Academic literature on the topic 'Wide gap semiconductor'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Wide gap semiconductor.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Wide gap semiconductor"
Buniatyan, V. V., and V. M. Aroutiounian. "Wide gap semiconductor microwave devices." Journal of Physics D: Applied Physics 40, no. 20 (October 5, 2007): 6355–85. http://dx.doi.org/10.1088/0022-3727/40/20/s18.
Full textKeßler, P., K. Lorenz, and R. Vianden. "Implanted Impurities in Wide Band Gap Semiconductors." Defect and Diffusion Forum 311 (March 2011): 167–79. http://dx.doi.org/10.4028/www.scientific.net/ddf.311.167.
Full textYasaki, Yoichi, Noriyuki Sonoyama, and Tadayoshi Sakata. "Semiconductor sensitization of colloidal In2S3 on wide gap semiconductors." Journal of Electroanalytical Chemistry 469, no. 2 (July 1999): 116–22. http://dx.doi.org/10.1016/s0022-0728(99)00184-9.
Full textMillán, J. "Wide band-gap power semiconductor devices." IET Circuits, Devices & Systems 1, no. 5 (2007): 372. http://dx.doi.org/10.1049/iet-cds:20070005.
Full textTREW, R. J., and M. W. SHIN. "HIGH FREQUENCY, HIGH TEMPERATURE FIELD-EFFECT TRANSISTORS FABRICATED FROM WIDE BAND GAP SEMICONDUCTORS." International Journal of High Speed Electronics and Systems 06, no. 01 (March 1995): 211–36. http://dx.doi.org/10.1142/s0129156495000067.
Full textKlimm, Detlef. "Electronic materials with a wide band gap: recent developments." IUCrJ 1, no. 5 (August 29, 2014): 281–90. http://dx.doi.org/10.1107/s2052252514017229.
Full textPetoral, R. M., G. R. Yazdi, A. Lloyd Spetz, R. Yakimova, and K. Uvdal. "Organosilane-functionalized wide band gap semiconductor surfaces." Applied Physics Letters 90, no. 22 (May 28, 2007): 223904. http://dx.doi.org/10.1063/1.2745641.
Full textSuski, T., P. Perlin, A. Pietraszko, M. Leszczyński, M. Boćkowski, I. Grzegory, and S. Porowski. "(GaMg)N — New Wide Band Gap Semiconductor." physica status solidi (a) 176, no. 1 (November 1999): 343–46. http://dx.doi.org/10.1002/(sici)1521-396x(199911)176:1<343::aid-pssa343>3.0.co;2-u.
Full textYasaki, Yoichi, Noriyuki Sonoyama, and Tadayoshi Sakata. "ChemInform Abstract: Semiconductor Sensitization of Colloidal In2S3 on Wide Gap Semiconductors." ChemInform 30, no. 44 (June 13, 2010): no. http://dx.doi.org/10.1002/chin.199944013.
Full textLiang, Xin Xiang, Zhi Qun Cheng, and Min Shi Jia. "Ballistic Effect and Application in Circuit Design of Wide Band-Gap Semiconductor." Applied Mechanics and Materials 644-650 (September 2014): 3597–600. http://dx.doi.org/10.4028/www.scientific.net/amm.644-650.3597.
Full textDissertations / Theses on the topic "Wide gap semiconductor"
Buzzo, Marco. "Dopant imaging and profiling of wide bandgap semiconductor devices /." Konstanz : Hartung-Gorre, 2007. http://www.loc.gov/catdir/toc/fy0715/2007427206.html.
Full textFarahmand, Maziar. "Advanced simulation of wide band gap semiconductor devices." Diss., Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/14777.
Full textSchwarz, Casey Minna. "Radiation Effects on Wide Band Gap Semiconductor Transport Properties." Doctoral diss., University of Central Florida, 2012. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/5488.
Full textID: 031001520; System requirements: World Wide Web browser and PDF reader.; Mode of access: World Wide Web.; Advisers: Elena Flitsiyan, Leonid Chernyak.; Title from PDF title page (viewed August 19, 2013).; Thesis (Ph.D.)--University of Central Florida, 2012.; Includes bibliographical references (p. 104-109).
Ph.D.
Doctorate
Physics
Sciences
Physics
Fay, Michael W. "Advanced electron microscopy of wide band-gap semiconductor materials." Thesis, University of Sheffield, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.340213.
Full textMartin, Aude. "Nonlinear Photonic Nanostructures based on Wide Gap Semiconductor Compounds." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS526/document.
Full textThe energy consumption of the whole ICT ecosystem is growing at a fast paceand in a global context of the search for an ever more connected yet sustainable society, a technologicalbreakthrough is desired. Here, integrated nonlinear photonics will help by providingnovel possibilities for energy efficient signal processing. In this PhD thesis, I have been investigatingsub-wavelength semiconductor structures, particularly photonic crystals, which have shownremarkable nonlinear properties. More specifically the strong confinement and slow light propagationenables on-chip ultra-fast all-optical signal processing, either based on four-wave-mixingor self-phase modulation. The main point here is the use of novel semiconductor materials withimproved nonlinear properties with respect to Silicon. In fact, it has now been acknowledgedthat the nonlinear and free-carriers absorption in Silicon integrated photonic structures is anissue hindering the full exploitation of nonlinear effects. In my thesis, wide-gap III-V semiconductorshave been used to develop high quality photonic crystal waveguides and cavities whichare able to sustain extremely high optical power densities as well as large average power levels.I have demonstrated PhC waveguides with much improved thermal conductivity through heterogeneousintegration of GaInP membranes with silicon dioxide. This will allow continuous wave phase-sensitive amplification, which I already demonstrated in the pulsed regime using GaInPself-suspended membranes. In parallel, I have demonstrated high quality PhC in Gallium Phosphide,which is a very promising material because of the large bandgap and the very good thermalconductivity. Preliminar results demonstrate the achievement of extremely large nonlinear regime(mini-comb, soliton compression and fission ...)
Bellotti, E. (Enrico). "Advanced modeling of wide band gap semiconductor materials and devices." Diss., Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/15354.
Full textOrange, Catherine Louise. "Spin-flip Raman scattering of wide band gap semiconductor heterostructures." Thesis, University of East Anglia, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.267773.
Full textSodipe, Olukayode O. "Wide-band Gap Devices for DC Breaker Applications." DigitalCommons@CalPoly, 2016. https://digitalcommons.calpoly.edu/theses/1529.
Full textLajn, Alexander. "Transparent rectifying contacts on wide-band gap oxide semiconductors." Doctoral thesis, Universitätsbibliothek Leipzig, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-102799.
Full textMayrock, Oliver. "Localization, disorder, and polarization fields in wide-gap semiconductor quantum wells." Doctoral thesis, [S.l. : s.n.], 2001. http://deposit.ddb.de/cgi-bin/dokserv?idn=96140437X.
Full textBooks on the topic "Wide gap semiconductor"
Consonni, Vincent, and Guy Feuillets, eds. Wide Band Gap Semiconductor Nanowires 2. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118984291.
Full textConsonni, Vincent, and Guy Feuillet, eds. Wide Band Gap Semiconductor Nanowires 1. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118984321.
Full textBuzzo, Marco. Dopant imaging and profiling of wide bandgap semiconductor devices. Konstanz: Hartung-Gorre, 2007.
Find full textTrieste ICTP-IUPAP Semiconductor Symposium (7th 1992). Wide-band-gap semiconductors: Proceedings of the Seventh Trieste ICTP-IUPAP Semiconductor Symposium, International Centre for Theoretical Physics, Trieste, Italy, 8-12 June 1992. Edited by Van de Walle, Chris Gilbert. Amsterdam: North-Holland, 1993.
Find full textSzweda, Roy. Gallium nitride & related wide bandgap materials & devices: A market & technology overview 1996-2001. Oxford, UK: Elsevier Advanced Technology, 1997.
Find full text1992), Trieste IUPAP-ICTP Semiconductor Symposium (7th. Wide-band-gap semiconductors: Proceedings of the seventh Trieste ICTP-IUPAP Semiconductor Symposium, International Centre for Theoretical Physics, Trieste, Italy, 8-12 June 1992. Amsterdam: North Holland, 1993.
Find full textPearton, S. J. Processing of wide bandgap semiconductors. Norwich, NY: Noyes Publications/William Andrews Pub., 1999.
Find full textBhargava, Rameshwar. Properties of wide bandgap II-VI semiconductors. London, U.K: IEE, INSPEC, 2006.
Find full textFerro, Gabriel. 2010 wide bandgap cubic semiconductors: From growth to devices : proceedings of the E-MRS Symposium F, Strasbourg, France, 8-10 June 2010. Edited by European Materials Research Society. Meeting, American Institute of Physics, and European Science Foundation. Melville, N.Y: American Institute of Physics, 2010.
Find full textBook chapters on the topic "Wide gap semiconductor"
Korzhik, Mikhail, Gintautas Tamulaitis, and Andrey N. Vasil’ev. "Wide-Band-Gap Semiconductor Scintillators." In Physics of Fast Processes in Scintillators, 211–26. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-21966-6_7.
Full textNurmikko, Arto V., and R. L. Gunshor. "Prospects in Wide-Gap Semiconductor Lasers." In Future Trends in Microelectronics, 303–13. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-1746-0_27.
Full textKotina, I. M., T. A. Antonova, G. V. Patsekina, V. D. Saveliev, L. M. Tuhkonen, O. I. Konkov, and E. I. Terukov. "Application of Amorphous Hydrogenated Carbon Coating to Semiconductor Radiation Detectors." In Wide Band Gap Electronic Materials, 291–96. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0173-8_30.
Full textTeubert, Jörg, Jordi Arbiol, and Martin Eickhoff. "AlGaN/GaN Nanowire Heterostructures." In Wide Band Gap Semiconductor Nanowires 2, 1–40. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118984291.ch1.
Full textBaxter, Jason B. "ZnO Nanowire-Based Solar Cells." In Wide Band Gap Semiconductor Nanowires 2, 227–52. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118984291.ch10.
Full textDaudin, Bruno. "InGaN Nanowire Heterostructures." In Wide Band Gap Semiconductor Nanowires 2, 41–60. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118984291.ch2.
Full textFeuillet, Guy, and Pierre Ferret. "ZnO-Based Nanowire Heterostructures." In Wide Band Gap Semiconductor Nanowires 2, 61–84. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118984291.ch3.
Full textZhang, Yong. "ZnO and GaN Nanowire-Based Type II Heterostructures." In Wide Band Gap Semiconductor Nanowires 2, 85–103. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118984291.ch4.
Full textWang, Qi, Hieu N'Guyen, Songrui Zhao, and Zetian Mi. "Axial GaN Nanowire-Based LEDs." In Wide Band Gap Semiconductor Nanowires 2, 105–34. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118984291.ch5.
Full textLi, Shunfeng. "Radial GaN Nanowire-Based LEDs." In Wide Band Gap Semiconductor Nanowires 2, 135–59. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118984291.ch6.
Full textConference papers on the topic "Wide gap semiconductor"
Millan, Jose, and Philippe Godignon. "Wide Band Gap power semiconductor devices." In 2013 Spanish Conference on Electron Devices (CDE). IEEE, 2013. http://dx.doi.org/10.1109/cde.2013.6481400.
Full textGunshor, R. L., L. A. Kolodziejski, N. Otsuka, and A. v. Nurmikko. "Growth And Characterization Of Wide Gap II-VI Heterostructures." In Semiconductor Conferences, edited by Sayan D. Mukherjee. SPIE, 1987. http://dx.doi.org/10.1117/12.941038.
Full textDong, Hongxing, Yang Liu, Zhanghai Chen, and Long Zhang. "Wide-band-gap semiconductor oxide optical microcavities." In Laser Science. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/ls.2016.lf2d.4.
Full textDelfyett, P. J., R. Dorsinville, and R. R. Alfano. "Transient Gratings In Wide Band Gap Semiconductors -Impurities And Optical Phonon Dynamics-." In Semiconductor Conferences, edited by Robert R. Alfano. SPIE, 1987. http://dx.doi.org/10.1117/12.940875.
Full textMatsunami, H. "One-step Further of Wide Band-gap Semiconductor SiC." In 2012 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2012. http://dx.doi.org/10.7567/ssdm.2012.pl-2-2.
Full textPhillips, Dane J., Eric R. Smith, Haojun Luo, Patrick Wellenius, John F. Muth, John V. Foreman, and Henry O. Everitt. "The potential of wide band-gap semiconductor materials in laser-induced semiconductor switches." In SPIE Defense, Security, and Sensing, edited by Mehdi Anwar, Nibir K. Dhar, and Thomas W. Crowe. SPIE, 2009. http://dx.doi.org/10.1117/12.818741.
Full textGraff, Andreas, Michel Simon-Najasek, David Poppitz, and Frank Altmann. "Physical failure analysis methods for wide band gap semiconductor devices." In 2018 IEEE International Reliability Physics Symposium (IRPS). IEEE, 2018. http://dx.doi.org/10.1109/irps.2018.8353557.
Full textSaito, Yuika, Takahiro Kondo, Mahiro Hanazawa, Kenta Hirose, Ryosuke Kojima, and Takeru Yumoto. "Spectroscopic analysis of single wide-gap semiconductor nanoparticle (Conference Presentation)." In UV and Higher Energy Photonics: From Materials to Applications 2019, edited by Gilles Lérondel, Yong-Hoon Cho, Satoshi Kawata, and Atsushi Taguchi. SPIE, 2019. http://dx.doi.org/10.1117/12.2527971.
Full textGurbuz, Y., W. P. Kang, J. L. Davidson, D. V. Kerns, and B. Henderson. "A novel wide-band-gap semiconductor based microelectronic gas sensor." In 1997 55th Annual Device Research Conference Digest. IEEE, 1997. http://dx.doi.org/10.1109/drc.1997.612469.
Full textYu-Jiun Ren, Pengcheng Lv, and Kai Chang. "Broadband terahertz antenna for wide band gap semiconductor photoconductive switches." In 2008 IEEE Antennas and Propagation Society International Symposium and USNC/URSI National Radio Science Meeting. IEEE, 2008. http://dx.doi.org/10.1109/aps.2008.4619872.
Full textReports on the topic "Wide gap semiconductor"
Davis, Robert F. Wide Band Gap Semiconductor Technology Initiative. Fort Belvoir, VA: Defense Technical Information Center, January 2004. http://dx.doi.org/10.21236/ada419730.
Full textLambrecht, Walter R. Modeling of Wide Band Gap Semiconductor Alloys and Related Topics. Fort Belvoir, VA: Defense Technical Information Center, August 2000. http://dx.doi.org/10.21236/ada389496.
Full textKizilyalli, Isik C., Eric P. Carlson, Daniel W. Cunningham, Joseph S. Manser, Yanzhi Ann Xu, and Alan Y. Liu. Wide Band-Gap Semiconductor Based Power Electronics for Energy Efficiency. Office of Scientific and Technical Information (OSTI), March 2018. http://dx.doi.org/10.2172/1464211.
Full textRudin, Sergey, Gregory Garrett, and Vladimir Malinovsky. Coherent Optical Control of Electronic Excitations in Wide-Band-Gap Semiconductor Structures. Fort Belvoir, VA: Defense Technical Information Center, May 2015. http://dx.doi.org/10.21236/ada620146.
Full textEdgar, James H. MOVPE Reactor for Deposition of Wide Band Gap Semiconductors. Fort Belvoir, VA: Defense Technical Information Center, April 2001. http://dx.doi.org/10.21236/ada393589.
Full textBagayoko, Diola, and G. L. Zhao. Predictive Computations of Properties of Wide-Gap and Nano-Semiconductors. Fort Belvoir, VA: Defense Technical Information Center, September 2005. http://dx.doi.org/10.21236/ada439378.
Full textHommerich, Uwe. Optical Characterization of Rare Earth-doped Wide Band Gap Semiconductors. Fort Belvoir, VA: Defense Technical Information Center, August 1999. http://dx.doi.org/10.21236/ada369833.
Full textBagayoko, Diola, and G. L. Zhao. Predictive Computations of Properties of Wide-Gap and Nano-Semiconductors. Fort Belvoir, VA: Defense Technical Information Center, January 2007. http://dx.doi.org/10.21236/ada460186.
Full textRockett, A. Properties of Wide-Gap Chalcopyrite Semiconductors for Photovoltaic Applications: Final Report, 8 July 1998 -- 17 October 2001. Office of Scientific and Technical Information (OSTI), July 2003. http://dx.doi.org/10.2172/15004289.
Full textSchubert, Fred. Workshop on Doping, Dopants and Low Field Carrier Dynamics in Wide Gap Semiconductors Held in Copper Mountain Resort, Copper Mountain, CO on April 2-6, 2000. Meeting Program and Abstract Book. Fort Belvoir, VA: Defense Technical Information Center, March 2000. http://dx.doi.org/10.21236/ada375866.
Full text