Academic literature on the topic 'Wheeler- DeWitt'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Wheeler- DeWitt.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Wheeler- DeWitt"

1

Landsman, N. P. "Against the Wheeler - DeWitt equation." Classical and Quantum Gravity 12, no. 12 (December 1, 1995): L119—L123. http://dx.doi.org/10.1088/0264-9381/12/12/003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kruglov, Sergey I., and Mir Faizal. "Wave function of the universe from a matrix-valued first-order formalism." International Journal of Geometric Methods in Modern Physics 12, no. 04 (April 2015): 1550050. http://dx.doi.org/10.1142/s0219887815500504.

Full text
Abstract:
In this paper, the Wheeler–DeWitt equation in full superspace formalism will be written in a matrix-valued first-order formalism. We will also analyze the Wheeler–DeWitt equation in minisuperspace approximation using this matrix-valued first-order formalism. We will note that this Wheeler–DeWitt equation, in this minisuperspace approximation, can be expressed as an eigenvalue equation. We will use this fact to analyze the spacetime foam in this formalism. This will be done by constructing a statistical mechanical partition function for the Wheeler–DeWitt equation in this matrix-valued first-order formalism. This will lead to a possible solution for the cosmological constant problem.
APA, Harvard, Vancouver, ISO, and other styles
3

Barvinsky, Andrei O., and Claus Kiefer. "Wheeler-DeWitt equation and Feynman diagrams." Nuclear Physics B 526, no. 1-3 (August 1998): 509–39. http://dx.doi.org/10.1016/s0550-3213(98)00349-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Faizal, Mir. "Deformation of the Wheeler–DeWitt equation." International Journal of Modern Physics A 29, no. 20 (August 6, 2014): 1450106. http://dx.doi.org/10.1142/s0217751x14501061.

Full text
Abstract:
In this paper, we will analyze the consequences of deforming the canonical commutation relations consistent with the existence of a minimum length and a maximum momentum. We first generalize the deformation of first quantized canonical commutation relation to second quantized canonical commutation relation. Thus, we arrive at a modified version of second quantization. A modified Wheeler–DeWitt equation will be constructed by using this deformed second quantized canonical commutation relation. Finally, we demonstrate that in this modified theory the big bang singularity gets naturally avoided.
APA, Harvard, Vancouver, ISO, and other styles
5

Pavšič, Matej. "Klein–Gordon–Wheeler–DeWitt–Schrödinger equation." Physics Letters B 703, no. 5 (September 2011): 614–19. http://dx.doi.org/10.1016/j.physletb.2011.08.041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Andrzej Glinka, Lukasz. "Novel Solution of Wheeler-DeWitt Theory." Applied Mathematics and Physics 2, no. 3 (June 6, 2014): 73–81. http://dx.doi.org/10.12691/amp-2-3-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

BELINCHÓN, JOSÉ ANTONIO. "WHEELER–DEWITT EQUATION WITH VARIABLE CONSTANTS." International Journal of Modern Physics D 11, no. 04 (April 2002): 527–44. http://dx.doi.org/10.1142/s0218271802001871.

Full text
Abstract:
In this paper we study how all the physical "constants" vary in the framework described by a model in which we have taken into account the generalize conservation principle for its stress-energy tensor. This possibility enable us to take into account the adiabatic matter creation in order to get rid of the entropy problem. We try to generalize this situation by contemplating multi-fluid components. To validate all the obtained results we explore the possibility of considering the variation of the "constants" in the quantum cosmological scenario described by the Wheeler–DeWitt equation. For this purpose we explore the Wheeler–DeWitt equation in different contexts but from a dimensional point of view. We end by presenting the Wheeler–DeWitt equation in the case of considering all the constants varying. The quantum potential is obtained and the tunneling probability is studied.
APA, Harvard, Vancouver, ISO, and other styles
8

Chakraborty, Subenoy. "Solutions of the Wheeler-DeWitt equation." International Journal of Theoretical Physics 31, no. 2 (February 1992): 289–302. http://dx.doi.org/10.1007/bf00673259.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

BISWAS, S., A. SHAW, and D. BISWAS. "SCHRÖDINGER–WHEELER–DEWITT EQUATION IN MULTIDIMENSIONAL COSMOLOGY." International Journal of Modern Physics D 10, no. 04 (August 2001): 585–93. http://dx.doi.org/10.1142/s0218271801001372.

Full text
Abstract:
We study multidimensional cosmology to obtain the wavefunction of the universe using wormhole dominance proposal. Using a prescription for time we obtain the Schrödinger–Wheeler–DeWitt equation without any reference to WD equation and WKB ansatz for WD wavefunction. It is found that the Hartle–Hawking or wormhole-dominated boundary conditions serve as a seed for inflation as well as for Gaussian type ansatz to Schrödinger–Wheeler–DeWitt equation.
APA, Harvard, Vancouver, ISO, and other styles
10

BISWAS, S., A. SHAW, and B. MODAK. "TIME IN QUANTUM GRAVITY." International Journal of Modern Physics D 10, no. 04 (August 2001): 595–606. http://dx.doi.org/10.1142/s0218271801001384.

Full text
Abstract:
The Wheeler–DeWitt equation in quantum gravity is timeless in character. In order to discuss quantum to classical transition of the universe, one uses a time prescription in quantum gravity to obtain a time contained description starting from Wheeler–DeWitt equation and WKB ansatz for the WD wavefunction. The approach has some drawbacks. In this work, we obtain the time-contained Schrödinger–Wheeler–DeWitt equation without using the WD equation and the WKB ansatz for the wavefunction. We further show that a Gaussian ansatz for SWD wavefunction is consistent with the Hartle–Hawking or wormhole dominance proposal boundary condition. We thus find an answer to the small scale boundary conditions.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Wheeler- DeWitt"

1

SANTOS, Fábio Magalhães de Novaes. "Cosmologia inflacionária e o problema da medida." Universidade Federal de Pernambuco, 2009. https://repositorio.ufpe.br/handle/123456789/6458.

Full text
Abstract:
Made available in DSpace on 2014-06-12T18:05:14Z (GMT). No. of bitstreams: 2 arquivo577_1.pdf: 3475189 bytes, checksum: 05c1943b3c5a1d5f1e44faecc54366cd (MD5) license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5) Previous issue date: 2009
Conselho Nacional de Desenvolvimento Científico e Tecnológico
No século XX, a cosmologia deixou o campo da metafísica para ser consolidada como um ramo da ciência teórica e experimental. Nos últimos anos tem sido observado um grande avanço no importante aparato observacional da cosmologia tornando possível sondar eventos físicos que ocorreram a cerca de 13 bilhões de anos, supostamente ocorridos próximos à singularidade inicial conhecida como Big Bang. Entretanto, muitos mistérios permanecem esperando para ser resolvidos neste novo e promissor século. Entre eles estão as questões da formação de estruturas cosmológicas e das flutuações de densidade na radiação cósmica de fundo (CMB). A solução mais popular parece ser a chamada inflação cosmológica, a ideia de que um período de expansão acelerada ocorrido cerca de 10��43 s após o início do Universo poderia explicar as condições iniciais do Big Bang e o espectro da CMB. Neste trabalho, analisamos a generalidade do modelo mais simples e mais usado na literatura, o modelo f-FRW, e suas propriedades no espaço de fase da teoria. A ação estudada consiste na de Einstein-Hilbert onde supomos uma métrica do tipo Robertson-Walker acoplada com um campo escalar f e um potencial arbitrário V(f). Aplicamos a equação de Wheeler-DeWitt no modelo f-FRW e, então, propomos uma medida quântica no espaço de fase modificada pelo princípio holográfico de forma a contar heuristicamente a degenerescência proveniente dos graus de liberdade quânticos da gravitação
APA, Harvard, Vancouver, ISO, and other styles
2

Menadeo, Nicola. "Formalismo 3+1 ed approccio hamiltoniano alla relatività generale." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/14602/.

Full text
Abstract:
Nel primo capitolo di questo elaborato verranno descritti ed analizzati alcuni concetti di base della geometria differenziale generalizzandoli a spazi a dimensione arbitraria, per poi utilizzarli nel caso specifico dello spazio-tempo quadridimensionale in cui opera la relatività generale. Verrà fatto largo uso della nozione di ipersuperficie, fondamentale per l'approccio matematico al formalismo 3+1 e verrà studiato il modo in cui questa evolve, da cui segue il concetto di foliazione dello spazio-tempo. Lo scopo finale sarà quello di decomporre i tensori di Riemann e Ricci che giocano un ruolo centrale nella equazione di campo di Einstein. Il secondo capitolo invece, sarà incentrato sulla fisica e su come il formalismo 3+1 agisce nella teoria della relatività generale. L'argomento principale sarà la decomposizione dell'equazione di Einstein che verrà successivamente trattata come un sistema di equazioni differenziali alle derivate parziali. Sarà introdotto ed utilizzato il concetto di geometrodinamica (introdotto da Wheeler nei primi anni sessanta) per giungere all'approccio hamiltoniano alla relatività generale.
APA, Harvard, Vancouver, ISO, and other styles
3

Yang, Ting-Cheng, and 楊庭程. "Inflationary Scenario and Spherically Symmetric Ashtekar-Wheeler-DeWitt Equation." Thesis, 2008. http://ndltd.ncl.edu.tw/handle/22702612644922346678.

Full text
Abstract:
碩士
國立成功大學
物理學系碩博士班
96
Spherically symmetric reduction of gravitational and scalar fields is investigated. The reduced variables, constraints and their properties are derived and discussed at length. It is shown that the Ashtekar-Wheeler-DeWitt Equation for quantised gravitational and scalar fields reduces to a Schrodinger Equation which describes quantised scalar field evolving with respect to a Schwinger-Tomonaga time which increases with the volume of the universe in an inflationary universe with approximate de Sitter metric if certain conditions are satisfied. This inflationary scenario emerges rather naturally from the Ashtekar-Wheeler-DeWitt Equation provided the typical potential is small compared to the Planck energy density, the departure of the actual state from the Chern-Simons state is small, and the potential of the scalar field is approximately constant.
APA, Harvard, Vancouver, ISO, and other styles
4

Černý, Jiří. "Kanonické kvantování midisuperspace modelů." Master's thesis, 2018. http://www.nusl.cz/ntk/nusl-386980.

Full text
Abstract:
In this work we will try to quantize midisuperspace model of spherically sym- metric spacetime with massless scalar field. On this type of spacetimes we apply Dirac method of canonical quantization, leading to Wheeler-DeWitt equations. We will attempt to solve those equation generally for aforementioned type of spa- cetimes. Our initial midisuperspace model is Roberts dynamical spacetime. As we will see later, Roberts metric behaves badly in the asymptotic region. Due to this problematic behaviour of Roberts spacetime at the boundary, we will choose to quantize its static version, the special Janis-Newman-Winicour spacetime. This midisuperspace model is static, asymptotically flat spacetime with scalar field and it contains a naked time-like singularity. For special Janis-Newman-Winicour spacetime we will then solve Wheeler-DeWitt equations.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Wheeler- DeWitt"

1

Peres, Asher. "Critique of the Wheeler-DeWitt Equation." In On Einstein’s Path, 367–79. New York, NY: Springer New York, 1999. http://dx.doi.org/10.1007/978-1-4612-1422-9_26.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Guendelman, Eduardo, Emil Nissimov, and Svetlana Pacheva. "Wheeler–DeWitt Quantization of Gravity Models of Unified Dark Energy and Dark Matter." In Quantum Theory and Symmetries with Lie Theory and Its Applications in Physics Volume 2, 99–113. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2179-5_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

"L’équation Wheeler-DeWitt." In Le temps en images, 165. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-1694-1-105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

"L’équation Wheeler-DeWitt." In Le temps en images, 165. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-1694-1.c105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

"The Wheeler–DeWitt equation." In Quantum Gravity in 2+1 Dimensions, 131–42. Cambridge University Press, 1998. http://dx.doi.org/10.1017/cbo9780511564192.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Wheeler- DeWitt"

1

Garattini, Remo. "The distorted Wheeler-DeWitt equation." In Proceedings of the MG14 Meeting on General Relativity. WORLD SCIENTIFIC, 2017. http://dx.doi.org/10.1142/9789813226609_0344.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

SOO, CHOPIN. "ASHTEKAR-WHEELER-DEWITT EQUATION AND INFLATIONARY SCENARIO." In Proceedings of the MG10 Meeting held at Brazilian Center for Research in Physics (CBPF). World Scientific Publishing Company, 2006. http://dx.doi.org/10.1142/9789812704030_0323.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pavlov, A. E., and V. N. Pervushin. "Intrinsic time in Wheeler–DeWitt conformal superspace." In Twelfth Asia-Pacific International Conference on Gravitation, Astrophysics, and Cosmology. WORLD SCIENTIFIC, 2016. http://dx.doi.org/10.1142/9789814759816_0047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Garattini, Remo. "The Cosmological constant and the Wheeler-DeWitt Equation." In Workshop on Continuum and Lattice Approaches to Quantum Gravity. Trieste, Italy: Sissa Medialab, 2011. http://dx.doi.org/10.22323/1.079.0012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

ALVARENGA, F. G., M. J. S. HOUNDJO, and S. V. B. GONÇALVES. "The Wheeler-DeWitt equation of f(G) gravity." In VII Encontro Científico de Física Aplicada. São Paulo: Editora Blucher, 2016. http://dx.doi.org/10.5151/phypro-vii-efa-017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Maceda, Marco. "On the Wheeler-DeWitt equation for Kasner-like cosmologies." In RECENT DEVELOPMENTS ON PHYSICS IN STRONG GRAVITATIONAL FIELDS: V Leopoldo García-Colín Mexican Meeting on Mathematical and Experimental Physics. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4861964.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Craig, David, Parampreet Singh, and Andrei Yu Khrennikov. "A Consistent Histories Formulation of Wheeler-DeWitt Quantum Cosmology." In QUANTUM THEORY: Reconsideration of Foundations—5. AIP, 2010. http://dx.doi.org/10.1063/1.3431500.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography