Journal articles on the topic 'Wide-bandgap devices'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Wide-bandgap devices.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Sugimoto, M., H. Ueda, T. Uesugi, and T. kachi. "WIDE-BANDGAP SEMICONDUCTOR DEVICES FOR AUTOMOTIVE APPLICATIONS." International Journal of High Speed Electronics and Systems 17, no. 01 (2007): 3–9. http://dx.doi.org/10.1142/s012915640700414x.
Full textBader, Samuel James, Hyunjea Lee, Reet Chaudhuri, et al. "Prospects for Wide Bandgap and Ultrawide Bandgap CMOS Devices." IEEE Transactions on Electron Devices 67, no. 10 (2020): 4010–20. http://dx.doi.org/10.1109/ted.2020.3010471.
Full textLee, Kuan-Wei, Chuan-Hsi Liu, and Durga Misra. "Wide Bandgap Materials for Semiconductor Devices." Microelectronics Reliability 91 (December 2018): 306. http://dx.doi.org/10.1016/j.microrel.2018.10.010.
Full textYoder, M. N. "Wide bandgap semiconductor materials and devices." IEEE Transactions on Electron Devices 43, no. 10 (1996): 1633–36. http://dx.doi.org/10.1109/16.536807.
Full textBindra, Ashok. "Wide-Bandgap Power Devices: Adoption Gathers Momentum." IEEE Power Electronics Magazine 5, no. 1 (2018): 22–27. http://dx.doi.org/10.1109/mpel.2017.2782404.
Full textSimin, Grigory. "Wide Bandgap Devices with Non-Ohmic Contacts." ECS Transactions 3, no. 5 (2019): 381–87. http://dx.doi.org/10.1149/1.2357228.
Full textSimin, G., and Z. J. Yang. "RF-Enhanced Contacts to Wide-Bandgap Devices." IEEE Electron Device Letters 28, no. 1 (2007): 2–4. http://dx.doi.org/10.1109/led.2006.887627.
Full textMills, Alan. "Progress in wide-bandgap devices and materials." III-Vs Review 14, no. 7 (2001): 38–43. http://dx.doi.org/10.1016/s0961-1290(01)80515-9.
Full textZolper, J. C., and B. V. Shanabrook. "Special issue on wide bandgap semiconductor devices." Proceedings of the IEEE 90, no. 6 (2002): 939–41. http://dx.doi.org/10.1109/jproc.2002.1021559.
Full textÖstling, Mikael. "High power devices in wide bandgap semiconductors." Science China Information Sciences 54, no. 5 (2011): 1087–93. http://dx.doi.org/10.1007/s11432-011-4232-9.
Full textRazzak, Towhidur, Siddharth Rajan, and Andrew Armstrong. "Ultra-Wide Bandgap AlxGa1-xN Channel Transistors." International Journal of High Speed Electronics and Systems 28, no. 01n02 (2019): 1940009. http://dx.doi.org/10.1142/s0129156419400093.
Full textBar-Cohen, Avram, Joseph J. Maurer, and Abirami Sivananthan. "Near-Junction Microfluidic Cooling for Wide Bandgap Devices." MRS Advances 1, no. 2 (2016): 181–95. http://dx.doi.org/10.1557/adv.2016.120.
Full textKaplar, R. J., A. A. Allerman, A. M. Armstrong, et al. "Review—Ultra-Wide-Bandgap AlGaN Power Electronic Devices." ECS Journal of Solid State Science and Technology 6, no. 2 (2016): Q3061—Q3066. http://dx.doi.org/10.1149/2.0111702jss.
Full textRamelan, A. H., S. Wahyuningsih, H. Munawaroh, and R. Narayan. "ZnO wide bandgap semiconductors preparation for optoelectronic devices." IOP Conference Series: Materials Science and Engineering 176 (February 2017): 012008. http://dx.doi.org/10.1088/1757-899x/176/1/012008.
Full textSheng, K., and Q. Guo. "Recent Advances in Wide Bandgap Power Switching Devices." ECS Transactions 50, no. 3 (2013): 179–88. http://dx.doi.org/10.1149/05003.0179ecst.
Full textMillan, Jose, Philippe Godignon, Xavier Perpina, Amador Perez-Tomas, and Jose Rebollo. "A Survey of Wide Bandgap Power Semiconductor Devices." IEEE Transactions on Power Electronics 29, no. 5 (2014): 2155–63. http://dx.doi.org/10.1109/tpel.2013.2268900.
Full textOZPINECI, BURAK, MADHU SUDHAN CHINTHAVALI, and LEON M. TOLBERT. "ENHANCING POWER ELECTRONIC DEVICES WITH WIDE BANDGAP SEMICONDUCTORS." International Journal of High Speed Electronics and Systems 16, no. 02 (2006): 545–56. http://dx.doi.org/10.1142/s0129156406003837.
Full textLiyanage, Geethika K., Adam B. Phillips, Fadhil K. Alfadhili, and Michael J. Heben. "Numerical Modelling of Front Contact Alignment for High Efficiency Cd1-xZnxTe and Cd1-xMgxTe Solar Cells for Tandem Devices." MRS Advances 3, no. 52 (2018): 3121–28. http://dx.doi.org/10.1557/adv.2018.501.
Full textKim, Dong-Sik, Dong-Myoung Joo, Byoung-Kuk Lee, and Jong-Soo Kim. "Design and Implementation of an Optimal Hardware for a Stable Operating of Wide Bandgap Devices." Transactions of The Korean Institute of Electrical Engineers 65, no. 1 (2016): 88–96. http://dx.doi.org/10.5370/kiee.2016.65.1.88.
Full textAlexandrov, Petre, Anup Bhalla, Zhong Da Li, Xue Qing Li, John Bendel, and Jonathan Dodge. "650V SiC Cascode: A Breakthrough for Wide-Bandgap Switches." Materials Science Forum 897 (May 2017): 673–76. http://dx.doi.org/10.4028/www.scientific.net/msf.897.673.
Full textSaadeh, Osama, Ahmad Al-Hmoud, and Zakariya Dalala. "Characterization Circuit, Gate Driver and Fixture for Wide-Bandgap Power Semiconductor Device Testing." Electronics 9, no. 5 (2020): 703. http://dx.doi.org/10.3390/electronics9050703.
Full textEricsen, T. "Future navy application of wide bandgap power semiconductor devices." Proceedings of the IEEE 90, no. 6 (2002): 1077–82. http://dx.doi.org/10.1109/jproc.2002.1021572.
Full textNurmikko, Arto V. "Excitons, microcavity physics and devices in wide bandgap semiconductors." Journal of Crystal Growth 214-215 (June 2000): 993–1001. http://dx.doi.org/10.1016/s0022-0248(00)00237-2.
Full textLutz, Josef, and Jörg Franke. "Reliability and reliability investigation of wide-bandgap power devices." Microelectronics Reliability 88-90 (September 2018): 550–56. http://dx.doi.org/10.1016/j.microrel.2018.07.001.
Full textBurk, A. A., M. J. O'Loughlin, R. R. Siergiej, et al. "SiC and GaN wide bandgap semiconductor materials and devices." Solid-State Electronics 43, no. 8 (1999): 1459–64. http://dx.doi.org/10.1016/s0038-1101(99)00089-1.
Full textMantooth, Homer Alan, Kang Peng, Enrico Santi, and Jerry L. Hudgins. "Modeling of Wide Bandgap Power Semiconductor Devices—Part I." IEEE Transactions on Electron Devices 62, no. 2 (2015): 423–33. http://dx.doi.org/10.1109/ted.2014.2368274.
Full textSanti, Enrico, Kang Peng, Homer Alan Mantooth, and Jerry L. Hudgins. "Modeling of Wide-Bandgap Power Semiconductor Devices—Part II." IEEE Transactions on Electron Devices 62, no. 2 (2015): 434–42. http://dx.doi.org/10.1109/ted.2014.2373373.
Full textHudgins, J. L., G. S. Simin, E. Santi, and M. A. Khan. "An assessment of wide bandgap semiconductors for power devices." IEEE Transactions on Power Electronics 18, no. 3 (2003): 907–14. http://dx.doi.org/10.1109/tpel.2003.810840.
Full textNeumark, G. F. "Wide bandgap light-emitting devices materials and doping problems." Materials Letters 30, no. 2-3 (1997): 131–35. http://dx.doi.org/10.1016/s0167-577x(96)00194-2.
Full textLucia, Oscar, Xu She, and Alex Q. Huang. "Wide Bandgap Devices and Power Conversion Systems—Part I." IEEE Transactions on Industrial Electronics 64, no. 10 (2017): 8190–92. http://dx.doi.org/10.1109/tie.2017.2738718.
Full textLucia, Oscar, X. SHE, and A. Q. HUANG. "Wide Bandgap Devices and Power Conversion Systems—Part II." IEEE Transactions on Industrial Electronics 64, no. 11 (2017): 8959–61. http://dx.doi.org/10.1109/tie.2017.2744398.
Full textKemerley, R. T., H. B. Wallace, and M. N. Yoder. "Impact of wide bandgap microwave devices on DoD systems." Proceedings of the IEEE 90, no. 6 (2002): 1059–64. http://dx.doi.org/10.1109/jproc.2002.1021570.
Full textWeitzel, C. E., and K. E. Moore. "Performance comparison of wide bandgap semiconductor rf power devices." Journal of Electronic Materials 27, no. 4 (1998): 365–69. http://dx.doi.org/10.1007/s11664-998-0416-5.
Full textKhramtsov, Igor A., and Dmitry Yu Fedyanin. "Superinjection of Holes in Homojunction Diodes Based on Wide-Bandgap Semiconductors." Materials 12, no. 12 (2019): 1972. http://dx.doi.org/10.3390/ma12121972.
Full textCarlson, Eric P., Daniel W. Cunningham, Yan Zhi Xu, and Isik C. Kizilyalli. "Power Electronic Devices and Systems Based on Bulk GaN Substrates." Materials Science Forum 924 (June 2018): 799–804. http://dx.doi.org/10.4028/www.scientific.net/msf.924.799.
Full textKim, Jihyun, Stephen J. Pearton, Chaker Fares, et al. "Radiation damage effects in Ga2O3 materials and devices." Journal of Materials Chemistry C 7, no. 1 (2019): 10–24. http://dx.doi.org/10.1039/c8tc04193h.
Full textAhn, Byung Tae, Liudmila Larina, Ki Hwan Kim, and Soong Ji Ahn. "Development of new buffer layers for Cu(In,Ga)Se2 solar cells." Pure and Applied Chemistry 80, no. 10 (2008): 2091–102. http://dx.doi.org/10.1351/pac200880102091.
Full textWang, Xiang Guo, and Masayuki Yamamoto. "A Study on Fastening the Switching Speed for Wide Bandgap Semiconductor Based Super Cascode." Materials Science Forum 963 (July 2019): 823–26. http://dx.doi.org/10.4028/www.scientific.net/msf.963.823.
Full textBindra, Ashok. "Joint Electronic Device Engineering Council JC-70 for Wide-Bandgap Devices [Society News]." IEEE Power Electronics Magazine 4, no. 4 (2017): 77. http://dx.doi.org/10.1109/mpel.2017.2762429.
Full textTERASHIMA, Tomohide. "Improvement and Problems of Power Devices Using Wide-Bandgap Semiconductors." Journal of the Society of Materials Science, Japan 64, no. 9 (2015): 701–6. http://dx.doi.org/10.2472/jsms.64.701.
Full textGunshor, Robert L., and Arto V. Nurmikko. "Wide bandgap semiconductors and their application to light emitting devices." Current Opinion in Solid State and Materials Science 1, no. 1 (1996): 4–10. http://dx.doi.org/10.1016/s1359-0286(96)80002-7.
Full textMontag, Benjamin W., Neil Platt, Neil M. Boag, Jennifer I. Brand, and Kyle A. Nelson. "Doped Wide Bandgap Materials and Devices from Semiconducting Boron Carbide." ECS Transactions 3, no. 5 (2019): 429–35. http://dx.doi.org/10.1149/1.2357234.
Full textBindra, Ashok. "Wide-Bandgap-Based Power Devices: Reshaping the power electronics landscape." IEEE Power Electronics Magazine 2, no. 1 (2015): 42–47. http://dx.doi.org/10.1109/mpel.2014.2382195.
Full textSUDA, Jun, Hiroki MIYAKE, and Tsunenobu KIMOTO. "Wide-bandgap Semiconductor Devices using Group-III Nitride/SiC Heterointerface." Hyomen Kagaku 31, no. 12 (2010): 651–56. http://dx.doi.org/10.1380/jsssj.31.651.
Full textMorya, Ajay Kumar, Matthew C. Gardner, Bahareh Anvari, et al. "Wide Bandgap Devices in AC Electric Drives: Opportunities and Challenges." IEEE Transactions on Transportation Electrification 5, no. 1 (2019): 3–20. http://dx.doi.org/10.1109/tte.2019.2892807.
Full textPark, S. H., C. Zhang, G. Yuan, D. Chen, and J. Han. "(Invited) Applications of Electrochemistry for Novel Wide Bandgap GaN Devices." ECS Transactions 66, no. 1 (2015): 143–49. http://dx.doi.org/10.1149/06601.0143ecst.
Full textChen, Jian, Xiong Du, Quanming Luo, Xinyue Zhang, Pengju Sun, and Lin Zhou. "A Review of Switching Oscillations of Wide Bandgap Semiconductor Devices." IEEE Transactions on Power Electronics 35, no. 12 (2020): 13182–99. http://dx.doi.org/10.1109/tpel.2020.2995778.
Full textDutta, Atanu, and Simon S. Ang. "Design of a Low Inductance Power Module Based on Low Temperature Co-fired Ceramic." Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT) 2016, CICMT (2016): 000032–38. http://dx.doi.org/10.4071/2016cicmt-tp2a1.
Full textNakajima, Akira, Mitsuaki Shimizu, and Hiromichi Ohashi. "Power Loss Limit in Unipolar Switching Devices: Comparison Between Si Superjunction Devices and Wide-Bandgap Devices." IEEE Transactions on Electron Devices 56, no. 11 (2009): 2652–56. http://dx.doi.org/10.1109/ted.2009.2031020.
Full textZhang, Jing. "Novel Thermal-Electrical-Mechanical Model for Simulating Coupled Phenomena in High-Frequency Electronic Devices." Key Engineering Materials 538 (January 2013): 173–76. http://dx.doi.org/10.4028/www.scientific.net/kem.538.173.
Full text