To see the other types of publications on this topic, follow the link: Whispering gallery mode.

Journal articles on the topic 'Whispering gallery mode'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Whispering gallery mode.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

GONOKAMI, Makoto. "Polymer Micro - Photonics with Whispering Gallery Mode." Kobunshi 45, no. 2 (1996): 101. http://dx.doi.org/10.1295/kobunshi.45.101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Corbellini, Simone, Chiara Ramella, Lili Yu, Marco Pirola, and Vito Fernicola. "Whispering Gallery Mode Thermometry." Sensors 16, no. 11 (October 29, 2016): 1814. http://dx.doi.org/10.3390/s16111814.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Harayama, Takahisa, Peter Davis, and Kensuke S. Ikeda. "Whispering Gallery Mode Lasers." Progress of Theoretical Physics Supplement 139 (2000): 363–74. http://dx.doi.org/10.1143/ptps.139.363.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Foreman, Matthew R., Jon D. Swaim, and Frank Vollmer. "Whispering gallery mode sensors." Advances in Optics and Photonics 7, no. 2 (May 22, 2015): 168. http://dx.doi.org/10.1364/aop.7.000168.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Yang, J. J., M. Huang, J. Yu, and Y. Z. Lan. "Surface whispering-gallery mode." EPL (Europhysics Letters) 96, no. 5 (November 16, 2011): 57003. http://dx.doi.org/10.1209/0295-5075/96/57003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Guoqiang Gu, Guoqiang Gu, Lujian Chen Lujian Chen, Hongyan Fu Hongyan Fu, Kaijun Che Kaijun Che, Zhiping Cai Zhiping Cai, and Huiying Xu Huiying Xu. "UV-curable adhesive microsphere whispering gallery mode resonators." Chinese Optics Letters 11, no. 10 (2013): 101401–5. http://dx.doi.org/10.3788/col201311.101401.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Pirnat, Gregor, and Matjaž Humar. "Whispering Gallery‐Mode Microdroplet Tensiometry." Advanced Photonics Research 2, no. 11 (November 2021): 2170037. http://dx.doi.org/10.1002/adpr.202170037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zhang, Jiangquan, and D. Grischkowsky. "Whispering-gallery mode terahertz pulses." Optics Letters 27, no. 8 (April 15, 2002): 661. http://dx.doi.org/10.1364/ol.27.000661.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ilchenko, V. S., A. M. Bennett, P. Santini, A. A. Savchenkov, A. B. Matsko, and L. Maleki. "Whispering gallery mode diamond resonator." Optics Letters 38, no. 21 (October 21, 2013): 4320. http://dx.doi.org/10.1364/ol.38.004320.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

McCall, S. L., A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan. "Whispering‐gallery mode microdisk lasers." Applied Physics Letters 60, no. 3 (January 20, 1992): 289–91. http://dx.doi.org/10.1063/1.106688.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Foreman, Matthew R., Jon D. Swaim, and Frank Vollmer. "Whispering gallery mode sensors: erratum." Advances in Optics and Photonics 7, no. 3 (September 11, 2015): 632. http://dx.doi.org/10.1364/aop.7.000632.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Kuwata-Gonokami, Makoto, and Kenji Takeda. "Polymer whispering gallery mode lasers." Optical Materials 9, no. 1-4 (January 1998): 12–17. http://dx.doi.org/10.1016/s0925-3467(97)00160-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Bunyaev, Sergey A., Alexander A. Barannik, and Nickolay T. Cherpak. "Microstrip Whispering-Gallery-Mode Resonator." IEEE Transactions on Microwave Theory and Techniques 63, no. 9 (September 2015): 2776–81. http://dx.doi.org/10.1109/tmtt.2015.2457898.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Chiasera, A., Y. Dumeige, P. Féron, M. Ferrari, Y. Jestin, G. Nunzi Conti, S. Pelli, S. Soria, and G. C. Righini. "Spherical whispering-gallery-mode microresonators." Laser & Photonics Reviews 4, no. 3 (July 13, 2009): 457–82. http://dx.doi.org/10.1002/lpor.200910016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Zambrana-Puyalto, Xavier, Davide D’Ambrosio, and Gianluca Gagliardi. "Efficient coupling of free propagating light into Whispering Gallery Modes." EPJ Web of Conferences 255 (2021): 04002. http://dx.doi.org/10.1051/epjconf/202125504002.

Full text
Abstract:
Whispering Gallery Mode resonators are dielectric structures with cylindrical symmetry. They are typically excited with an evanescent field leaking out of a tapered fiber or a waveguide. It is also known that they can be excited with free propagating beams. In this work, we use a recently developed analytical model which quantitatively describes the coupling of free propagating beams into Whispering Gallery Modes for spherical particles. Using this model, we have been able to theoretically quantify the mode purity and the coupling efficiency of a resonant Whispering Gallery Mode of an order j*= 1456. We have observed that the transverse position of the beam plays a crucial role in determining the mode purity and coupling efficiency. Last but not least, we have verified that the coupling efficiency as well as the Q-factor predicted by our model are in an outstanding agreement with the experimental values measured on a microresonator of the same dimensions as the simulated one.
APA, Harvard, Vancouver, ISO, and other styles
16

Matsko, Andrey B., Vladimir S. Ilchenko, Anatoliy A. Savchenkov, and Lute Maleki. "Active mode locking with whispering-gallery modes." Journal of the Optical Society of America B 20, no. 11 (November 1, 2003): 2292. http://dx.doi.org/10.1364/josab.20.002292.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Watkins, Amy. "Whispering-gallery-mode microbubble resonators: fabrication and characterization." Boolean: Snapshots of Doctoral Research at University College Cork, no. 2011 (January 1, 2011): 215–20. http://dx.doi.org/10.33178/boolean.2011.45.

Full text
Abstract:
Whispering is not an effective means of communication when a considerable distance separates the two conversationalists. In spite of this, a soft whisper can travel a very long way in the right environment - a whispering gallery. In 1910, the scientist Sir John William Strutt (Lord Rayleigh) witnessed this acoustic phenomenon in the Dome of St. Paul’s Cathedral in London (see Fig. 1). Here, two people on opposite sides of the dome, up to 40 metres apart, can talk to each other by simply whispering against the curved wall. Inevitably, Lord Rayleigh - a true mathematician at heart - solved what he described as “The problem of the Whispering Gallery”. He realised that, as the whisper travels along the curved surface, it loses very little energy and so can be heard after a great distance. Conversely, when the speaker talks at normal volume, the message possesses enough energy to complete ...
APA, Harvard, Vancouver, ISO, and other styles
18

Wei Xu, Wei Xu, Chunxiang Xu Chunxiang Xu, Feifei Qin Feifei Qin, Yaqi Shan Yaqi Shan, Zhu Zhu Zhu Zhu, and Ye Zhu Ye Zhu. "Whispering-gallery mode lasing from polymer microsphere for humidity sensing." Chinese Optics Letters 16, no. 8 (2018): 081401. http://dx.doi.org/10.3788/col201816.081401.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Soria, Silvia, Simone Berneschi, Lorenzo Lunelli, Gualtiero Nunzi Conti, Laura Pasquardini, Cecilia Pederzolli, and Giancarlo C. Righini. "Whispering Gallery Mode Microresonators for Biosensing." Advances in Science and Technology 82 (September 2012): 55–63. http://dx.doi.org/10.4028/www.scientific.net/ast.82.55.

Full text
Abstract:
In the field of sensing, WGM microresonators are receiving a growing interest as optical structures suitable for the realization of miniature sensors with high sensitivity. When properly excited, WGM microresonators are able to strongly confine light, by means of total internal reflection,along the equatorial plane near their spherical surface. The corresponding supported resonances show low losses and a high quality factor Q (107-109). These high values of the Q factor make possible the detection of any minute event that occurs on the surface of the spherical microcavity. In fact, any minimum change in the surface of the sphere or in the physical and optical properties of the surrounding environment reduces the Q factor value and modifies the position of the resonancesinside the dielectric microcavity. From a direct measurement of this resonance shift, one can infer the amount of analyte that produces this variation.
APA, Harvard, Vancouver, ISO, and other styles
20

Zhao, Xuyang, Zhihe Guo, Yi Zhou, Junhong Guo, Zhiran Liu, Yuxiang Li, Man Luo, and Xiang Wu. "Optical Whispering-Gallery-Mode Microbubble Sensors." Micromachines 13, no. 4 (April 9, 2022): 592. http://dx.doi.org/10.3390/mi13040592.

Full text
Abstract:
Whispering-gallery-mode (WGM) microbubble resonators are ideal optical sensors due to their high quality factor, small mode volume, high optical energy density, and geometry/design/structure (i.e., hollow microfluidic channels). When used in combination with microfluidic technologies, WGM microbubble resonators can be applied in chemical and biological sensing due to strong light–matter interactions. The detection of ultra-low concentrations over a large dynamic range is possible due to their high sensitivity, which has significance for environmental monitoring and applications in life-science. Furthermore, WGM microbubble resonators have also been widely used for physical sensing, such as to detect changes in temperature, stress, pressure, flow rate, magnetic field and ultrasound. In this article, we systematically review and summarize the sensing mechanisms, fabrication and packing methods, and various applications of optofluidic WGM microbubble resonators. The challenges of rapid production and practical applications of WGM microbubble resonators are also discussed.
APA, Harvard, Vancouver, ISO, and other styles
21

Minev, Z. K., I. M. Pop, and M. H. Devoret. "Planar superconducting whispering gallery mode resonators." Applied Physics Letters 103, no. 14 (September 30, 2013): 142604. http://dx.doi.org/10.1063/1.4824201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Vogt, Dominik Walter, and Rainer Leonhardt. "Terahertz whispering gallery mode bubble resonator." Optica 4, no. 7 (July 17, 2017): 809. http://dx.doi.org/10.1364/optica.4.000809.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Ghulinyan, Mher, Alessandro Pitanti, Georg Pucker, and Lorenzo Pavesi. "Whispering-gallery mode micro-kylix resonators." Optics Express 17, no. 11 (May 21, 2009): 9434. http://dx.doi.org/10.1364/oe.17.009434.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Savchenkov, Anatoliy A., Andrey B. Matsko, and Lute Maleki. "White-light whispering gallery mode resonators." Optics Letters 31, no. 1 (January 1, 2006): 92. http://dx.doi.org/10.1364/ol.31.000092.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Di Monaco, O., W. Daniau, I. Lajoie, Y. Gruson, M. Chaubet, and V. Giordano. "Mode selection for a whispering gallery mode resonator." Electronics Letters 32, no. 7 (1996): 669. http://dx.doi.org/10.1049/el:19960427.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Liu, Zeng-Xing, Cai You, Bao Wang, Huafeng Dong, Hao Xiong, and Ying Wu. "Nanoparticle-mediated chiral light chaos based on non-Hermitian mode coupling." Nanoscale 12, no. 3 (2020): 2118–25. http://dx.doi.org/10.1039/c9nr08066j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Nunzi Conti, Gualtiero, Simome Berneschi, and Silvia Soria. "Aptasensors Based on Whispering Gallery Mode Resonators." Biosensors 6, no. 3 (July 16, 2016): 28. http://dx.doi.org/10.3390/bios6030028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Liu, Fangyuan, Junhua Tong, Zhiyang Xu, Kun Ge, Jun Ruan, Libin Cui, and Tianrui Zhai. "Electrically Tunable Polymer Whispering-Gallery-Mode Laser." Materials 15, no. 14 (July 10, 2022): 4812. http://dx.doi.org/10.3390/ma15144812.

Full text
Abstract:
Microlasers hold great promise for the development of photonics and optoelectronics. At present, tunable microcavity lasers, especially regarding in situ dynamic tuning, are still the focus of research. In this study, we combined a 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (PMN-PT) piezoelectric crystal with a Poly [9,9-dioctylfluorenyl-2,7-diyl] (PFO) microring cavity to realize a high-quality, electrically tunable, whispering-gallery-mode (WGM) laser. The dependence of the laser properties on the diameter of the microrings, including the laser spectrum and quality (Q) value, was investigated. It was found that with an increase in microring diameter, the laser emission redshifted, and the Q value increased. In addition, the device effectively achieved a blueshift under an applied electric field, and the wavelength tuning range was 0.71 nm. This work provides a method for in situ dynamic spectral modulation of microcavity lasers, and is expected to provide inspiration for the application of integrated photonics technology.
APA, Harvard, Vancouver, ISO, and other styles
29

Petermann, Ann, Thomas Hildebrandt, Uwe Morgner, Bernhard Roth, and Merve Meinhardt-Wollweber. "Polymer Based Whispering Gallery Mode Humidity Sensor." Sensors 18, no. 7 (July 22, 2018): 2383. http://dx.doi.org/10.3390/s18072383.

Full text
Abstract:
Whispering gallery mode (WGM) resonators are versatile high sensitivity sensors, but applications regularly suffer from elaborate and expensive manufacturing and read-out. We have realized a simple and inexpensive concept for an all-polymer WGM sensor. Here, we evaluate its performance for relative humidity measurements demonstrating a sensitivity of 47 pm/% RH. Our results show the sensor concepts’ promising potential for use in real-life applications and environments.
APA, Harvard, Vancouver, ISO, and other styles
30

AOKI, Takao. "Cavity QED with Whispering-Gallery Mode Microresonators." Review of Laser Engineering 41, no. 7 (2013): 497. http://dx.doi.org/10.2184/lsj.41.7_497.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Melnikau, Dzmitry, Diana Savateeva, Andrey Chuvilin, Rainer Hillenbrand, and Yury P. Rakovich. "Whispering gallery mode resonators with J-aggregates." Optics Express 19, no. 22 (October 24, 2011): 22280. http://dx.doi.org/10.1364/oe.19.022280.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Petermann, Ann Britt, Arthur Varkentin, Bernhard Roth, Uwe Morgner, and Merve Meinhardt-Wollweber. "All-polymer whispering gallery mode sensor system." Optics Express 24, no. 6 (March 9, 2016): 6052. http://dx.doi.org/10.1364/oe.24.006052.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Matsko, A. B., L. Maleki, A. A. Savchenkov, and V. S. Ilchenko. "Whispering gallery mode based optoelectronic microwave oscillator." Journal of Modern Optics 50, no. 15-17 (October 2003): 2523–42. http://dx.doi.org/10.1080/09500340308233582.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Shu, Fangjie, Xuefeng Jiang, Guangming Zhao, and Lan Yang. "A scatterer-assisted whispering-gallery-mode microprobe." Nanophotonics 7, no. 8 (July 17, 2018): 1455–60. http://dx.doi.org/10.1515/nanoph-2018-0063.

Full text
Abstract:
AbstractA fiber-based whispering-gallery-mode (WGM) microprobe, combining both the high optical field enhancement of the WGMs and the compact structure of the optical fiber, is highly desired for sensing and imaging. Here we report a WGM microsphere resonator coupled to a single-mode fiber interfaced by a graded-index lens. By scattering a focused laser beam through a nano-scatterer, with the help of a two-step focusing technique as well as Purcell effects, the efficient far-field coupling of WGMs with an efficiency as high as 16.8% has been demonstrated in our system. With the feature of both input and output of the probe light propagating along the same fiber, such a scatterer-assisted WGM microprobe will serve as a convenient tool for sensing/imaging applications.
APA, Harvard, Vancouver, ISO, and other styles
35

Savchenkov, A. A., A. B. Matsko, D. Strekalov, V. S. Ilchenko, and L. Maleki. "Mode filtering in optical whispering gallery resonators." Electronics Letters 41, no. 8 (2005): 495. http://dx.doi.org/10.1049/el:20058301.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Jung, Suyong. "Whispering-gallery mode quantum resonators in graphene." NPG Asia Materials 7, no. 10 (October 2015): e218-e218. http://dx.doi.org/10.1038/am.2015.106.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Mai, Hanh Hong, Tam Trong Nguyen, Khoi Manh Giang, Xuan Tien Do, Toan T. Nguyen, Hieu Chi Hoang, and Van Duong Ta. "Chicken albumen-based whispering gallery mode microlasers." Soft Matter 16, no. 39 (2020): 9069–73. http://dx.doi.org/10.1039/d0sm01091j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Yılmaz, Huzeyfe, Abdon Pena-Francesch, Robert Shreiner, Huihun Jung, Zaneta Belay, Melik C. Demirel, Şahin Kaya Özdemir, and Lan Yang. "Structural Protein-Based Whispering Gallery Mode Resonators." ACS Photonics 4, no. 9 (August 10, 2017): 2179–86. http://dx.doi.org/10.1021/acsphotonics.7b00310.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Du, Xuan, Serge Vincent, and Tao Lu. "Full-vectorial whispering-gallery-mode cavity analysis." Optics Express 21, no. 19 (September 11, 2013): 22012. http://dx.doi.org/10.1364/oe.21.022012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Kryzhanovskaya, N. V., M. V. Maximov, and A. E. Zhukov. "Whispering-gallery mode microcavity quantum-dot lasers." Quantum Electronics 44, no. 3 (March 28, 2014): 189–200. http://dx.doi.org/10.1070/qe2014v044n03abeh015358.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Kwon, Soon-Hong. "Deep subwavelength plasmonic whispering-gallery-mode cavity." Optics Express 20, no. 22 (October 16, 2012): 24918. http://dx.doi.org/10.1364/oe.20.024918.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Bianucci, Pablo, Chris R. Fietz, John W. Robertson, Gennady Shvets, and Chih-Kang Shih. "Whispering gallery mode microresonators as polarization converters." Optics Letters 32, no. 15 (July 24, 2007): 2224. http://dx.doi.org/10.1364/ol.32.002224.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Rusakov, K. I., A. A. Gladyshchuk, Y. P. Rakovich, J. F. Donegan, S. Balakrishnan, Y. Gun’ko, T. S. Perova, and R. A. Moore. "Whispering gallery mode emission from microtube cavity." Optics and Spectroscopy 103, no. 3 (September 2007): 360–65. http://dx.doi.org/10.1134/s0030400x07090044.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Zhang, Jiangquan, and D. Grischkowsky. "Whispering-gallery-mode cavity for terahertz pulses." Journal of the Optical Society of America B 20, no. 9 (September 1, 2003): 1894. http://dx.doi.org/10.1364/josab.20.001894.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Smith, David D., Hongrok Chang, and Kirk A. Fuller. "Whispering-gallery mode splitting in coupled microresonators." Journal of the Optical Society of America B 20, no. 9 (September 1, 2003): 1967. http://dx.doi.org/10.1364/josab.20.001967.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Ioppolo, Tindaro, and M. Volkan Ötügen. "Pressure tuning of whispering gallery mode resonators." Journal of the Optical Society of America B 24, no. 10 (September 24, 2007): 2721. http://dx.doi.org/10.1364/josab.24.002721.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Wang, Lu, Xuefei Zhou, Shuo Yang, Gaoshan Huang, and Yongfeng Mei. "2D-material-integrated whispering-gallery-mode microcavity." Photonics Research 7, no. 8 (July 26, 2019): 905. http://dx.doi.org/10.1364/prj.7.000905.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Matsko, Andrey B., Anatoliy A. Savchenkov, and Lute Maleki. "Vertically coupled whispering-gallery-mode resonator waveguide." Optics Letters 30, no. 22 (November 15, 2005): 3066. http://dx.doi.org/10.1364/ol.30.003066.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Xu, Chunxiang, Jun Dai, Guangping Zhu, Gangyi Zhu, Yi Lin, Jitao Li, and Zengliang Shi. "Whispering-gallery mode lasing in ZnO microcavities." Laser & Photonics Reviews 8, no. 4 (February 13, 2014): 469–94. http://dx.doi.org/10.1002/lpor.201300127.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Li, Yangcheng, Farzaneh Abolmaali, Kenneth W. Allen, Nicholaos I. Limberopoulos, Augustine Urbas, Yury Rakovich, Alexey V. Maslov, and Vasily N. Astratov. "Whispering gallery mode hybridization in photonic molecules." Laser & Photonics Reviews 11, no. 2 (March 2017): 1600278. http://dx.doi.org/10.1002/lpor.201600278.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography