ont la capacité de circuler sur différents types de terrain avec aise, puisqu'ils combinent l'efficacité énergétique des véhicules conventionnels munis de roues et la capacité de se déplacer sur une surface irrégulière des systèmes équipés de pattes. Le Micro-Hydraulic Toolkit (MHT) est un robot quadrupède développé par Recherche et développement pour la défense Canada au centre de recherches de Suffield qui se situe dans cette catégorie. Cette machine est dotée de quatre pattes articulées qui se terminent chacune par une roue. Précédemment, un mécanisme de contrôle cinématique inverse à boucle fermée a été développé et testé en simulation sur un modèle détaillé du MHT à l'aide du logiciel LMS Virtual.Lab Motion (VLM). L'objectif de ce contrôleur était de générer des commandes cinématiques aux joints du robot afin de reconfigurer la posture de celui-ci et d'effectuer des manœuvres de navigations. Dans cette thèse, le contrôleur cinématique inverse est adapté et optimisé pour fonctionner avec le robot MHT. Afin d'identifier les erreurs du modèle du robot sur VLM et de contribuer à la révision du modèle, des expériences ont été effectuées à boucles ouvertes sur les joints du robot en utilisant des commandes en échelon et en rampe. Les résultats de ces tests ont par la suite été comparés avec ceux obtenus en simulation. Puis, après que le contrôleur fut implémenté sur MHT, une séquence de reconfigurations de posture précédemment testée en simulation a été testée sur le robot, et la performance de celui-ci a été évaluée. Finalement, un algorithme paramétré visant à permettre à MHT de monter une marche a été développé et testé avec succès sur le robot avec différentes hauteurs de marches.
Lochman, Vít. "Konstrukce jednokolového mobilního robotu se schopností skákání." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2020. http://www.nusl.cz/ntk/nusl-417721.
Full textBrooks, Douglas Antwonne. "Control of reconfigurability and navigation of a wheel-legged robot based on active vision." Thesis, Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/26545.
Full textCommittee Chair: Howard, Ayanna; Committee Member: Egerstedt, Magnus; Committee Member: Vela, Patricio. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Refvem, Charles T. "Design, Modeling and Control of a Two-wheel Balancing Robot Driven by BLDC Motors." DigitalCommons@CalPoly, 2019. https://digitalcommons.calpoly.edu/theses/2110.
Full textPassmore, Catherine M. "3D Printed Mini-Whegs Robot Design and Vibration Analysis." Case Western Reserve University School of Graduate Studies / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=case1485542260153464.
Full textHavlíček, Vojtěch. "Řízení 4 kolového robotu programovatelným automatem." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2013. http://www.nusl.cz/ntk/nusl-230886.
Full textMiranda, La Hera Pedro Xavier. "Contributions to Motion Planning and Orbital Stabilization : Case studies: Furuta Pendulum swing up, Inertia Wheel oscillations and Biped Robot walking." Licentiate thesis, Umeå : Umepå universitet, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-1874.
Full textMoreno, Blanc Javier. "Improvement of the implementation of an Assistant Personal Robot." Doctoral thesis, Universitat de Lleida, 2017. http://hdl.handle.net/10803/457621.
Full textEsta memoria presenta la investigación realizada con el objetivo de mejorar la implementación de un Asistente Personal Robótico (APR) basado en un robot móvil para aplicaciones en entornos domésticos. Esta implementación de tecnologías robóticas permite el desarrollo de nuevas aplicaciones de asistencia personal, contribuyendo a mejorar la calidad de vida de las personas. La primera parte de la investigación se centra en el desarrollo mecánico, presentando un sistema de movilidad holonómico basado en el uso de tres ruedas omnidireccionales desfasadas 120º. La mejorara de la ubicación del robot móvil en el plano XY se ha realizado a través del estudio y caracterización de un sensor de bajo coste, basado en la aplicación del efecto Doppler. También se han explorado las posibilidades de utilizar una Tablet con Google Android como sistema de control, reuniendo en un único dispositivo varios sensores y elementos de interacción. El último apartado de la memoria estudia el problema de la movilidad del robot por distintas habitaciones, incorporado al diseño básico un accesorio mecánico que le permite abrir puertas convencionales.
This memory presents the research carried out with the objective of improving the implementation of an Assistant Personal Robot (APR) based on a mobile robot for applications in domestic environments. This implementation allows the development of new assistance devices, which can be applied to significantly improve the quality of life of people. The first part of the research focuses on the mechanical development, which describes the holonomic mobility system based on the use of three omnidirectional wheels, shifted 120°. To the improvement of the location of the mobile robot in the XY plane, this research has been performed by means of the study and characterization of a low cost optical sensor based on the application of the Doppler Effect. One of the most characteristic elements of a care robot is its control unit. The research performed has explored the possibilities of a Tablet with Google Android as a control system, bringing together in a single body several sensors and interaction elements. The last section of the memory has been focused on the study of the problem of moving the mobile robot through closed rooms of the house, to this end, a mechanical accessory has been incorporated in order to mechanically open a conventional door.
Kreinar, Edward J. "Filter-Based Slip Detection for a Complete-Coverage Robot." Case Western Reserve University School of Graduate Studies / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=case1367256203.
Full textKimmel, Shawn Christopher. "Considerations for and Implementations of Deliberative and Reactive Motion Planning Strategies for the Novel Actuated Rimless Spoke Wheel Robot IMPASS for the Two-Dimensional Sagittal Plane." Thesis, Virginia Tech, 2008. http://hdl.handle.net/10919/32324.
Full textMaster of Science
Bouton, Arthur. "Conception et commande d'une structure de locomotion compliante pour le franchissement d'obstacle." Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066264.
Full textPerforming an efficient locomotion on rough terrains is still a challenge for robotic systems of all kinds. “Wheel-on-leg” robots that try to combine energy efficiency of wheels with leg agility are an example with potentially very promising capabilities. Unfortunately, control of such structures turns out to be problematic because of the kinematic redundanciesand, above all, the difficulty of precisely evaluating the ground geometry as the robot advances. This thesis proposes a solution to the complexity of reconfigurable rolling systems by a synergic approach between compliance and actuation.To this purpose, we propose to exploit an ideally orthogonal decomposition between the different movements enabled by the robot suspension due to compliant elements. Then, the structure actuation is here dedicated to controlling the vertical forces applied on wheels, while the horizontal wheel displacements are due to a passive stiffness combined with a local modulation of wheel speed. The robot posture is controlled through the vertical forces servoing provided by a series elastic actuation. This ensures a spontaneous adaptation of wheel heights while keeping the control on load distribution. The feasibility of such a locomotion system is validated through a prototype based on four compliant “wheel-legs”. Entirely conceived as part of this study, this one approximates the proposed functional decomposition while meeting the realization and robustness constraints. We also present two control methods that take advantage of the functional decompositionproposed for the structure in order to cross obstacles. The first one aims to exploit the chassis inertia in order to perform a local modification of the vertical forces applied on wheels, while the second one is based on the selection of proper ways of distributing forces in order to be able to pursue a quasi-static advance in all circumstances. Two approaches are given for the production of the last control : either with a “Q-learning” algorithm or by determining parameterized expert rules. Validated by dynamic simulations in various situations, these controls rely only on proprioceptive data immediately provided by the measurement of articular variables. This way, the robot directly reacts when it touches obstacles, without having to know the ground geometry in advance
GIDLÖF, TIM, and CARL GRUNEAU. "Balancing Cube." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-279818.
Full textI dagens samhälle är det microprocessorer i nästan alla nya produkter som skapas för den privata marknaden. De är alla sammankopplade och smarta. I och med det spelar mikrokontrollers en allt större roll i människors dagliga liv. I den här rapporten inom mekatronik implementeras en regulator i en arduino för att balansera en kub stående på en kant. I teorin är en kub en inverterad pendel med en frihetsgrad och är tänkt att balansera med hjälp av ett reaktionshjul monterat överst på prototypen. En PID regulator användes och då denna rapporten skrevs hade rätt parametrar inte påträffats. Kuben klarar av att ändra position fram och tillbaka över referensläget då den blockeras från att ramla. För att den ska klara av att balansera av sig själv behöver regulatorn ställas in bättre.
Zatloukal, Jiří. "Senzorika a řízení pohonů 4 kolového mobilního robotu." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2013. http://www.nusl.cz/ntk/nusl-230890.
Full textTaghizadeh, Mohammad. "Robot with Three Independently Steerable Wheels." Thesis, California State University, Long Beach, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10784154.
Full textTechnology in robotics has improved significantly in recent years. While the majority of research has focused on improving existing methods, it is advantageous to challenge these established methodologies and develop new solutions. This new research centers on a novel method of robot movement design. The proposed model concentrates on a robot containing three steerable wheels, allowing the mobile robot to reach the desired orientation and coordinates with minimal movement. This goal is accomplished by simultaneously moving and rotating the robot while moving in a straight path, unlike the movement provided by standard wheeled vehicles. This method provides greater control of performance and more power of movement on various surfaces, compared to using Omni wheels, which contains the design with the greatest similarity to this proposed method. While this new method may result in added complexity due to the goal-based flexible constraints in speed, wheel rotation, and overall movement, this complication may be mitigated by using appropriate software and hardware.
Olša, Petr. "Návrh řízení všesměrového mobilního robotu O3-X." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2010. http://www.nusl.cz/ntk/nusl-229210.
Full textDu, Wenqian. "Motion generation of four-limb robots using whole-body torque control." Thesis, Sorbonne université, 2020. http://www.theses.fr/2020SORUS067.
Full textThe thesis presents the whole-body motion generation of two four-limb robots, including the rolling-mode generation of a quadruped-on-wheel robot, TowrISIR, and the trotting-mode generation of a quadruped robot with parallelogram mechanisms, QuadISIR. Both the wheeled and legged motion generators are developed by using the generalized dynamics and centroidal dynamics models, and they are verified by our improved proposed torque controllers. We propose the concept called prioritized impedance controller, and we propose one new dynamics model to embody multi-task control hierarchy. We integrate it into the new dynamics model to improve four kinds of hierarchical operational-space torque control frameworks. Then, we propose two rolling-mode motion generators of TowrISIR. By given legged-suspension motion, the wheel motion is extracted out depending on base and legged motions, then the first wheel motion generator is developed by combining the kinematics model and centroidal momentum/dynamics model. The second whole-body motion generator is more general which enables the robot to cross rough terrains with much-altitude difference. Then the whole-body motion generator is developed by combining further the wheel-center motion model and a proposed altitude control model. Finally, we propose a new legged locomotion principle for one quadruped robot, QuadISIR, which can generate legged motion automatically using the centroidal properties without massless-leg assumption. The virtual joint between the base and each-leg CoM is used. The stance legs follow the base motion without conflicting the contact constraints. The swing legs compensate the delay influences by the stance legs
Hedvall, Axel, and Filip Rydén. "Omnidirectional Robot." Thesis, KTH, Mekatronik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-296257.
Full textRobotar är något som används mer och mer i dagens moderna samhälle. Dessa robotar behöver vara mobila och haen god uppfattning om miljön de befinner sig i. Detta kandidatexamensarbete inom mekatronik ska undersöka hur en mobil robot kan byggas, och hur den kan kartlägga miljönden befinner sig i. Roboten som konstruerades hade tre omnihjul för att kunna röra sig fritt längs markplanet och stegmotorer för precis drift. Ultraljudsensorer placerades runt om roboten för att ge den en uppfattning av omgivningen. Hjärnan i roboten var en Arduino UNO som med hjälp av en ESP-01 kommunicerade över Wi-Fi till en server. Servern tog emotsensordata från roboten och ritade upp det som en karta ien webbläsare. Det utfördes tester för att utvärdera de olika delsystemen. Driften på roboten fungerade utmärkt med god precisionefter några iterationer. Ultraljudsensorerna hade också godprecision och kommunikationen mellan roboten och servern fungerade mycket bra. De olika delsystemen kombinerades för att ge roboten självkörning. Roboten kunde navigera själv och undvika hinder. Trots att kartan fungeradeur ett tekniskt perspektiv så var den svårtydd och kunde förbättrats.
García, Estébanez Jesús. "GPS-IMU Integration for a Snake Robot with Active Wheels." Thesis, Norwegian University of Science and Technology, Department of Engineering Cybernetics, 2009. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-9107.
Full textA snake robot will be defined herein as any multilink robot for whose shape and motion capabilities are reminiscent of a snake like PiKo [1]. PiKo is a five links snake robot with active wheels designed by SINTEF in collaboration with the Norwegian University of Science and Technology (NTNU). Researchers have been greatly interested in the development of robots like PiKo because of its shape versatility and motion capacity in difficult terrains. These skills and properties are useful for rescue teams working in earthquakes, pipe inspection operations and other utilities where access and movement in the terrain are typically difficult. When a working team decides to develop a snake robot, an important point to consider is the development of an efficient navigation system that reaches an accurate position of the robot. Technically speaking, it is prudent to design at the same time a state observer that gives us at least the real time position and velocity information of the robot body to be controlled. The relevance of this information is derived from every control action applied to the robot will require some information about the situation of the robot over time. The controller will need feedback about the robot dynamics and the effect that the control actions have caused. Typically this information has three sources: the information that comes from external sensors, that from internal sensors that transmitting to the control place the measurements from the sensors in the robot body and estimated data from a physical model. All of these feedback sources have some advantages and disadvantages. Implementing an external observer, with external sensors, will not cause space problem with sensors location in the robot body, but when the robot is working inside a pipe, underground or in another hard environment where the optical, magnetic or radio frequency contact is difficult or impossible, the information reception from an external observer is too difficult and expensive or simply impossible. Locating internal sensors in the body of the robot may solve has the problem with the measurements reception, but still pose some difficulties which must be considered by the designer. Many times space becomes a problem when locating some sensors inside the robot body due to size and weight constraints within the robot body. Basing the navigation system instead on a physical model that simulates the robot motion invites the possibility of error due to simplifications taken during the mathematical and physical development. It is impossible to develop a perfect physical model since all the variables, forces, and parameters that depend on the nature characteristics usually are random process and we can just raise a useful factor estimating the average of these effects in our concrete situation. In this thesis a navigation system with a GPS (Global Positioning System) and IMU (Inertial Measurement Unit) fusion was achieved. This navigation system will be work as long the GPS signal is available. The application of the fusion technique further reduces one order the potential errors inherent in using only the GPS navigation system. When the robot will encounter locations where the GPS signal is impossible, this thesis will present a set of tools that not being a universal solution, it will be a set of mathematical tools that depending on the case could give us an accurate navigation system. During the time the GPS signal reception is impossible, this thesis presents the development and implementation of a physical model for a snake robot with active wheels which simulates the snake robot running behavior and studies the possibility to use the trajectory estimated by the model for reaching an accurate navigation system.
Arrizabalaga, Aguirregomezcorta Jon. "MPC based Caster Wheel Aware Motion Planning for Differential Drive Robots." Thesis, KTH, Mekatronik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-281702.
Full textDen ärvda rotationen i ett hjul möjliggör rörelse i vilken riktning som helst, men fås på bekostnad av reaktionsmoment. När de implementeras i en mobil robot har dessa krafter en negativ inverkan på dess prestanda. Ett tillvägagångssätt är att begränsa rotationer på plats genom att applicera ett filter på rörelseplannerns utgång. Denna formulering komprometterar dock navigeringens slutförande i kritiska scenarier, såsom parkering, kurvor i smala korridorer eller navigering i närheten av höga hinder. Därför beaktar vi i denna avhandling påverkan av hjul på hjulplaneringen, som ofta presenteras som lokal planering. Detta arbete föreslår en Model Predictive Control (MPC) -baserad lokal planerare som integrerar svängbara länkhjuls fysik i rörelseplaneringsstadiet. En kugghjulmedveten term kombineras med en referensspårningsbaserad navigering, vilket leder till formuleringen av Caster Wheel Aware Local Planner (CWAWLP). Eftersom denna metod kräver kunskap om svängbara länkhjuls tillstånd och det inte finns någon sensor som ger denna information, formuleras också en hjulhjulstillståndsobservatör. För att utvärdera effekten av det medvetna begreppet svängbara änkhjul jämförs CWAWLP med en Caster Wheel-baserad Agnostic Local Planner (CWAGLP) och en Caster Wheel-baserad Agnostic Planner Local Planner with Path Filter (CWPFLP). Efter att ha kört simuleringar för tre fallstudier i ett virtuellt ramverk genomförs två experimentella fallstudier i en intra-logistikrobot. Dessa utvärderas enligt navigeringens kvalitet, vridmomentanvändning och energiförbrukning. Enligt de mönster som observerats i utvärderingen når CWAWLP ett längre avstånd än CWAGLP utan att sänka navigeringens kvalitet. Samtidigt liknar motorns vridmoment dem som CWPFLP. Därför kan CWAWLP ta hänsyn till svängbara länkhjuls fysik utan att offra navigationsfunktionerna. Den formulerade medhjulningsmedveten termen är kompatibel med vilken MPC-baserad navigationsalgoritm som helst och ärver härledningen av en observatör som kan uppskatta hjulets rotationsvinklar och rullningshastigheter. Även om hjulhjälpmedvetenheten har implementerats i en differentierad robot, är detta tillvägagångssätt också tillämpligt på fordon med ett alternativt drivsystem, såsom billiknande robotar.
Seegmiller, Neal A. "Dynamic Model Formulation and Calibration for Wheeled Mobile Robots." Research Showcase @ CMU, 2014. http://repository.cmu.edu/dissertations/460.
Full textNechev, Vasko k. "Speedy Whegs: Steering and Stability Analysis of High-Speed, Compliant, Wheel-Leg Robots." Case Western Reserve University School of Graduate Studies / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=case1623971868277511.
Full textWEN, CHAO-YUAN, and 溫兆源. "Control of single spherical wheel robot driven by omni wheels." Thesis, 2011. http://ndltd.ncl.edu.tw/handle/02545169972589006627.
Full text中華大學
電機工程學系碩士班
99
This thesis mainly discusses the control of a spherical robot using Omni wheels to drive a spherical wheel. The dynamical model is derived from Euler Lagrange approach. Therefore, seven different control methods are presented which can achieve a constant speed at a vertical balance altitude. The proposed control methods can be categorized into two algorithms. The first algorithm is the variable structure system control (VSSC) in which the time needed to enter the sliding surface or to reach the stable point can be adjusted by parameters. The second one is the nonlinear feedback, but its smoothing input is different from the switching input of variable structure system control (VSSC). The constant speed of the spherical robot with vertical balance altitude can be achieved by both algorithms and be verified by simulations.
Tsai, Chiao-Lun, and 蔡僑倫. "DSP-based balance and two-wheel synchronous control for two-wheel robot." Thesis, 2004. http://ndltd.ncl.edu.tw/handle/25993947953563620441.
Full text國立中央大學
電機工程研究所
92
Two-wheel robot system is a self-balance two-wheel robot car, we can control it self-balance, going forward and backward, making a turn and fixed position. DSP F2812 is the control center of the two-wheel-robot system, which includes fuzzy control algorithm, motor servo control, A/D converter, analog filter, digital filter, and wireless transmission module etc. In the system, the sensors tilt and gyro are used to measure inclination angle and angle velocity of the robot. Analog low-pass filter and digital filter process the above two signals to be usable. We use encoder to measure velocity and angle velocity of the motors of robot. Then the robot’s motions self-balance, going forward and backward, and making a turn are controlled by the designed fuzzy control algorithm in DSP. All control signals are transmitted via wireless transmission module.
Su, Wen-Pong, and 蘇文鵬. "Research on Panorama System of Wheel Robot." Thesis, 2015. http://ndltd.ncl.edu.tw/handle/06093268031331809057.
Full text桃園創新技術學院
機械工程系機械與機電工程碩士班
103
Owing to labor shortages, robots could entirely replace labor in the future. The computer vision of developing robotics ismore important.In order to avoid robot hit obstacle in blind area during motion. Then this paper discusspanorama system of wheel robot. The system put forward a new correction graph.This graph was based on circle. In the offline correction, the system make use of geometric correction, overlapping area correction and synthesize the surroundingbird-view images to correct six wide angle lenses. The offline process could set up a look up table of space mapping.In on-line processing, we could search look-up in bilinear interpolation. Then we take overlapping area formula to compensate uneven brightness. Finally, the system can built a panorama image rapid in six wide angle camera capturing. Then the system can used in identification of machine vision system application.
WANG, YEN-HSIANG, and 王彥翔. "Cascade sliding mode control of a spherical wheel robot driven by Omni wheels." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/44545874372348657697.
Full text中華大學
電機工程學系碩士班
100
The target of the thesis is a spherical robot using Omni wheels to drive a spherical wheel, and its position control based on the cascade sliding model control (CSMC) has been studied. The dynamical model of the spherical robot is derived based on the Euler Lagrange approach. The structure of the CSMC is cascade combination of states of this dynamic model and a series of sliding surfaces. The state or time periodic switching imposed on the combination of the sliding surface coefficient to ensure the convergence of the model states. Because the cascade sliding model control is easy to result in a constant speed of spherical wheel, a periodic cascade sliding model control (PCSMC) has been proposed to solve the undesired constant speed problem. The effect of the periodic duration is the smoothness of trajectory. Too long periodic duration will result in an unstable situation when difficult initial condition encounters. Therefore, the designated body angle (DBA) is added to enhance the system stability. The body angle can converge faster when the body angle larger than the DBA, and the body angle becomes upright only when it reaches the desired position.
Chen, Shen-Chiang, and 陳慎強. "Locomotion Development on the Leg-wheel Hybrid Robot." Thesis, 2011. http://ndltd.ncl.edu.tw/handle/67175056353141496291.
Full text國立臺灣大學
機械工程學研究所
99
This paper continues the previous research of leg-wheel hybrid robot, Quattroped. We improve and modify the mechanical and electrical defects of the robot and carry on the design of the platform to develop different move locomotion. The wheel mode is constructed to let the robot move on flat ground efficiently. And The algorithm of trajectory planning and four leg coordination for quasi-static stair climbing in a quadruped robot is also reported. The development is based on the geometrical interactions by using the half-wheel legs of robot to overcome the rough terrains including step and bar crossing, irregular terrain passing, and stair climbing and to reveal the robot in legged mode has better mobility than wheel mode to cross obstacles or rough terrain. Finally, a basic feedback control on leg mode by simple sensor is also presented in this paper. Using simple information and low cost in order to achieve automation and intelligence capacity and to increase the success rate of experiments and practical value.
Wang, Pei-Lin, and 王培霖. "DSP based motion control for two-wheel robot." Thesis, 2004. http://ndltd.ncl.edu.tw/handle/20796403789946308633.
Full text國立中央大學
電機工程研究所
92
Two-wheel robot system is a self-balance two-wheel robot car, we can control it self-balance, going forward and backward, making a turn and fixed position. DSP F2812 is the control center of the two-wheel-robot system, which includes fuzzy control algorithm, motor servo control, A/D converter, analog filter, digital filter, and wireless modem etc. In the system, the sensors tilt and gyro are used to measure inclination angle and angle velocity of the robot. Analog low-pass filter and digital filter process the above two signals to be usable. We use encoder to measure velocity and angle velocity of the motors of robot. Then the robot’s motions self-balance, going forward and backward, and making a turn are controlled by the designed fuzzy control algorithm in DSP. All control signals are transmitted via wireless modem.
Chen, Ming-Chang, and 陳銘昌. "A Design of Two-Wheel Balancing Matrix Robot." Thesis, 2015. http://ndltd.ncl.edu.tw/handle/24264181783283174968.
Full text國立雲林科技大學
電子工程系
103
In this study, two two-wheel balancing robots are built. The first robot, based on a rigorous mathematical model from the literature, is built with LEGO Mindstorms EV3 and Matrix Robotics and their accessories. The software for driving the robot is written with LabView. EV3 reads data from the encoders of the EV3 motors and a gyro, computes the motor speeds and the tilting angle of the robot, adjusts these parameters with gains, and then uses a PID method to control the speed of the motors to achieve a balancing position for the robot. The second robot is built with a FPGA development board called DE0-nano with a NIOS II/f soft core, two NXT light sensors, and two Matrix motors and accessories. The balance goal of the robot is to minimize the fluctuation of the difference of the readings of the two light sensors. The motors are controlled with PWM signals from NIOS II with a PID mechanism. While both robots can balance their positions well, the performances of their motors are compared.
Hsien, Hsiang-Shen, and 謝祥生. "Development of Service-oriented Robot using Mecanum Wheel." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/04760765219149204759.
Full text正修科技大學
機電工程研究所
102
Nowadays, robotics-related industries are developed gradually and government pays more attention to it. Until now, the gross annual value of robotics is nearly fifty billion which verify robotics-related products with full potential development. Also, intelligent service robotic will become a trend in the near future. The annul Taiwan international robot show has many popular robotic products and people can understand which help that robot can do by interaction on the show. However, many intelligent service robotics has limitation to moving on confined space. Therefore, how to make robot moving smoothly that loaded motion platform is key factor. Most of the current intelligent service robotic is used normal wheels which need stop on the spot and adjust the position to change direction. However, mecanum wheels can move in any direction continuing. This study is aim to explore the application of intelligent service robotic combined with mecanum wheels to improve moving constraint.
Chen, Jian-yuan, and 陳建元. "Wheel- and Wheelcover-Based AdaBoost Wheel Detection and Its Android Vehicle Patrolling Robot Implementation." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/59293187482918989334.
Full text國立雲林科技大學
資訊工程系碩士班
100
"Autonomous mobile vehicle patrolling robot" featuring patrolling mobility and real-time automation can carry out the vehicle investigation and license plate recognition anywhere, anytime, without manpower support. However, vehicle’s shape and feature under various perspective and illumination conditions are nonuniform, a vehicle detection and patrolling system invariant to complex scenes is studied and proposed. In order to simplify this issue, the vehicle detection stage of the proposed vehicle detection and patrolling system is divided into 4 aspects: 1)Front/rear vehicle detection, 2) lateral vehicle detection, 3) license plate detection subsequent to front/rear vehicle detection , and 4) wheel detection subsequent to lateral vehicle detection. Specifically on wheel detection issue, a wheel- and wheelcover-based AdaBoost wheel detection is proposed for high true positive rate and low false positive rate. Moreover, this thesis integrates the proposed wheel detection method with plate- and character-based Adaboost license plate detection, Tesseract-OCR-based license plate character recognition, and robotic automation for implementation of Android vehicle patrolling robot. From experimental result, the detection rate of the proposed wheel detection under complex scenes can achieve 99%.
Su-MingHsiao and 蕭書銘. "Localization and Control Applications of a Four-Wheel Steering and Four-Wheel Drive Mobile Robot." Thesis, 2011. http://ndltd.ncl.edu.tw/handle/55456944973112209543.
Full textHsu, Che-wei, and 許哲瑋. "The multi-function wheel robot with a robotic arm." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/12409073754207604726.
Full text國立中央大學
電機工程研究所
100
The purpose of this study aims to accomplish a mobile robot which can take the elevator automatically by using its robotic arm and avoid the obstacle in an unknown environment. In the function of obstacle avoidance, the robot moves by two parallel wheels which are driven by servo motors. We use the sonar and infrared ray sensors integrated with FPGA to collect environmental information such that the robot can move forward with avoiding the obstacles and maintaining the safe distance in the unknown environment, even in the narrow path. In the function of elevator taking automatically, the robotic arm can press the target panel by interactively using forward kinematics and inverse kinematics. Furthermore, this robotic arm can also implement some interactive motions such as shaking hands and greeting. After a series of experiments, the results show that the robot works effectively.
WEN, CHI-YU, and 温啓佑. "The Obstacle Avoidance Application of Two-Wheel Balancing Robot." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/pvt9kx.
Full text國立高雄海洋科技大學
電訊工程研究所
106
This thesis proposes is to design a two-wheeled balancing robot control system, the system has ultrasonic obstacle avoidance function.User can issue commands and receive robot data through Bluetooth. Base on LOGO Mindstorms EV3, combine with EV3 gyro sensor, EV3 motors, ultrasonic sensor to establish the two-wheeled balancing robot. Used leJOS to write program such as balance, communication, control and avoidance. The system use a PID method to control the motors to achieve a balancing robot. After robot is well balanced, user may control robot moving using Bluetooth. Robot can avoid detected obstacle while moving, robot can transmit the distance between obstacle, motor output power and gyro angular velocity to user through bluetooth at the same time.
"Dynamics and control of a single wheel, gyroscopically stabilized robot." 1999. http://library.cuhk.edu.hk/record=b5889874.
Full textThesis (M.Phil.)--Chinese University of Hong Kong, 1999.
Includes bibliographical references (leaves 55-58).
Abstracts in English and Chinese.
Abstract --- p.i
Acknowledgments --- p.iii
Contents --- p.iv
List of Figures --- p.vi
List of Tables --- p.viii
Chapter 1 --- Introduction --- p.1
Chapter 1.1 --- Motivation --- p.1
Chapter 1.2 --- Previous work --- p.5
Chapter 1.3 --- Thesis overview --- p.7
Chapter 2 --- Dynamics of the Single Wheel Robot --- p.10
Chapter 2.1 --- Dynamic model of a rolling disk --- p.10
Chapter 2.1.1 --- Kinematic constraints --- p.11
Chapter 2.1.2 --- Equations of motion --- p.13
Chapter 2.1.3 --- Characteristics of the rolling disk --- p.15
Chapter 2.2 --- Dynamic model of the single wheel robot --- p.18
Chapter 2.2.1 --- Coordinate frames and generalized coordinates --- p.19
Chapter 2.2.2 --- Equations of motion --- p.21
Chapter 2.2.3 --- Model simplification --- p.24
Chapter 2.3 --- Dynamic properties of the single wheel robot --- p.27
Chapter 3 --- Stabilization of the Single Wheel Robot --- p.30
Chapter 3.1 --- Linearized model --- p.30
Chapter 3.2 --- Controllability and non-minimum phase characteristics --- p.33
Chapter 3.3 --- Linear state feedback --- p.33
Chapter 3.4 --- Simulation Study --- p.35
Chapter 4 --- Path Following of the Single Wheel Robot --- p.37
Chapter 4.1 --- Path following for nonholonomic systems --- p.37
Chapter 4.2 --- Definition of path following --- p.39
Chapter 4.3 --- New configuration --- p.39
Chapter 4.4 --- Line following --- p.41
Chapter 4.4.1 --- Velocity control law --- p.42
Chapter 4.4.2 --- Convergence for the velocity control law --- p.43
Chapter 4.4.3 --- Torque control law --- p.45
Chapter 4.5 --- Simulation study --- p.47
Chapter 4.5.1 --- Effect of the initial heading angle --- p.47
Chapter 4.5.2 --- Effect of the rolling speed --- p.49
Chapter 4.5.3 --- Follow a desired line --- p.50
Chapter 4.5.4 --- Effect of the smoothness parameter --- p.50
Chapter 5 --- Conclusion --- p.52
Chapter 5.1 --- Contributions --- p.52
Chapter 5.2 --- Future work --- p.53
Bibliography --- p.55
"Single wheel robot: gyroscopical stabilization on ground and on incline." 2000. http://library.cuhk.edu.hk/record=b5890272.
Full textThesis (M.Phil.)--Chinese University of Hong Kong, 2000.
Includes bibliographical references (leaves 77-81).
Abstracts in English and Chinese.
Abstract --- p.i
Acknowledgments --- p.iii
Contents --- p.v
List of Figures --- p.vii
List of Tables --- p.viii
Chapter 1 --- Introduction --- p.1
Chapter 1.1 --- Motivation --- p.1
Chapter 1.1.1 --- Literature review --- p.2
Chapter 1.1.2 --- Gyroscopic precession --- p.5
Chapter 1.2 --- Thesis overview --- p.7
Chapter 2 --- Dynamics of the robot on ground --- p.9
Chapter 2.1 --- System model re-derivation --- p.10
Chapter 2.1.1 --- Linearized model --- p.15
Chapter 2.2 --- A state feedback control --- p.16
Chapter 2.3 --- Dynamic characteristics of the system --- p.18
Chapter 2.4 --- Simulation study --- p.19
Chapter 2.4.1 --- The self-stabilizing dynamics effect of the single wheel robot --- p.21
Chapter 2.4.2 --- The Tilting effect of flywheel on the robot --- p.23
Chapter 2.5 --- Dynamic parameters analysis --- p.25
Chapter 2.5.1 --- Swinging pendulum --- p.25
Chapter 2.5.2 --- Analysis of radius ratios --- p.27
Chapter 2.5.3 --- Analysis of mass ratios --- p.30
Chapter 3 --- Dynamics of the robot on incline --- p.33
Chapter 3.1 --- Modeling of rolling disk on incline --- p.33
Chapter 3.1.1 --- Disk rolls up on an inclined plane --- p.37
Chapter 3.2 --- Modeling of single wheel robot on incline --- p.39
Chapter 3.2.1 --- Kinematic constraints --- p.40
Chapter 3.2.2 --- Equations of motion --- p.41
Chapter 3.2.3 --- Model simplification --- p.43
Chapter 3.2.4 --- Linearized model --- p.46
Chapter 4 --- Control of the robot on incline --- p.47
Chapter 4.1 --- A state feedback control --- p.47
Chapter 4.1.1 --- Simulation study --- p.49
Chapter 4.2 --- Backstepping-based control --- p.51
Chapter 4.2.1 --- Simulation study --- p.53
Chapter 4.2.2 --- The effect of the spinning rate of flywheel --- p.56
Chapter 4.2.3 --- Simulation study --- p.58
Chapter 4.2.4 --- Roll up case --- p.58
Chapter 4.2.5 --- Roll down case --- p.58
Chapter 5 --- Motion planning --- p.61
Chapter 5.1 --- Performance index --- p.61
Chapter 5.2 --- Condition of rolling up --- p.62
Chapter 5.3 --- Motion planning of rolling Up --- p.65
Chapter 5.3.1 --- Method I : Orientation change --- p.65
Chapter 5.3.2 --- Method II : Change the initial velocities --- p.69
Chapter 5.4 --- Wheel rolls Down --- p.70
Chapter 5.4.1 --- Terminal velocity of rolling body down --- p.73
Chapter 6 --- Summary --- p.75
Chapter 6.1 --- Contributions --- p.75
Chapter 6.2 --- Future Works --- p.76
Bibliography --- p.78
Lin, Shu-Wei, and 林書緯. "The Design and Analysis of In-Wheel Motor Vehicle Robot." Thesis, 2011. http://ndltd.ncl.edu.tw/handle/30140379914820773038.
Full text明新科技大學
精密機電工程研究所
99
This study is to develop robot vehicles, and modify the robot’s mobility and cross-country performance. The whole frame was design-based on track and wheel-multi-skill-driven. To achieve the robot vehicles moves stability and cushioning, and also combined with track cantilever mechanism to promote the robot cross-country performance it will offer widespread use in task design. Duo to the general vehicles only can drive in common road or gentle slope, and the applications were restricted in many scope. This study will develop design a suite of auxiliary cantilever mechanism with highly adaptability. The purpose of this study is to structure analysis in context use to enable the development vehicles can pass through bumpy road and increase the robot vehicles’ mobility, thus expanding the investigation range. The vehicles’ weight of police use cannot heavy, so the vehicles will use aluminum alloy material to achieve light weight and high mobility. The vehicle which is install with track in land deck vehicle apply will huge expand. Those will have market potential and the technology will hope mass production in the future. Robot vehicles will be immediately applied to military defense, blasting processing, chemical and biological attacks as well as building attack; or even can use in heavy electric machinery industries, the factory building with high-temperature, high pressure, gas leaks, high radiation, and high-voltage which environment is not fit human body. In accordance to environment needs, to develop robot vehicles to serve human being is the objective goal of this proposal.
Chen, Jun-Rong, and 陳家榮. "Improvement in DSP based motion control for two-wheel robot." Thesis, 2005. http://ndltd.ncl.edu.tw/handle/36353594356002409648.
Full text國立中央大學
電機工程研究所
93
We develop and control a two-wheel robot which the core DSP F2812 integrates a lot of parts including motor servo control, external circuit signals, wireless transmission module, analog filter, digital filter, and fuzzy control algorithm. The dynamic sensors tilt and gyro are used to control the balance of the robot and the sensor digital compass is used to correct the directional error of the body and then getting the position and velocity by the feedback of the encoder. Through the integration of the information, we implement the designed fuzzy controllers to make the robot balance, move forward and backward, turn, and stop. In the period of running, getting the status of the robot and issuing the commands are transmitted via wireless transmission module.
Lin, Szu-Yu, and 林思妤. "Stabilization of Acquired Environmental Information for the Claw Wheel Robot." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/9z5vpz.
Full text國立臺灣大學
生物產業機電工程學研究所
106
This research develops a computer-vision based video stabilization system aided by IMU (Inertial Measurement Unit) for a stair-climbing maneuvering “Claw-Wheel” robot for search and rescue purposes in dangerous or disaster sites. The Claw-Wheel Robot is designed for search purposes in various scenarios, for instance, dangerous buildings, disaster sites, wilderness. It features the “folding transformation mechanism”, which enables it to transform between its two motion modes intended for different scenarios. The “wheel mode” is designed for rapidly moving across flat land, while on the other hand the “claw mode” enables the robot to climb and ascend rough terrains or stairs. Moreover, the Claw-Wheel Robot is also simple in structure and has less amount of actuators. The Claw-Wheel Robot has two major functionalities. The first is the dynamic mobility which enables the robot to enter disaster or dangerous sites. Throughout these several years, our research team has fully developed the dynamic mobility functionality which makes the robot capable of maneuvering across various types of natural and artificial terrains, including flat ground, rugged terrain, stairs, amphibious environments and so on. After reaching these sites, the robot system relies on the second functionality to capture and retrieve image information by a video device, in order to aid humans during remote robot operation and control. However, due to the uncertainty of both the terrain and the geometric configuration of the climbing claws, the raw image information captured by a video device requires stabilization, apparently. Therefore, we combined state estimation and video stabilization techniques to provide stable information. This research develops a real-time video stabilization system featuring robot pose estimation and feature tracking techniques. The video stabilization framework can be divided into two stages. The first stage is to recover the predictable perspective deviation between frames by sensor feedback. The second processing stage is for the arbitrary shaking and unpredictable effects. During this stage we promote the stabilization process by tracking “feature points” in the captured image sequence over time. The first stage of video stabilization is achieved by predicting the pose of the camera, which is installed on the center of the robot. The algorithm involves sensor feedback provided by IMU (Inertial measurement unit) and motor encoders, along with robot geometric configuration, claw pose angle functions, motion characteristics and the Kalman filter algorithm. With these algorithms we can approximate the camera’s position and orientation, therefore compensate the perspective variation. The unpredictable, arbitrary motion is handled in the second stage of the process. We capture “feature points” and track them over consequential frames. After calculating the motion, or in other words, position deviation, for corresponding points in consequential frames, we apply the RANSAC algorithm to obtain the accurate “motion field” of the image content. Finally, we apply an output “cropping window” which is moved along the motion field. Inside this cropping window, which eventually turns out to be the output video, the relative positions of the feature points and frame contents are kept constant, in order to reduce shaking and stabilize the video sequence. In this research we have successfully constructed the real-time video stabilization framework and system for the Claw-Wheel robot, and we also promoted the on-board mechatronics system by installing a video device, IMU and motor control modules in order to meet mission requirements. Under several experimental scenarios, the real-time video stabilization system can reduce the shaking motion significantly. Moreover, this system could also be adapted to similar mobile platforms with proper motion sensor feedback and video devices.
HSU, HAO-CHUAN, and 許皓筌. "Weighted Ultrasonic Signal Based Four-Wheel Human-Following Mobile Robot." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/n2yqfz.
Full text國立暨南國際大學
電機工程學系
107
This thesis proposes a method to make the mobile robot judge the orientation of signal sources, thereby achieving human-following. The mobile robot uses ultrasonic sensors to receive the signal and judge the orientation of the signal sources according to the weight of the sensor. After knowing the direction, the CPU will process the relative position between the signal source and obstacles around the mobile robot, so that the mobile robot can effectively avoid obstacles while following. To this end, this study requires ultrasonic sensors to judge the orientation of person, and infrared sensors to detect the location of obstacles. Finally, the experimental results prove that the mobile robot can accurately judge the orientation of the signal source in a real environment, and realize human-following under the premise of avoiding obstacles. This system can be applied in many fields in the future, such as handling goods and long-term care services.
SH, CHENG-JUN, and 施承鈞. "Implement of Indoor Positioning System for Omni-directional Wheel Robot." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/42cuyx.
Full text國立高雄科技大學
輪機工程系
107
The development of positioning technology has been applied to general life from cellphone, car, and ship which are all application of global positioning system (GPS). The position error of GPS is about 2~3 meters and longitude/latitude are measured by several GPS satellite signal. But no stable signal can be received in interior space. Some wireless communication technology can be achieved in this positioning of interior space. Hence the implementation of indoor positioning function is proposed by radio frequency ZigBee communication protocol in this thesis. In this thesis, the security and controllability can be enhanced by using the application for the indoor positioning of omni-directional wheel robot. The used omni-directional wheel robot can provide a positioning system mechanism with safety, stability, easy operation. The machinery design, sensor system design, and route programming design are all included in omni-directional wheel robot. The omni-directional wheel can be designed to do arbitrary direction. Forward and backward of motor can be controlled by bridge circuit. The purpose of speed control and turn will be finished by PWM driving method. The system control and ultrasonic distance measuring are achieved by Arduino control card. The function of mechanical and electrical integration have been completed by wireless transfer module and ZigBee communication protocol. The genetic algorithm with selection, crossover, and mutation functions can be applied to filter the extreme of RSSI and achieve the effect of data optimization. The output value of RSSI is stable by the proposed omni-directional wheel patrol robot with the function of remote and autonomy programming route. The security mechanism and staff requirement for the unmanned factory can be improved.
CHUNG, YI-HSIN, and 鍾奕信. "Applications of Remote Image Monitoring for Omni-directional Wheel Robot." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/51331476419388794786.
Full textYang, Chun-Lin, and 楊淳麟. "DESIGN OF AN 8-WHEEL ROBOT FOR EXTERNAL PIPELINE INSPECTION." Thesis, 2010. http://ndltd.ncl.edu.tw/handle/57048670234151908722.
Full text大同大學
機械工程學系(所)
98
This paper demonstrates a robot system which applies on external pipeline inspection. The whole system is consisted of three portions which are mechanism, control system and internet communication system. We develop an 8-wheel lift mechanism, with this mechanism the robot has the ability to adapt outdoor terrain. Control system divide as mobile robot and control station. In order to provide the feeling to the operator like driving the mobile robot in the place where the robot is, the control station applies an image joystick system to track the head motion of the operator. In light varied environment, the image joystick system still can operate correctly even when the RGB eigen value of the target is changing. Though the image joystick system, the camera on the mobile robot can follow the head motion of the operator. And with a joystick, the control system sends out the command of direction to the moving and lift mechanism portion of the mobile robot. The internet communication system can communicate the control system and mobile robot. The whole system can quickly establish if the user has suitable mechanism (robot system, moving system etc.) and webcam in the environment which has wireless internet signal.