Academic literature on the topic 'Wi-Fi Sensors'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Wi-Fi Sensors.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Wi-Fi Sensors"
Choi, Woo-Yong. "Efficient Node Insertion Algorithm for Connectivity-Based Multipolling MAC Protocol in Wi-Fi Sensor Networks." Applied Sciences 13, no. 21 (November 2, 2023): 11974. http://dx.doi.org/10.3390/app132111974.
Full textYu, Yue, Ruizhi Chen, Liang Chen, Guangyi Guo, Feng Ye, and Zuoya Liu. "A Robust Dead Reckoning Algorithm Based on Wi-Fi FTM and Multiple Sensors." Remote Sensing 11, no. 5 (March 1, 2019): 504. http://dx.doi.org/10.3390/rs11050504.
Full textLin, Jen-Yung, Huan-Liang Tsai, and Wei-Hong Lyu. "An Integrated Wireless Multi-Sensor System for Monitoring the Water Quality of Aquaculture." Sensors 21, no. 24 (December 7, 2021): 8179. http://dx.doi.org/10.3390/s21248179.
Full textDuives, Dorine C., Tim van Oijen, and Serge P. Hoogendoorn. "Enhancing Crowd Monitoring System Functionality through Data Fusion: Estimating Flow Rate from Wi-Fi Traces and Automated Counting System Data." Sensors 20, no. 21 (October 23, 2020): 6032. http://dx.doi.org/10.3390/s20216032.
Full textSun, Chao, Junhao Zhou, Kyongseok Jang, and Youngok Kim. "Indoor Localization Based on Integration of Wi-Fi with Geomagnetic and Light Sensors on an Android Device Using a DFF Network." Electronics 12, no. 24 (December 16, 2023): 5032. http://dx.doi.org/10.3390/electronics12245032.
Full textSilva , Ivo, Cristiano Pendão, Joaquín Torres-Sospedra, and Adriano Moreira. "Industrial Environment Multi-Sensor Dataset for Vehicle Indoor Tracking with Wi-Fi, Inertial and Odometry Data." Data 8, no. 10 (October 23, 2023): 157. http://dx.doi.org/10.3390/data8100157.
Full textJiang, Xinlong, Yiqiang Chen, Junfa Liu, Dingjun Liu, Yang Gu, and Zhenyu Chen. "Real-Time and Accurate Indoor Localization with Fusion Model of Wi-Fi Fingerprint and Motion Particle Filter." Mathematical Problems in Engineering 2015 (2015): 1–13. http://dx.doi.org/10.1155/2015/545792.
Full textMilani, Ileana, Carlo Bongioanni, Fabiola Colone, and Pierfrancesco Lombardo. "Fusing Measurements from Wi-Fi Emission-Based and Passive Radar Sensors for Short-Range Surveillance." Remote Sensing 13, no. 18 (September 7, 2021): 3556. http://dx.doi.org/10.3390/rs13183556.
Full textNaik, M. Renubabu. "Greenhouse Environment Monitoring and Controlling Through IoT." International Journal for Research in Applied Science and Engineering Technology 10, no. 6 (June 30, 2022): 2412–17. http://dx.doi.org/10.22214/ijraset.2022.44318.
Full textFaydhe, Fatima, Majida Saud Ibrahim, and Kamal Y. Kamal. "HaLow Wi-Fi performance in multiusers and channels environment with MATLAB Simulink." International Journal of Communication Networks and Information Security (IJCNIS) 15, no. 1 (May 26, 2023): 01–11. http://dx.doi.org/10.17762/ijcnis.v15i1.5487.
Full textDissertations / Theses on the topic "Wi-Fi Sensors"
Ta, Viet-Cuong. "Smartphone-based indoor positioning using Wi-Fi, inertial sensors and Bluetooth." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAM092/document.
Full textWith the popularity of smartphones and tablets in daily life, the task of finding user’s position through their phone gains much attention from both the research and industry communities. Technologies integrated in smartphones such as GPS, Wi-Fi, Bluetooth and camera are all capable for building a positioning system. Among those technologies, GPS has approaches have become a standard and achieved much success for the outdoor environment. Meanwhile, Wi-Fi, inertial sensors and Bluetooth are more preferred for positioning task in indoor environment.For smartphone positioning, Wi-Fi fingerprinting based approaches are well established within the field. Generally speaking, the approaches attempt to learn the mapping function from Wi-Fi signal characteristics to the real world position. They usually require a good amount of data for finding a good mapping. When the available training data is limited, the fingerprinting-based approach has high errors and becomes less stable. In our works, we want to explore different approaches of Wi-Fi fingerprinting methods for dealing with a lacking in training data. Based on the performance of the individual approaches, several ensemble strategies are proposed to improve the overall positioning performance. All the proposed methods are tested against a published dataset, which is used as the competition data of the IPIN 2016 Conference with offsite track (track 3).Besides the positioning system based on Wi-Fi technology, the smartphone’s inertial sensors are also useful for the tracking task. The three types of sensors, which are accelerate, gyroscope and magnetic, can be employed to create a Step-And-Heading (SHS) system. Several methods are tested in our approaches. The number of steps and user’s moving distance are calculated from the accelerometer data. The user’s heading is calculated from the three types of data with three methods, including rotation matrix, Complimentary Filter and Madgwick Filter. It is reasonable to combine SHS outputs with the outputs from Wi-Fi due to both technologies are present in the smartphone. Two combination approaches are tested. The first approach is to use directly the Wi-Fi outputs as pivot points for fixing the SHS tracking part. In the second approach, we rely on the Wi-Fi signal to build an observation model, which is then integrated into the particle filter approximation step. The combining paths have a significant improvement from the SHS tracking only and the Wi-Fi only. Although, SHS tracking with Wi-Fi fingerprinting improvement achieves promising results, it has a number of limitations such as requiring additional sensors calibration efforts and restriction on smartphone handling positions.In the context of multiple users, Bluetooth technology on the smartphone could provide the approximated distance between users. The relative distance is calculated from the Bluetooth inquiry process. It is then used to improve the output from Wi-Fi positioning models. We study two different combination methods. The first method aims to build an error function which is possible to model the noise in the Wi-Fi output and Bluetooth approximated distance for each specific time interval. It ignores the temporal relationship between successive Wi-Fi outputs. Position adjustments are then computed by minimizing the error function. The second method considers the temporal relationship and the movement constraint when the user moves around the area. The tracking step are carried out by using particle filter. The observation model of the particle filter are a combination between the Wi-Fi data and Bluetooth data. Both approaches are tested against real data, which include up to four different users moving in an office environment. While the first approach is only applicable in some specific scenarios, the second approach has a significant improvement from the position output based on Wi-Fi fingerprinting model only
Aaro, Gustav. "Smartphone Based Indoor Positioning Using Wi-Fi Round Trip Time and IMU Sensors." Thesis, Linköpings universitet, Institutionen för datavetenskap, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-166340.
Full textFabre, Léa. "Contributions and Opportunities of Wi-Fi Data to Improve Transport Demand Knowledge / Utilisation de données Wi-Fi, quels apports pour la connaissance de la demande de transport?" Electronic Thesis or Diss., Lyon 2, 2024. http://www.theses.fr/2024LYO20011.
Full textDue to its social, environmental and economic importance, mobility plays a key role in urban landscapes. In particular, public transportation is critical to the smooth functioning of cities. Therefore, public transportation systems must be planned to operate properly and efficiently. To this end, it is of paramount importance to have a great knowledge of the mobility demand, especially in an evolving world. The world today is facing a significant demographic growth along with urban sprawl, which implies an increasing demand for transportation in the cities. In addition, travel patterns are diversifying and becoming less regular, mainly due to the emergence of new modes of transport. The data traditionally used for public transportation planning are inadequate to reflect these changes in mobility behaviors. The development of information technologies, digitization and the data science boom can bring interesting benefits to the forecasting of transport demand. The development of new tools and algorithms, such as artificial intelligence, contributes to the diversification and complexity of models to improve the prediction of mobility behaviors. In parallel, we are currently witnessing the diversification of data sources used in mobility analyses. Among them, Wi-Fi data are very promising. These data have significant advantages when used in transportation planning (they provide information on Origin-Destination trips, they are collected continuously and passively…). However, Wi-Fi data also have some drawbacks. Therefore, they require further processing to be used in demand forecasting models. As a new way of collecting mobility data, questions remain about the quality of the data, their contribution, and how they can be used. The objective of this thesis is to provide a data-driven approach to the use of Wi-Fi data for mobility behaviors. In this thesis, we therefore propose solutions to process this interesting data source. A methodology is presented to filter the parasite signals detected by Wi-Fi sensors in order to keep only the passenger signals and construct relevant Origin-Destination matrices. Scaling of the Wi-Fi data to avoid errors in the predicted total number of trips due to undetected Wi-Fi devices is also handled. In the end, we provide Origin-Destination matrices that are relevant to the structure of the trips and complete in trip volumes. In addition, we propose a modeling to quantify the error between the Origin-Destination matrix produced by Wi-Fi data and real Origin-Destination trips, despite the non-continuous availability of the latter. Some applications of the use of Wi-Fi data are also presented. In conclusion, the results of this thesis show that interesting insights into mobility behaviors can be derived from Wi-Fi data, continuously and at low cost
Danielsson, Simon, and Jakob Flygare. "A Multi-Target Graph-Constrained HMM Localisation Approach using Sparse Wi-Fi Sensor Data." Thesis, KTH, Optimeringslära och systemteori, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-231090.
Full textI det här examensarbetet har lokalisering av gångtrafikanter med hjälp av Hidden Markov Models utförts. Lokaliseringen är byggd på data från Wi-Fi sensorer i ett område i Stockholm. Området är modellerat som ett graf-baserat nätverk där linjerna mellan noderna representerar möjliga vägar för en person att befinna sig på. Resultatet för varje individ är aggregerat för att visa förväntat antal personer på varje segment över en hel dag. Två metoder för att analysera hur event påverkar området introduceras och beskrivs. Den första är baserad på tidsserieanalys och den andra är en maskinlärningsmetod som bygger på Baum-Welch algoritmen. Båda metoderna visar vilka segment som drabbas mest av en snabb ökning av trafik i området och var trängsel är troligt att förekomma.
Skytte, Joakim. "Feasibility Study of Indoor Positioning in a Hospital Environment Using Smartphone Sensors." Thesis, Linköpings universitet, Reglerteknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-145172.
Full textEn starkt växande tillgång och kapacitet hos trådlösa nätverk i kombination med explosionen inom mobiltelefoni, i synnerhet vad gäller smartphones, har lett till ett enormt ökat intresse för och utveckling inom området inomhuspositionering. Det har under många år funnits lösningar för positionering i utomhusmiljöer, exempelvis GPS och triangulering med mobila basstationer, men inga av dessa system lämpar sig för inomhuspositionering eftersom signalerna tappar alldeles för mycket i intensitet när användaren befinner sig inomhus. Under årens lopp har flera olika lösningar för inomhuspositionering föreslagits. I denna uppsats testas olika lösningar för inomhuspositionering med smartphones i en sjukhusmiljö. Testen baserar sig på de sensorer som finns i en smartphone med operativsystemet Android i kombination med Wi-Fi triangulering och en digital planlösning över testområdet. Syftet är att undersöka om noggrannheten kan bli såpass så bra att en upplösning på rumsnivå uppnås. En enkel algoritm för att kompensera för slumpartade och oplanerade rörelser hos mobiltelefonen testas. Två versioner av det utökade Kalmanfiltret testas för tröghetsnavigering. TRIAD algoritmen testas för att motverka magnetiska störningar. Två kombinationer av radiokartor och positioneringsalgoritmer provas för att genomföra Wi-Fi positionering. Ett utökat Kalmanfilter används för att kombinera resultaten av tröghetsnavigeringen med Wi-Fi positioneringen. Ett partikelfilter används för att utföra sensorfusionen av tröghetsnavigeringen, Wi-Fi positioneringen och den digitala planlösningen. Resultaten visar att ju mer information som tillförs under positioneringen desto större blir noggrannheten samt att partikelfiltret ger en bättre noggrannhet i en komplex inomhusmiljö i kombination med komplicerade rörelsemönster än det utökade Kalmanfiltret.
Zewdu, Yesitla Ephrem. "Survey of microcontrollers and short-range radio transceivers for wireless sensors." Thesis, Mittuniversitetet, Institutionen för elektronikkonstruktion, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-39640.
Full textWaikul, Devendra Mahendra. "BLUETOOTH-ENABLED ENERGY MONITORING SYSTEM WITH WIRELESS DATA ACQUISITION USING WEB SERVER." Case Western Reserve University School of Graduate Studies / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=case1596563312207117.
Full textDorazil, Jan. "Bezdrátové senzorové sítě s využitím mobilních zařízení." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2013. http://www.nusl.cz/ntk/nusl-236372.
Full textMiccoli, Roberta. "Implementation of a complete sensor data collection and edge-cloud communication workflow within the WeLight project." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/22563/.
Full textFernandes, Rui Miguel Félix. "Object signature in radio frequency." Master's thesis, Universidade de Aveiro, 2014. http://hdl.handle.net/10773/13708.
Full textThe RF signature can be consider as a fingerprint of an object when submitted to electromagnetic radiation. Based on this concept, the initial goal of this work was to elaborate a comparative analysis of the Radio Frequency signature of different materials. Through the design of a prototype based on an adapted Wi-Fi network was developed an innovative system capable of distinguishing materials with the analysis of their interference in the propagated channel. In order to refine this distinction was utilized a signal processing tool, the Wavelet Transform. This technique serve as support tool of the system for a better differentiation of the studied targets. The versatility of this concept was proved through the analysis of signatures of static targets like metal, wood and plastic, as well as moving targets, giving the example of a moving human. Due to the promising results obtained, the initial objective of the work was expanded being also presented in this document the concept of intruder detection through a Wi-Fi network by the analysis of the Wavelet coefficients.
A Assinatura em Rádio Frequência pode ser considerada como a impressão digital que um objeto manifesta quando submetido a radiação eletromagnética. O objetivo inicial deste trabalho era a elaboração de uma análise comparativa das assinaturas em Rádio Frequência de diferentes materiais. Tendo por base uma rede Wi-Fi adaptada, foi desenvolvido um sistema inovador capaz de distinguir materiais pela análise da interferência dos mesmos no canal de propagação. Com vista a melhorar o desempenho do protótipo inicial, o sinal recebido foi processado através da Transformada de Wavelet. Esta técnica serviu como ferramenta de suporte do sistema para a obtenção de uma diferenciação mais clara dos alvos estudados. Demonstrando a versatilidade deste conceito foram avaliadas as assinaturas de alvos estáticos como o metal, madeira e plástico bem como de alvos móveis dando, como exemplo, uma pessoa em movimento. Devido aos resultados promissores obtidos, o objetivo inicial do sistema foi alargado estando também presente neste documento o conceito de deteção de intrusos através de uma rede Wi-Fi pela análise dos coeficientes de Wavelet.
Book chapters on the topic "Wi-Fi Sensors"
Mendez, Gerard Rudolph, and Subhas Chandra Mukhopadhyay. "A Wi-Fi Based Smart Wireless Sensor Network for an Agricultural Environment." In Smart Sensors, Measurement and Instrumentation, 247–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36365-8_10.
Full textJoseph, Irene, Prasad B. Honnavalli, and B. R. Charanraj. "Detection of DoS Attacks on Wi-Fi Networks Using IoT Sensors." In Lecture Notes in Electrical Engineering, 549–58. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-9012-9_44.
Full textChoi, Jeongsik, Yang-Seok Choi, and Shilpa Talwar. "Localization with Wi-Fi Ranging and Built-in Sensors: Self-Learning Techniques." In Machine Learning for Indoor Localization and Navigation, 101–30. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-26712-3_5.
Full textZbakh, Douae, Abdelouahid Lyhyaoui, and Mariam Tanana. "Localization and Tracking System Using Wi-Fi Signal Strength with Wireless Sensors Network." In Advances in Intelligent Systems and Computing, 821–29. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-11928-7_74.
Full textJiang, Xinlong, Yiqiang Chen, Junfa Liu, Yang Gu, and Zhenyu Chen. "Wi-Fi and Motion Sensors Based Indoor Localization Combining ELM and Particle Filter." In Proceedings in Adaptation, Learning and Optimization, 105–13. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-14066-7_11.
Full textChaturvedi, Sarthak, S. Deepak, Dhivya Bharathi, and Bhargava Rama Chilukuri. "Data Imputation for Traffic State Estimation and Pre-diction Using Wi-Fi Sensors." In Proceedings of the Sixth International Conference of Transportation Research Group of India, 385–95. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-4204-4_23.
Full textLu, Chi-Chang, Chung-Hsien Wu, and Hui-Kai Su. "Intelligent Infant Monitoring System Involving a Wi-Fi Wireless Sensor Network." In Recent Advances in Intelligent Information Hiding and Multimedia Signal Processing, 269–76. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-03748-2_33.
Full textLiang, Zou. "Research on Airborne Wireless Sensor Network Based on Wi-Fi Technology." In Communications and Networking, 3–12. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-99200-2_1.
Full textBernas, Marcin, and Bartłomiej Płaczek. "Energy Aware Object Localization in Wireless Sensor Network Based on Wi-Fi Fingerprinting." In Computer Networks, 33–42. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19419-6_4.
Full textHari Krishna, Konda, Tapas Kumar, Y. Suresh Babu, R. Madan Mohan, N. Sainath, and V. Satyanarayana. "Blockage With in Wi-Fi Sensor Networks in Addition to Systems Regarding Controlling Congestion." In Lecture Notes in Networks and Systems, 19–27. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-3935-5_3.
Full textConference papers on the topic "Wi-Fi Sensors"
Nowosielski, Jan, Marcin Jastrzebski, Pavel Halavach, Wojciech Wasilewski, Mateusz Mazelanik, and Michal Parniak. "Wi-Fi Detection via Room-Temperature Rydberg Atoms." In CLEO: Applications and Technology, JW2A.111. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_at.2024.jw2a.111.
Full textFernandes, Rui, Joao N. Matos, Tiago Varum, and Pedro Pinho. "Wi-Fi intruder detection." In 2014 IEEE Conference on Wireless Sensors (ICWiSe). IEEE, 2014. http://dx.doi.org/10.1109/icwise.2014.7042668.
Full textLiu, Changhao, Jiang Liu, and Shigeru Shimamoto. "Sign Language Estimation Scheme Employing Wi-Fi Signal." In 2021 IEEE Sensors Applications Symposium (SAS). IEEE, 2021. http://dx.doi.org/10.1109/sas51076.2021.9530132.
Full textPritt, Noah. "Indoor positioning with maximum likelihood classification of Wi-Fi signals." In 2013 IEEE Sensors. IEEE, 2013. http://dx.doi.org/10.1109/icsens.2013.6688619.
Full textKim, Lori, Hossain Shahriar, and Chi Zhang. "Non-Invasive Wi-Fi Sensors For Smart Healthcare." In 2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC). IEEE, 2019. http://dx.doi.org/10.1109/compsac.2019.10246.
Full textTozlu, Serbulent, and Murat Senel. "Battery lifetime performance of Wi-Fi enabled sensors." In 2012 IEEE Consumer Communications and Networking Conference (CCNC). IEEE, 2012. http://dx.doi.org/10.1109/ccnc.2012.6181000.
Full textChan, Hao-Wei, Alexander I.-Chi Lai, and Ruey-Beei Wu. "Transfer Learning of Wi-Fi FTM Responder Positioning with NLOS Identification." In 2021 IEEE Topical Conference on Wireless Sensors and Sensor Networks (WiSNeT). IEEE, 2021. http://dx.doi.org/10.1109/wisnet51848.2021.9413793.
Full textAwasthi, Deepak, Syed Azeemuddin, Suresh Purini, and M. Annesha. "Flow Sensor IoT Node for Wi-Fi Equipped Apartments and Gated Communities." In 2018 IEEE Sensors. IEEE, 2018. http://dx.doi.org/10.1109/icsens.2018.8589575.
Full textMatsumoto, Yoshinori, and Masatoshi Satoh. "Wi-Fi-connected radiation measurement system by small-scale solar energy harvesting." In 2015 IEEE Sensors. IEEE, 2015. http://dx.doi.org/10.1109/icsens.2015.7370436.
Full textMahgoub, Aya, Dina Nadeem, Hadeer Ahmed, Hassan H. Halawa, Markus Rentschier, Ramez M. Daoud, and Hassanein H. Amer. "A quantitative study of Wi-Fi interference on PRP-ZigBee." In 2014 IEEE Conference on Wireless Sensors (ICWiSe). IEEE, 2014. http://dx.doi.org/10.1109/icwise.2014.7042653.
Full textReports on the topic "Wi-Fi Sensors"
Riter, Karmann, Anthony Clint Clayton, Kelley Rountree, and Prakash Doraiswamy. Solar Station for an Off-the-Grid Air Quality Sensor System. RTI Press, June 2023. http://dx.doi.org/10.3768/rtipress.2023.mr.0051.2306.
Full text