Academic literature on the topic 'Whispering gallery mode'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Whispering gallery mode.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Whispering gallery mode"

1

GONOKAMI, Makoto. "Polymer Micro - Photonics with Whispering Gallery Mode." Kobunshi 45, no. 2 (1996): 101. http://dx.doi.org/10.1295/kobunshi.45.101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Corbellini, Simone, Chiara Ramella, Lili Yu, Marco Pirola, and Vito Fernicola. "Whispering Gallery Mode Thermometry." Sensors 16, no. 11 (October 29, 2016): 1814. http://dx.doi.org/10.3390/s16111814.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Harayama, Takahisa, Peter Davis, and Kensuke S. Ikeda. "Whispering Gallery Mode Lasers." Progress of Theoretical Physics Supplement 139 (2000): 363–74. http://dx.doi.org/10.1143/ptps.139.363.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Foreman, Matthew R., Jon D. Swaim, and Frank Vollmer. "Whispering gallery mode sensors." Advances in Optics and Photonics 7, no. 2 (May 22, 2015): 168. http://dx.doi.org/10.1364/aop.7.000168.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Yang, J. J., M. Huang, J. Yu, and Y. Z. Lan. "Surface whispering-gallery mode." EPL (Europhysics Letters) 96, no. 5 (November 16, 2011): 57003. http://dx.doi.org/10.1209/0295-5075/96/57003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Guoqiang Gu, Guoqiang Gu, Lujian Chen Lujian Chen, Hongyan Fu Hongyan Fu, Kaijun Che Kaijun Che, Zhiping Cai Zhiping Cai, and Huiying Xu Huiying Xu. "UV-curable adhesive microsphere whispering gallery mode resonators." Chinese Optics Letters 11, no. 10 (2013): 101401–5. http://dx.doi.org/10.3788/col201311.101401.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Pirnat, Gregor, and Matjaž Humar. "Whispering Gallery‐Mode Microdroplet Tensiometry." Advanced Photonics Research 2, no. 11 (November 2021): 2170037. http://dx.doi.org/10.1002/adpr.202170037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zhang, Jiangquan, and D. Grischkowsky. "Whispering-gallery mode terahertz pulses." Optics Letters 27, no. 8 (April 15, 2002): 661. http://dx.doi.org/10.1364/ol.27.000661.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ilchenko, V. S., A. M. Bennett, P. Santini, A. A. Savchenkov, A. B. Matsko, and L. Maleki. "Whispering gallery mode diamond resonator." Optics Letters 38, no. 21 (October 21, 2013): 4320. http://dx.doi.org/10.1364/ol.38.004320.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

McCall, S. L., A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan. "Whispering‐gallery mode microdisk lasers." Applied Physics Letters 60, no. 3 (January 20, 1992): 289–91. http://dx.doi.org/10.1063/1.106688.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Whispering gallery mode"

1

YU, LILI. "Thermometry based on Whispering Gallery Mode resonators." Doctoral thesis, Politecnico di Torino, 2012. http://hdl.handle.net/11583/2497124.

Full text
Abstract:
Whispering gallery (WG) mode resonators were studied since 1980s for precision clock oscillators and for cavity quantum electrodynamics studies. They are a kind of stable, high Q, microwave resonators where a symmetric dielectric medium, such as a cylinder or a disk, is suspended in the centre of a metal cavity. A coaxial cable or a waveguide are used to couple the EM field in the microwave region and thus to excite the system resonant frequencies. WG modes are resonant modes of higher-order azimuthal number (m) having most of the EM energy concentrated on the dielectric surface. Within the temperature range of -196 °C to 500 °C the most commonly used industrial thermometer is platinum resistance thermometer (PRT) with the uncertainties of 10 mK. The PRT offers high accuracy, low drift, a wide operating range; however, it is very sensitive to mechanical shock in handing and shipping. Besides, an AC resistance bridge which is typically required as a readout device for PRT is very expensive. Accordingly, there is a great need for a stability-improved, resistant to mechanical shock, potential lower uncertainty and cost-effective industrial thermometer. WGMR thermometer (WGMRT) is a new kind of thermometer which offers greater vibration immunity, improved stability, smaller uncertainty in temperature measurement and potential lower cost than platinum resistance thermometry. An innovative sapphire whispering gallery thermometer (SWGT) was first explored at the National Institute of Standards and Technology (NIST) in 2007 by Strouse [1] with the uncertainty less than 10 mK. Five WGMs with nominal resonant frequencies ranging from 14.4 GHz to 19.1 GHz and with Q-factors, respectively, ranging from 20,000 to 90,000 were measured within the temperature range of 0 °C to 100 °C. The accuracies of his WGMTs were in the range of ± 0.02 °C and ice point repeatability was better than 2 mK. The thesis reports the tests performed on several WGMR thermometers which have different shapes of crystals to evaluate their stability, resolution and repeatability in the temperature range of -40 °C to 85°C. Thermal cycle experimental results IV showed a Q in excess of 100000 for the mode with the highest azimuthal number, making it possible to achieve a potential temperature resolution of 0.1 mK. Besides, different specimens of crystals with the same nominal specification and reassemble for the same specimen were both tested to check the reproducibility of the thermometer. The birefringence of the sapphire was also studied to make an innovative thermometer. The ratios of two doublet frequencies are sensitive to the temperature-dependent birefringence of the crystal and relatively insensitive to surface contamination and changes in the shape of the cavity. Besides, it can have an external shape that closely approximates the shape of conventional platinum resistance thermometers.
APA, Harvard, Vancouver, ISO, and other styles
2

Li, Y. L. "Cooling and sensing using whispering gallery mode resonators." Thesis, University College London (University of London), 2016. http://discovery.ucl.ac.uk/1522162/.

Full text
Abstract:
This thesis reports on a detailed exploration of the optomechanical interaction between a tapered optical fibre and a silica microsphere mounted on a cantilever. The amount of light evanescently coupled from the fibre into the optical whispering gallery mode of the sphere is exquisitely sensitive to their separation allowing fast measurement of picometre displacements of both the microsphere-cantilever and the fibre. By exploiting this enhanced transduction, strong active feedback damping/cooling of the thermal motion of both the fibre and microsphere-cantilever have been demonstrated to the noise limit of the system. The cavity enhanced optical dipole force between the fibre and the sphere was used to damp multiple mechanical modes of the tapered fibre, while a piezo-stack at the clamped end of the microsphere-cantilever allowed for cooling of its centre-of-mass motion and the second mechanical eigenmode. The effect of noise within the feedback loop was shown to invert the measured mechanical mode spectrum at high feedback gain as the noise itself is fed into the resonator. A rich variety of feedback induced spring stiffening and softening of the mode is measured when time delays are introduced. Cooling of the mechanical modes of the taper, which are ubiquitous to many whispering gallery mode experiments and are considered as unwanted noise, has not been achieved previously. Simultaneous operation of both feedback schemes was demonstrated for the first time, providing stabilization of the system. By using the microsphere-cantilever as an inertial test mass, measurement of its displacement induced by acceleration can resolve micro-g accelerations at high bandwidth.
APA, Harvard, Vancouver, ISO, and other styles
3

Hajjiah, Ali T. "Design and Analysis of Whispering Gallery Mode Semiconductor Lasers." Diss., Virginia Tech, 2009. http://hdl.handle.net/10919/26136.

Full text
Abstract:
Significant technical barriers currently prevent the wide spread adoption of WGM lasers as building blocks in large-scale photonic integrated circuits. The first challenge is to reduce the electrical power consumption at desirable levels of light output power. The second target is to obtain directional light emission without sacrificing other laser performance metrics. The best opportunity for success lies in the pursuit of small micro-Pillar lasers with spiral-geometry cavities. Process technology has been demonstrated for making high-performance WGM lasers including a refined ICP etching process for fabricating micro-Pillar cavities with sidewall roughness less than 10 nm and a new hydrogenation based approach to achieving current blocking that is compatible with all other processing steps and robust in comparison with earlier reports. A comprehensive photo-mask has been designed that enables investigation of the interplay between device geometry and WGM laser performance. Emphasis has been placed on enabling experiments to determining the impact of diffraction and scattering losses, current and carrier confinement, and surface recombination on electrical/optical device characteristics. In addition, a methodology has been developed for separating out process optimization work from the task of identifying the best means for directional light out-coupling. Our device fabrication methods can be proven on WGM lasers with pure cylindrical symmetry, hence results from these experiments should be independent of any specific light output coupling scheme. Particular attention has been paid to the fact that device geometries that give the best performance for purely symmetrical cavities may not yield the highest level of light emission from the spiral output notch. Such considerations seem to be missing from much of the earlier work reported in the literature. Finally, our processing techniques and device designs have resulted in individual WGM lasers that outperform those made by competitors. These devices have been incorporated into multi-element, coupled-cavity optical circuits thereby laying the groundwork for construction of digital photonic gates that execute AND, OR, and NOT logic functions.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
4

Panich, Sirirat. "Optical resonance sensors based on whispering-gallery-mode technique." Thesis, Imperial College London, 2017. http://hdl.handle.net/10044/1/48497.

Full text
Abstract:
In recent years, the whispering gallery mode (WGM) technique has received considerable attention as a novel and extremely sensitive technique for use in sensors. The technique is able to detect target molecules at very low levels and in real time, a capability which cannot be matched by any other detection technique currently in use. With this potential rarely found in common sensors, WGM is becoming one of the most widely used. The WGM set-up is simple and inexpensive. Light generated by a tunable laser, circumnavigates the surface of a resonator through a tapered waveguide. This light is strongly confined inside the microresonator by total internal reflection (TIR). Energy is extracted from the fibre, resulting in a negative peak. The surface of the resonator needs to be functionalised for reacting with the target molecule. If a chemical or biological analyte is to be bound on the surface of the resonator, the negative peak must be shifted. This shift can be used for measuring the amount of the analyte. In view of its exciting potential, it is not surprising that WGM is establishing itself as the detection method of choice, especially in chemical and biomedical applications. The work reported in this thesis is in two sections. In the first part, the use of the WGM technique integrated self-assembled glutathione (GSH) modified gold nanoparticles (Au NPs) on an optical microsphere resonator in an ultrasensitive chemical detection assay for Pb(II) (down to 10 ppt or 0.05 nM) is described. This satisfies the demanding sensitivity required for monitoring the maximum Pb(II) exposure limits set by both International Agency for Research on Cancer (IARC) and the United States Environmental Protection Agency (EPA). The second section presents an example of the use of WGM in a biosensor to study the interactions between small molecules and G-quadruplex DNA which is well known to be active targets for anticancer treatments. Currently methods typically used to study such systems have proven to be valuable; however, they have limitations, such as low sensitivity, time-consuming monitoring and lack of real time analysis. To circumvent these problems, a novel platform based around WGM is developed. The sensor offers a real time, fast and sensitive analysis. In addition, kinetic data such as dissociation equilibrium constant (KD ) as well as association and dissociation constant (kon and koff , respectively) can be easily obtained.
APA, Harvard, Vancouver, ISO, and other styles
5

Sedlmeir, Florian [Verfasser], and Harald [Gutachter] Schwefel. "Crystalline Whispering Gallery Mode Resonators / Florian Sedlmeir ; Gutachter: Harald Schwefel." Erlangen : Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2016. http://d-nb.info/1127336525/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Norris, Gavin J. R. "Whispering Gallery mode lasers for the mid-infrared spectral range." Thesis, Lancaster University, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.441779.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Fraser, Michael John. "Optical Fiber Microstructures for Self-Contained Whispering Gallery Mode Excitation." Diss., Virginia Tech, 2016. http://hdl.handle.net/10919/73659.

Full text
Abstract:
Optical resonators, which confine light by resonant recirculation, serve as the basis for a wide variety of optical components. Though they appear in many geometric forms, the most effective of optical resonators show axial symmetry in at least one dimension. A popular variation that finds broad application is the dielectric sphere. Acclaimed for their high quality (Q) factor and small modal volume, spheres owe credit of these attractive features to their support of whispering gallery mode (WGM) resonances. The sensitivity of a resonance's frequency and Q to strain, temperature, and other parameters of the surrounding medium can be the basis for ultracompact modulators and sensors. Physically, WGMs are special optical modes which can be understood as light rays that orbit the equator of the sphere guided by total internal reflection. Like a smooth stone can be skipped along the surface of a pond, light can be confined to the inside of a sphere by successive reflections. To best excite WGMs, the source light should initially trace a line tangent to the sphere's circumference. But incorporating a tiny sphere with such nanometric tolerances into a practical sensor structure has its challenges and the prospects for microsphere applications have suffered because of the plight of this problem. The work in this dissertation details the fabrication and function of three new "press fit" spherical resonators. These etched fiber micro-devices were developed to meet the demand for a robust, self-integrated means of coupling light between an optical fiber and WGMs in a microsphere resonator. The etching processes have been tuned to enable secure storage of a microsphere while also providing efficient excitation and interrogation of WGMs. Furthermore, the methods have been designed to be staightforward, quick, and repeatable. Using standard etchants on common polarization-maintaining fiber with readily purchased microspheres, the press fit resonators demonstrated here can be batch-fabricated and assembled. The press fit spherical resonator offers an alignment-free and conveniently pigtailed WGM coupler that has great potential for bio-science sensing applications and studies of resonant bispheres.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
8

Simons, Matthew Thomas. "Whispering-gallery mode resonators for nonlinear and quantum optical applications." W&M ScholarWorks, 2014. https://scholarworks.wm.edu/etd/1539624003.

Full text
Abstract:
Quantum information is the next frontier in communications. to realize quantum communications, the quantum mechanical properties of today's best communication medium, light, must be harnessed in a scalable and efficient manner. Whispering-gallery mode resonators (WGMRs), a type of optical cavity, have advantages over traditional designs that can enhance processes used in the generation of nonclassical (quantum) states of light. In particular they reduce the power threshold for intensity-dependent nonlinear phenomena. One such process, second harmonic generation, can reduce the shot noise of light below the standard quantum limit. This dissertation explores the theoretical analysis and experimental tests of noise reduction through second harmonic generation in a crystalline whispering-gallery mode resonator. We also observe the generation of another nonlinear optical process, hyper-Raman scattering, at modest optical powers inside a crystalline WGMR. The change in optical properties of vanadium dioxide due to an optically-induced phase transition is also studied as a potential Q-switching material in a WGMR-type cavity.
APA, Harvard, Vancouver, ISO, and other styles
9

Pang, Shuo. "Whispering gallery modes in quantum dot-embedded dielectric microspheres for tagless remote refractometric sensing." Texas A&M University, 2008. http://hdl.handle.net/1969.1/85998.

Full text
Abstract:
This thesis presents the development of a refractometric sensor based on quantum dot-embedded polystyrene microspheres. The technique uses optical resonances within a microsphere, known as Whispering-Gallery Modes (WGMs), which produce narrow spectral peaks. The basic theory of WGMs is reviewed and specifically discussed for biosensing application. The spectral shifts of WGM peaks are sensitive to changes in the local refractive index. In the experiments, two-photon excited luminescence from the quantum dots couples into several WGMs within the microresonator. By optimizing the detection area, the spectral visibility of the WGMs is improved. The spectral shifts are measured as the surrounding index of refraction changes. The experimental sensitivity is about five times greater than that predicted by Mie theory. The sensor element is based on commercially available dielectric microspheres with a diameter about 10 μm. Thus, the technique is more economic and suitable for sensing applications, compared to microspheres of 100 μm in size which can only be made in the laboratory.
APA, Harvard, Vancouver, ISO, and other styles
10

Cheema, Muhammad. "Towards optimal whispering gallery mode microcavity sensors: novel techniques and analyses." Thesis, McGill University, 2014. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=121389.

Full text
Abstract:
The last two decades have seen tremendous progress towards the development of real time, label free and sensitive optical sensors. Researchers have demonstrated numerous techniques based on surface plasmon resonance, interferometers, waveguides, microcavities, optical fibers and photonic crystals. Among these different approaches, the large photon lifetime (quality factor of 10^6-10^9) of whispering gallery mode (WGM) microcavities makes them a strong candidate for ultrasensitive sensing, as the circulating photons sample a sensing event many times. In a microcavity sensor, the sensing event can be correlated to various measurement parameters including the resonant wavelength and the quality factor. A variety of approaches have been introduced to measure these parameters but little attention has been previously paid to improve the overall signal to noise ratio or accuracy of the sensor. The existing approaches suffer from various drawbacks; some of them do not allow for real time measurement, and their signal (change in the cavity parameters in response to the sensing event) is limited by many noise sources such as laser intensity noise and wavelength instability. Moreover, it is often assumed in the literature that optimum sensing performance is obtained by operating a microcavity at its highest possible quality factor. However, this does not consider the impact of the quality factor on the signal to noise ratio of the sensor. Finally, previous investigations have not explored the opportunity to combine measurements of two different microcavity parameters (i.e. resonant wavelength and quality factor) in order to obtain a more accurate estimation of a sensing event.In this thesis our goal is to develop techniques and analyses towards optimal performance of WGM microcavity sensors. To achieve this goal, firstly, we demonstrate a novel measurement approach for the microcavity sensors based upon phase shift-cavity ring down spectroscopy. We show that it is possible to simultaneously measure the resonant wavelength and the quality factor of a microcavity as a function of the sensing event, in real time and with high noise immunity. Secondly, we develop an accurate electromagnetic model to calculate the resonant wavelength and the quality factor for any axisymmetric microcavity geometry. The model is utilized to determine the microcavity parameters for obtaining the maximum signal of the sensor. Thirdly, we conduct a comprehensive noise analysis for those microcavity sensors that measure changes in the resonant wavelength and the quality factor to probe a sensing event. The signal and noise analysis shows that there is an optimal size and quality factor for a microcavity at which the maximum signal to noise ratio (SNR) is obtained, and that a highest quality factor may not result in the highest SNR. Finally, we develop a model and demonstrate that a combination of the resonant wavelength and the quality factor measurements of a microcavity sensor provide a more accurate sensing approach. The model is also extended to develop a sensing metric to compare the performance of wide range of sensors. Significantly, except for the electromagnetic model which applies to any axisymmetric WGM microcavity, all the techniques and the analyses developed in this thesis are independent of the WGM microcavity geometry. Moreover, the electromagnetic model, the signal and the noise analysis, and the work on combining the multiple sensing parameters are also applicable to the previously demonstrated approaches. Furthermore, the current work is relevant to various sensing applications, ranging from liquid to gaseous phase. We believe that the present thesis is a step forward towards optimal performance for WGM microcavity sensors.
la longue durée de vie du photon (facteur de qualité de 10^6-10^9) des microcavités en mode de chuchotement en galerie (WGM) font de celles-ci d'excellentes candidates pour la détection ultrasensible puisque les photons circulant dans la cavité échantillonnent le même évènement plusieurs fois. Dans un capteur à microcavité, l'évènement de détection peut être corrélé à plusieurs paramètres de mesures incluant la longueur d'onde de résonance et le facteur de qualité. Des approches variées ont été présentées pour mesurer ces paramètres mais l'amélioration du rapport signal sur bruit et la précision des capteurs ont reçu peu d'attention jusqu'à maintenant.Les approches existantes possèdent plusieurs inconvénients; certaines ne permettent pas de mesures en temps réel et leur signal (changement des paramètres de la cavité en réponse à l'évènement de détection) est limité par les multiples sources de bruit tels que l'intensité et l'instabilité de la longueur d'onde du laser. De plus, il n'a jamais été démontré que l'information à propos d'un évènement de détection puisse être déterminée plus précisément en utilisant une combinaison des multiples paramètres d'une microcavité, tels que la longueur d'onde de résonance et le facteur de qualité. En outre, il est souvent pris pour acquis dans la littérature que la performance optimale de détection est obtenue en opérant une microcavité à son facteur de qualité le plus élevé. Cependant, cette démarche ne prend pas compte de l'impact du facteur de qualité sur le rapport signal sur bruit du capteur. Dans cette thèse, notre objectif est de développer des techniques et des analyses pour une performance optimale des capteurs à microcavité WGM. Pour atteindre cet objectif, nous démontrons tout d'abord une nouvelle approche de mesure pour les capteurs basés sur la spectroscopie d'absorption par déphasage et mesure du temps de vie des photons piégés dans une cavité optique. Nous démontrons qu'il est possible de mesurer simultanément la longueur d'onde de résonance et le facteur de qualité de la microcavité en fonction de l'évènement de détection, en temps réel et avec une grande immunité au bruit. Deuxièmement, nous développons un modèle électromagnétique précis pour calculer la longueur d'onde de résonance et le facteur de qualité pour toutes les géométries asymétriques des microcavités. Le modèle est utilisé pour déterminer les paramètres de la microcavité afin d'obtenir un signal maximum avec le capteur. Troisièmement, nous effectuons une analyse compréhensive du bruit pour les capteurs à microcavité qui mesurent les changements dans la longueur d'onde de résonance et le facteur de qualité pour la détection. L'analyse du signal et du bruit démontre qu'il y a une dimension optimale et un facteur de qualité pour lesquels un rapport signal sur bruit (SNR) maximum est obtenu, et qu'un facteur de qualité plus élevé ne donne pas nécessairement un SNR plus élevé. Finalement, nous développons un modèle et démontrons qu'une combinaison de la mesure de la longueur d'onde de résonance et du facteur de qualité d'un capteur par microcavité fournit une détection plus précise. De plus, le modèle est étendu afin de développer un paramètre de détection pour comparer la performance de plusieurs capteurs. À l'exception du modèle électromagnétique qui s'applique à toutes les microcavités WGM asymétriques, toutes les techniques et analyses développées dans cette thèse sont indépendantes de la géométrie de la microcavité WGM. De plus, le modèle électromagnétique, l'analyse du signal et du bruit et les démonstrations sur la combinaison de multiples paramètres de détection s'appliquent aussi aux autres approches démontrées précédemment. En outre, la démarche présentée est appropriée pour plusieurs modes de détection, allant de la phase liquide à gazeuse. Nous croyons que la présente thèse est un pas de plus vers une performance optimale des capteurs à microcavité WGM.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Whispering gallery mode"

1

Vollmer, Frank, and Deshui Yu. Optical Whispering Gallery Modes for Biosensing. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-06858-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Vollmer, Frank, and Deshui Yu. Optical Whispering Gallery Modes for Biosensing. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60235-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Righini, Giancarlo C., and Silvia Soria. Advanced Sensing with Micro-optical Whispering-Gallery-Mode Resonators. SPIE PRESS, 2017. http://dx.doi.org/10.1117/3.2272482.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Vollmer, Frank, and Deshui Yu. Optical Whispering Gallery Modes for Biosensing: From Physical Principles to Applications. Springer International Publishing AG, 2021.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Vollmer, Frank, and Deshui Yu. Optical Whispering Gallery Modes for Biosensing: From Physical Principles to Applications. Springer International Publishing AG, 2022.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Vollmer, Frank, and Deshui Yu. Optical Whispering Gallery Modes for Biosensing: From Physical Principles to Applications. Springer International Publishing AG, 2020.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Whispering gallery mode"

1

Rabus, Dominik Gerhard, and Cinzia Sada. "Whispering Gallery Mode Devices." In Integrated Ring Resonators, 327–49. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60131-7_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mann, Richard P., Avinash P. Nayak, M. Saif Islam, V. J. Logeeswaran, Edward Bormashenko, Kerry Allan Wilson, and Frank Vollmer. "Whispering Gallery Mode Biosensor." In Encyclopedia of Nanotechnology, 2837. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-90-481-9751-4_100889.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Arnold, S., and S. I. Shopova. "Whispering Gallery Mode Biosensor." In Biophotonics: Spectroscopy, Imaging, Sensing, and Manipulation, 237–59. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-9977-8_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wilson, Kerry Allan, and Frank Vollmer. "Whispering Gallery Mode Resonator Biosensors." In Encyclopedia of Nanotechnology, 4387–401. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-017-9780-1_121.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mann, Richard P., Avinash P. Nayak, M. Saif Islam, V. J. Logeeswaran, Edward Bormashenko, Kerry Allan Wilson, and Frank Vollmer. "Whispering Gallery Mode Resonator Biosensors." In Encyclopedia of Nanotechnology, 2837–49. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-90-481-9751-4_121.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wu, Yuqiang, and Frank Vollmer. "Whispering Gallery Mode Biomolecular Sensors." In Springer Series in Optical Sciences, 323–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-40003-2_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Soria, S., L. Pasquardini, A. Barucci, S. Berneschi, F. Cosi, L. Lunelli, G. Nunzi Conti, and C. Pederzolli. "Aptamer Based Whispering Gallery Mode Biosensor." In Lecture Notes in Electrical Engineering, 369–73. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-3860-1_66.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Schliesser, A., and T. J. Kippenberg. "Cavity Optomechanics with Whispering-Gallery-Mode Microresonators." In Cavity Optomechanics, 121–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-55312-7_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

François, A., Y. Zhi, and A. Meldrum. "Whispering Gallery Mode Devices for Sensing and Biosensing." In Photonic Materials for Sensing, Biosensing and Display Devices, 237–88. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-24990-2_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ciminelli, C., G. Brunetti, F. Dell’Olio, F. Innone, D. Conteduca, and M. N. Armenise. "Emerging Applications of Whispering Gallery Mode Photonic Resonators." In Lecture Notes in Electrical Engineering, 185–91. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55071-8_24.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Whispering gallery mode"

1

Campillo, A. J., H. B. Lin, and J. D. Eversole. "Droplet whispering gallery mode laser." In International Laser Science Conference. Washington, D.C.: Optica Publishing Group, 1986. http://dx.doi.org/10.1364/ils.1986.thi2.

Full text
Abstract:
We report lasing characteristics of 40-60-µm diam rhodamine 590:water solution droplets pumped by 532-nm Q-switched pulses. Water was employed to avoid competition from whispering mode stimulated Raman scattering normally encountered in the alcohols when using nanosecond or shorter pulse excitation. We have been able to establish the threshold and find that the low level for lasing (104 W/cm2 for 10−4-M solution) is consistent with cavity Q approaching 104. We have also obtained stable high quality lasing spectra and have identified many of the mode features. At 30-Hz excitation rate the spectral emission from a stream of droplets is stable in real time. Consequently, the rhodamine/water solution droplets reported here provide a useful model system for theory/experiment comparison. Our data appear consistent with a physical model of the droplet blanketed by many narrow ribbonlike regions, each lying on a great circle of the sphere and each possessing a distinct orientation. Oscillation is primarily of TM mode character although along some ribbon orientations TE modes lase as well. Mode features are easily tuned in frequency by varying particle size. In the far field, the lasing particle approximates a coherent point source emitting uniformly in all directions.
APA, Harvard, Vancouver, ISO, and other styles
2

Su, Judith, Cheng Li, Mohammad Teimourpour, and Euan McLeod. "Enhanced whispering gallery mode sensors." In Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XIX, edited by Augustus W. Fountain, Jason A. Guicheteau, and Chris R. Howle. SPIE, 2018. http://dx.doi.org/10.1117/12.2304556.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Weigel, T., C. Esen, G. Schweiger, and A. Ostendorf. "Whispering gallery mode pressure sensing." In SPIE Photonics Europe, edited by Francis Berghmans, Anna G. Mignani, and Piet De Moor. SPIE, 2012. http://dx.doi.org/10.1117/12.921759.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Vo, Trung D., Eric Mägi, Benjamin J. Eggleton, and Brian G. Ferguson. "Whispering gallery mode-based magnetometer." In CLEO: Science and Innovations. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/cleo_si.2015.sm3o.7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Vollmer, Frank. "Enhancing whispering gallery mode biosensing." In 2013 15th International Conference on Transparent Optical Networks (ICTON). IEEE, 2013. http://dx.doi.org/10.1109/icton.2013.6602810.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Liang, Wei, Vladimir Ilchenko, Danny Eliyahu, Elijah Dale, Anatoliy Savchenkov, Andrey Matsko, and Lute Maleki. "Whispering gallery mode optical gyroscope." In 2016 IEEE International Symposium on Inertial Sensors and Systems. IEEE, 2016. http://dx.doi.org/10.1109/isiss.2016.7435552.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bunyayev, S. O., A. A. Barannik, and N. T. Cherpak. "Conical whispering gallery mode resonator." In 2005 European Microwave Conference. IEEE, 2005. http://dx.doi.org/10.1109/eumc.2005.1610147.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Vollmer, Frank. "Plasmon-enhanced whispering gallery mode biosensing." In 2012 Photonics Global Conference (PGC). IEEE, 2012. http://dx.doi.org/10.1109/pgc.2012.6458007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ying, C. Y. J., G. S. Murugan, G. Brambilla, E. Soergel, C. L. Sones, J. S. Wilkinson, R. W. Eason, M. N. Zervas, and S. Mailis. "LiNbO3 Whispering-Gallery Mode Micro-Resonator." In 2011 Symposium on Photonics and Optoelectronics (SOPO 2011). IEEE, 2011. http://dx.doi.org/10.1109/sopo.2011.5780520.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Zheng Shi, Shumin He, Hongbo Zhu, Miao Zhang, and Yongjin Wang. "Freestanding Whispering-Gallery Mode microdisk resonator." In 2013 8th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS). IEEE, 2013. http://dx.doi.org/10.1109/nems.2013.6559752.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Whispering gallery mode"

1

Felch, K., L. Ives, E. Jongewaard, H. Jory, and S. Spang. Initial operation of a high-power whispering-gallery-mode gyrotron. Office of Scientific and Technical Information (OSTI), October 1987. http://dx.doi.org/10.2172/5867724.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography