Academic literature on the topic 'Wide gap semiconductor'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Wide gap semiconductor.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Wide gap semiconductor"

1

Buniatyan, V. V., and V. M. Aroutiounian. "Wide gap semiconductor microwave devices." Journal of Physics D: Applied Physics 40, no. 20 (October 5, 2007): 6355–85. http://dx.doi.org/10.1088/0022-3727/40/20/s18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Keßler, P., K. Lorenz, and R. Vianden. "Implanted Impurities in Wide Band Gap Semiconductors." Defect and Diffusion Forum 311 (March 2011): 167–79. http://dx.doi.org/10.4028/www.scientific.net/ddf.311.167.

Full text
Abstract:
Wide band gap semiconductors, mainly GaN, have experienced much attention due to their application in photonic devices and high-power or high-temperature electronic devices. Especially the synthesis of InxGa1-xN alloys has been studied extensively because of their use in LEDs and laser diodes. Here, In is added during the growth process and devices are already very successful on a commercial scale. Indium in nitride ternary and quaternary alloys plays a special role; however, the mechanisms leading to more efficient light emission in In-containing nitrides are still under debate. Therefore, the behaviour of In in GaN and AlN, the nitride semiconductor with the largest bandgap is an important field of study. In is also an important impurity in another wide band gap semiconductor – the II-VI compound ZnO where it acts as an n-type dopant. In this context the perturbed angular correlation technique using implantation of the probe111In is a unique tool to study the immediate lattice environment of In in the wurtzite lattice of these wide band gap semiconductors. For the production of GaN and ZnO based electronic circuits one would normally apply the ion implantation technique, which is the most widely used method for selective area doping of semiconductors like Si and GaAs. However, this technique suffers from the fact that it invariably produces severe lattice damage in the implanted region, which in nitride semiconductors has been found to be very difficult to recover by annealing. The perturbed angular correlation technique is employed to monitor the damage recovery around implanted atoms and the properties of hitherto known impurity – defect complexes will be described and compared to proposed structure models.
APA, Harvard, Vancouver, ISO, and other styles
3

Yasaki, Yoichi, Noriyuki Sonoyama, and Tadayoshi Sakata. "Semiconductor sensitization of colloidal In2S3 on wide gap semiconductors." Journal of Electroanalytical Chemistry 469, no. 2 (July 1999): 116–22. http://dx.doi.org/10.1016/s0022-0728(99)00184-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Millán, J. "Wide band-gap power semiconductor devices." IET Circuits, Devices & Systems 1, no. 5 (2007): 372. http://dx.doi.org/10.1049/iet-cds:20070005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

TREW, R. J., and M. W. SHIN. "HIGH FREQUENCY, HIGH TEMPERATURE FIELD-EFFECT TRANSISTORS FABRICATED FROM WIDE BAND GAP SEMICONDUCTORS." International Journal of High Speed Electronics and Systems 06, no. 01 (March 1995): 211–36. http://dx.doi.org/10.1142/s0129156495000067.

Full text
Abstract:
Electronic and optical devices fabricated from wide band gap semiconductors have many properties ideal for high temperature, high frequency, high power, and radiation hard applications. Progress in wide band gap semiconductor materials growth has been impressive and high quality epitaxial layers are becoming available. Useful devices, particularly those fabricated from SiC, are rapidly approaching the commercialization stage. In particular, MESFETs (MEtal Semiconductor Field-Effect Transistors) fabricated from wide band gap semiconductors have the potential to be useful in microwave power amplifier and oscillator applications. In this work the microwave performance of MESFETs fabricated from SiC, GaN and semiconducting diamond is investigated with a theoretical simulator and the results compared to experimental measurements. Excellent agreement between the simulated and measured data is obtained. It is demonstrated that microwave power amplifiers fabricated from these semiconductors offer superior performance, particularly at elevated temperatures compared to similar components fabricated from the commonly employed GaAs MESFETs.
APA, Harvard, Vancouver, ISO, and other styles
6

Klimm, Detlef. "Electronic materials with a wide band gap: recent developments." IUCrJ 1, no. 5 (August 29, 2014): 281–90. http://dx.doi.org/10.1107/s2052252514017229.

Full text
Abstract:
The development of semiconductor electronics is reviewed briefly, beginning with the development of germanium devices (band gapEg= 0.66 eV) after World War II. A tendency towards alternative materials with wider band gaps quickly became apparent, starting with silicon (Eg= 1.12 eV). This improved the signal-to-noise ratio for classical electronic applications. Both semiconductors have a tetrahedral coordination, and by isoelectronic alternative replacement of Ge or Si with carbon or various anions and cations, other semiconductors with widerEgwere obtained. These are transparent to visible light and belong to the group of wide band gap semiconductors. Nowadays, some nitrides, especially GaN and AlN, are the most important materials for optical emission in the ultraviolet and blue regions. Oxide crystals, such as ZnO and β-Ga2O3, offer similarly good electronic properties but still suffer from significant difficulties in obtaining stable and technologically adequatep-type conductivity.
APA, Harvard, Vancouver, ISO, and other styles
7

Petoral, R. M., G. R. Yazdi, A. Lloyd Spetz, R. Yakimova, and K. Uvdal. "Organosilane-functionalized wide band gap semiconductor surfaces." Applied Physics Letters 90, no. 22 (May 28, 2007): 223904. http://dx.doi.org/10.1063/1.2745641.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Suski, T., P. Perlin, A. Pietraszko, M. Leszczyński, M. Boćkowski, I. Grzegory, and S. Porowski. "(GaMg)N — New Wide Band Gap Semiconductor." physica status solidi (a) 176, no. 1 (November 1999): 343–46. http://dx.doi.org/10.1002/(sici)1521-396x(199911)176:1<343::aid-pssa343>3.0.co;2-u.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Yasaki, Yoichi, Noriyuki Sonoyama, and Tadayoshi Sakata. "ChemInform Abstract: Semiconductor Sensitization of Colloidal In2S3 on Wide Gap Semiconductors." ChemInform 30, no. 44 (June 13, 2010): no. http://dx.doi.org/10.1002/chin.199944013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Liang, Xin Xiang, Zhi Qun Cheng, and Min Shi Jia. "Ballistic Effect and Application in Circuit Design of Wide Band-Gap Semiconductor." Applied Mechanics and Materials 644-650 (September 2014): 3597–600. http://dx.doi.org/10.4028/www.scientific.net/amm.644-650.3597.

Full text
Abstract:
With manufacturing technology innovation and progress of electronic devices of semiconductors, dimensions of electronic devices get smaller nowadays. There has been processing of 90nm and 20nm in production. With in-depth research, scientists are more and more interested in molecular devices. Since the size of molecular devices is small, electrons transfer by ballistic transport. In semiconductor devices, when the transport distance is at micrometer or smaller sizes, the ballistic transport phenomena of electrons and holes of carriers occur. This transfer form is not affected by lattice defects, doping, and interaction of crystal interfaces. Since there is no interference of these interactions, carrier’s velocity can be faster several times than common electronic devices, resulting in the doubled operating speed of these devices. Although it is difficult to achieve pure ballistic transport, when the size of semiconductor devices is close to the mean free path of carriers, the speed of carriers will still be greatly improved.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Wide gap semiconductor"

1

Buzzo, Marco. "Dopant imaging and profiling of wide bandgap semiconductor devices /." Konstanz : Hartung-Gorre, 2007. http://www.loc.gov/catdir/toc/fy0715/2007427206.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Farahmand, Maziar. "Advanced simulation of wide band gap semiconductor devices." Diss., Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/14777.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Schwarz, Casey Minna. "Radiation Effects on Wide Band Gap Semiconductor Transport Properties." Doctoral diss., University of Central Florida, 2012. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/5488.

Full text
Abstract:
In this research, the transport properties of ZnO were studied through the use of electron and neutron beam irradiation. Acceptor states are known to form deep in the bandgap of doped ZnO material. By subjecting doped ZnO materials to electron and neutron beams we are able to probe, identify and modify transport characteristics relating to these deep accepter states. The impact of irradiation and temperature on minority carrier diffusion length and lifetime were monitored through the use of the Electron Beam Induced Current (EBIC) method and Cathodoluminescence (CL) spectroscopy. The minority carrier diffusion length, L, was shown to increase as it was subjected to increasing temperature as well as continuous electron irradiation. The near-band-edge (NBE) intensity in CL measurements was found to decay as a function of temperature and electron irradiation due to an increase in carrier lifetime. Electron injection through application of a forward bias also resulted in a similar increase of minority carrier diffusion length. Thermal and electron irradiation dependences were used to determine activation energies for the irradiation induced effects. This helps to further our understanding of the electron injection mechanism as well as to identify possible defects responsible for the observed effects. Thermal activation energies likely represent carrier delocalization energy and are related to the increase of diffusion length due to the reduction in recombination efficiency. The effect of electron irradiation on the minority carrier diffusion length and lifetime can be attributed to the trapping of non-equilibrium electrons on neutral acceptor levels. The effect of neutron irradiation on CL intensity can be attributed to an increase in shallow donor concentration. Thermal activation energies resulting from an increase in L or decay of CL intensity monitored through EBIC and CL measurements for p-type Sb doped ZnO were found to be the range of Ea = 112 to 145 meV. P-type Sb doped ZnO nanowires under the influence of temperature and electron injection either through continuous beam impacting or through forward bias, displayed an increase in L and corresponding decay of CL intensity when observed by EBIC or CL measurements. These measurements led to activation energies for the effect ranging from Ea = 217 to 233 meV. These values indicate the possible involvement of a SbZn-2VZn acceptor complex. For N-type unintentionally doped ZnO, CL measurements under the influence of temperature and electron irradiation by continuous beam impacting led to a decrease in CL intensity which resulted in an electron irradiation activation energy of approximately Ea = 259 meV. This value came close to the defect energy level of the zinc interstitial. CL measurements of neutron irradiated ZnO nanostructures revealed that intensity is redistributed in favor of the NBE transition indicating an increase of shallow donor concentration. With annealing contributing to the improvement of crystallinity, a decrease can be seen in the CL intensity due to the increase in majority carrier lifetime. Low energy emission seen from CL spectra can be due to oxygen vacancies and as an indicator of radiation defects.
ID: 031001520; System requirements: World Wide Web browser and PDF reader.; Mode of access: World Wide Web.; Advisers: Elena Flitsiyan, Leonid Chernyak.; Title from PDF title page (viewed August 19, 2013).; Thesis (Ph.D.)--University of Central Florida, 2012.; Includes bibliographical references (p. 104-109).
Ph.D.
Doctorate
Physics
Sciences
Physics
APA, Harvard, Vancouver, ISO, and other styles
4

Fay, Michael W. "Advanced electron microscopy of wide band-gap semiconductor materials." Thesis, University of Sheffield, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.340213.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Martin, Aude. "Nonlinear Photonic Nanostructures based on Wide Gap Semiconductor Compounds." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS526/document.

Full text
Abstract:
La consommation d’énergie liée aux technologies de l’information augmente trèsrapidement et dans la mesure où la société a besoin d’être toujours plus connectée tout ens’appuyant sur des solutions durables, les technologies actuelles ne suffisent plus. La photoniqueintégrée s’impose dès lors comme une alternative à l’électronique pour réaliser du traitementdu signal économe en énergie. Au cours de cette thèse, j’ai étudié des structures sub-longueurd’onde en semiconducteur, les cristaux photoniques, qui présentent des propriétés non linéairesimpressionnantes. Plus précisément, le confinement fort et la propagation en lumière lente permettentun traitement sur puce de signal ultra-rapide tout optique, soit à partir de mélange àquatre ondes ou d’auto-modulation de phase. L’originalité est l’utilisation de nouveaux matériauxsemi-conducteurs ayant moins d’absorption non linéaires et par porteurs libres, effets qui limitentla pleine exploitation des effets non linéaires dans les structures photoniques en Silicium. Dansma thèse, des semiconducteurs III-V ont été utilisés pour développer des guides et des cavitéscristal photonique de grande qualité qui sont en mesure de supporter des densités de puissanceoptiques extrêmement élevées ainsi que de grands niveaux de puissance moyenne. J’ai amélioré laconductivité thermique des guides d’ondes grâce à l’intégration hétérogène de membranes GaInPavec du dioxyde de silicium. Cette plateforme permettra à terme de démontrer de l’amplificationsensible à la phase dans le régime continu que j’ai déjà démontré dans le régime pulsé en utilisant des membranes suspendues en GaInP. En parallèle, j’ai démontré des cristaux photoniques de grande qualité dans du Gallium phosphure, qui est un matériau très prometteur en raison de lagrande bande interdite et de la très bonne conductivité thermique. Les résultats préliminaires ontpermis la réalisation d’un régime non linéaire intense (mini-peigne de fréquence, compression etfission de soliton ...)
The energy consumption of the whole ICT ecosystem is growing at a fast paceand in a global context of the search for an ever more connected yet sustainable society, a technologicalbreakthrough is desired. Here, integrated nonlinear photonics will help by providingnovel possibilities for energy efficient signal processing. In this PhD thesis, I have been investigatingsub-wavelength semiconductor structures, particularly photonic crystals, which have shownremarkable nonlinear properties. More specifically the strong confinement and slow light propagationenables on-chip ultra-fast all-optical signal processing, either based on four-wave-mixingor self-phase modulation. The main point here is the use of novel semiconductor materials withimproved nonlinear properties with respect to Silicon. In fact, it has now been acknowledgedthat the nonlinear and free-carriers absorption in Silicon integrated photonic structures is anissue hindering the full exploitation of nonlinear effects. In my thesis, wide-gap III-V semiconductorshave been used to develop high quality photonic crystal waveguides and cavities whichare able to sustain extremely high optical power densities as well as large average power levels.I have demonstrated PhC waveguides with much improved thermal conductivity through heterogeneousintegration of GaInP membranes with silicon dioxide. This will allow continuous wave phase-sensitive amplification, which I already demonstrated in the pulsed regime using GaInPself-suspended membranes. In parallel, I have demonstrated high quality PhC in Gallium Phosphide,which is a very promising material because of the large bandgap and the very good thermalconductivity. Preliminar results demonstrate the achievement of extremely large nonlinear regime(mini-comb, soliton compression and fission ...)
APA, Harvard, Vancouver, ISO, and other styles
6

Bellotti, E. (Enrico). "Advanced modeling of wide band gap semiconductor materials and devices." Diss., Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/15354.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Orange, Catherine Louise. "Spin-flip Raman scattering of wide band gap semiconductor heterostructures." Thesis, University of East Anglia, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.267773.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sodipe, Olukayode O. "Wide-band Gap Devices for DC Breaker Applications." DigitalCommons@CalPoly, 2016. https://digitalcommons.calpoly.edu/theses/1529.

Full text
Abstract:
With the increasing interest in wide-band gap devices, their potential benefits in power applications have been studied and explored with numerous studies conducted for both SiC and GaN devices. This thesis investigates the use of wide-band gap devices as the switching element in a semiconductor DC breaker. It involves the design of an efficient semiconductor DC breaker, its simulation in SPICE, construction of a hardware prototype and the comparative study of SiC and Si versions of the aforementioned breaker. The results obtained from the experiments conducted in the process of concluding this thesis show that the SiC version of the breaker is a superior option for a semiconductor DC breaker.
APA, Harvard, Vancouver, ISO, and other styles
9

Lajn, Alexander. "Transparent rectifying contacts on wide-band gap oxide semiconductors." Doctoral thesis, Universitätsbibliothek Leipzig, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-102799.

Full text
Abstract:
Die vorliegenden Arbeit befasst sich mit der Herstellung und Charakterisierung von transparenten Metall-Halbleiter- Feldeffekttransistoren. Dazu werden im ersten Kapitel transparente gleichrichtende Kontakte, basierend auf dem Konzept von Metalloxidkontakten, hergestellt und im Hinblick auf chemische Zusammensetzung des Kontaktmaterials, Barriereninhomogenität und Kompatibilität mit amorphen Halbleitern untersucht. Außerdem wird die Anwendbarkeit der Kontakte als UV-Sensor studiert. Im zweiten Kapitel werden transparente leitfähige Oxide vorgestellt und insbesondere deren optische und elektrische Eigenschaften in Abhängigkeit von den Herstellungsbedingungen studiert. Das dritte Kapitel beinhaltet Untersuchungen zu transparenten Feldeffektransistoren, die auf den im ersten Kapitel untersuchten transparenten gleichrichtenden Kontakten basieren (TMESFETs). Insbesondere die elektrischen Stabilität der Bauelemente hinsichtlich Beleuchtung, erhöhten Temperaturen und Spannungsstress wird untersucht. Auch die Langzeitstabilität, Reproduzierbarkeit und der Effekt gepulster Spannungen wird betrachtet. Weiterhin wird die Verwendung amorpher Halbleiter im Kanal und damit auch die Herstellung flexibler Transistoren auf Folie demonstriert. Zuletzt werden die TMESFETs integriert und als Inverterschaltkreise aufgebaut und untersucht. Außerdem wird die Eignung der Transistoren zur Messung von Aktionspotentialen von Nervenzellen studiert.
APA, Harvard, Vancouver, ISO, and other styles
10

Mayrock, Oliver. "Localization, disorder, and polarization fields in wide-gap semiconductor quantum wells." Doctoral thesis, [S.l. : s.n.], 2001. http://deposit.ddb.de/cgi-bin/dokserv?idn=96140437X.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Wide gap semiconductor"

1

Consonni, Vincent, and Guy Feuillets, eds. Wide Band Gap Semiconductor Nanowires 2. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118984291.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Consonni, Vincent, and Guy Feuillet, eds. Wide Band Gap Semiconductor Nanowires 1. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118984321.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Buzzo, Marco. Dopant imaging and profiling of wide bandgap semiconductor devices. Konstanz: Hartung-Gorre, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Trieste ICTP-IUPAP Semiconductor Symposium (7th 1992). Wide-band-gap semiconductors: Proceedings of the Seventh Trieste ICTP-IUPAP Semiconductor Symposium, International Centre for Theoretical Physics, Trieste, Italy, 8-12 June 1992. Edited by Van de Walle, Chris Gilbert. Amsterdam: North-Holland, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Szweda, Roy. Gallium nitride & related wide bandgap materials & devices: A market & technology overview 1996-2001. Oxford, UK: Elsevier Advanced Technology, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Optical properties of semiconductor quantum dots. Berlin: Springer, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

1992), Trieste IUPAP-ICTP Semiconductor Symposium (7th. Wide-band-gap semiconductors: Proceedings of the seventh Trieste ICTP-IUPAP Semiconductor Symposium, International Centre for Theoretical Physics, Trieste, Italy, 8-12 June 1992. Amsterdam: North Holland, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Pearton, S. J. Processing of wide bandgap semiconductors. Norwich, NY: Noyes Publications/William Andrews Pub., 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bhargava, Rameshwar. Properties of wide bandgap II-VI semiconductors. London, U.K: IEE, INSPEC, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ferro, Gabriel. 2010 wide bandgap cubic semiconductors: From growth to devices : proceedings of the E-MRS Symposium F, Strasbourg, France, 8-10 June 2010. Edited by European Materials Research Society. Meeting, American Institute of Physics, and European Science Foundation. Melville, N.Y: American Institute of Physics, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Wide gap semiconductor"

1

Korzhik, Mikhail, Gintautas Tamulaitis, and Andrey N. Vasil’ev. "Wide-Band-Gap Semiconductor Scintillators." In Physics of Fast Processes in Scintillators, 211–26. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-21966-6_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Nurmikko, Arto V., and R. L. Gunshor. "Prospects in Wide-Gap Semiconductor Lasers." In Future Trends in Microelectronics, 303–13. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-1746-0_27.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kotina, I. M., T. A. Antonova, G. V. Patsekina, V. D. Saveliev, L. M. Tuhkonen, O. I. Konkov, and E. I. Terukov. "Application of Amorphous Hydrogenated Carbon Coating to Semiconductor Radiation Detectors." In Wide Band Gap Electronic Materials, 291–96. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0173-8_30.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Teubert, Jörg, Jordi Arbiol, and Martin Eickhoff. "AlGaN/GaN Nanowire Heterostructures." In Wide Band Gap Semiconductor Nanowires 2, 1–40. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118984291.ch1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Baxter, Jason B. "ZnO Nanowire-Based Solar Cells." In Wide Band Gap Semiconductor Nanowires 2, 227–52. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118984291.ch10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Daudin, Bruno. "InGaN Nanowire Heterostructures." In Wide Band Gap Semiconductor Nanowires 2, 41–60. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118984291.ch2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Feuillet, Guy, and Pierre Ferret. "ZnO-Based Nanowire Heterostructures." In Wide Band Gap Semiconductor Nanowires 2, 61–84. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118984291.ch3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zhang, Yong. "ZnO and GaN Nanowire-Based Type II Heterostructures." In Wide Band Gap Semiconductor Nanowires 2, 85–103. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118984291.ch4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wang, Qi, Hieu N'Guyen, Songrui Zhao, and Zetian Mi. "Axial GaN Nanowire-Based LEDs." In Wide Band Gap Semiconductor Nanowires 2, 105–34. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118984291.ch5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Li, Shunfeng. "Radial GaN Nanowire-Based LEDs." In Wide Band Gap Semiconductor Nanowires 2, 135–59. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118984291.ch6.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Wide gap semiconductor"

1

Millan, Jose, and Philippe Godignon. "Wide Band Gap power semiconductor devices." In 2013 Spanish Conference on Electron Devices (CDE). IEEE, 2013. http://dx.doi.org/10.1109/cde.2013.6481400.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gunshor, R. L., L. A. Kolodziejski, N. Otsuka, and A. v. Nurmikko. "Growth And Characterization Of Wide Gap II-VI Heterostructures." In Semiconductor Conferences, edited by Sayan D. Mukherjee. SPIE, 1987. http://dx.doi.org/10.1117/12.941038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Dong, Hongxing, Yang Liu, Zhanghai Chen, and Long Zhang. "Wide-band-gap semiconductor oxide optical microcavities." In Laser Science. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/ls.2016.lf2d.4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Delfyett, P. J., R. Dorsinville, and R. R. Alfano. "Transient Gratings In Wide Band Gap Semiconductors -Impurities And Optical Phonon Dynamics-." In Semiconductor Conferences, edited by Robert R. Alfano. SPIE, 1987. http://dx.doi.org/10.1117/12.940875.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Matsunami, H. "One-step Further of Wide Band-gap Semiconductor SiC." In 2012 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2012. http://dx.doi.org/10.7567/ssdm.2012.pl-2-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Phillips, Dane J., Eric R. Smith, Haojun Luo, Patrick Wellenius, John F. Muth, John V. Foreman, and Henry O. Everitt. "The potential of wide band-gap semiconductor materials in laser-induced semiconductor switches." In SPIE Defense, Security, and Sensing, edited by Mehdi Anwar, Nibir K. Dhar, and Thomas W. Crowe. SPIE, 2009. http://dx.doi.org/10.1117/12.818741.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Graff, Andreas, Michel Simon-Najasek, David Poppitz, and Frank Altmann. "Physical failure analysis methods for wide band gap semiconductor devices." In 2018 IEEE International Reliability Physics Symposium (IRPS). IEEE, 2018. http://dx.doi.org/10.1109/irps.2018.8353557.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Saito, Yuika, Takahiro Kondo, Mahiro Hanazawa, Kenta Hirose, Ryosuke Kojima, and Takeru Yumoto. "Spectroscopic analysis of single wide-gap semiconductor nanoparticle (Conference Presentation)." In UV and Higher Energy Photonics: From Materials to Applications 2019, edited by Gilles Lérondel, Yong-Hoon Cho, Satoshi Kawata, and Atsushi Taguchi. SPIE, 2019. http://dx.doi.org/10.1117/12.2527971.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gurbuz, Y., W. P. Kang, J. L. Davidson, D. V. Kerns, and B. Henderson. "A novel wide-band-gap semiconductor based microelectronic gas sensor." In 1997 55th Annual Device Research Conference Digest. IEEE, 1997. http://dx.doi.org/10.1109/drc.1997.612469.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Yu-Jiun Ren, Pengcheng Lv, and Kai Chang. "Broadband terahertz antenna for wide band gap semiconductor photoconductive switches." In 2008 IEEE Antennas and Propagation Society International Symposium and USNC/URSI National Radio Science Meeting. IEEE, 2008. http://dx.doi.org/10.1109/aps.2008.4619872.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Wide gap semiconductor"

1

Davis, Robert F. Wide Band Gap Semiconductor Technology Initiative. Fort Belvoir, VA: Defense Technical Information Center, January 2004. http://dx.doi.org/10.21236/ada419730.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lambrecht, Walter R. Modeling of Wide Band Gap Semiconductor Alloys and Related Topics. Fort Belvoir, VA: Defense Technical Information Center, August 2000. http://dx.doi.org/10.21236/ada389496.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kizilyalli, Isik C., Eric P. Carlson, Daniel W. Cunningham, Joseph S. Manser, Yanzhi Ann Xu, and Alan Y. Liu. Wide Band-Gap Semiconductor Based Power Electronics for Energy Efficiency. Office of Scientific and Technical Information (OSTI), March 2018. http://dx.doi.org/10.2172/1464211.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Rudin, Sergey, Gregory Garrett, and Vladimir Malinovsky. Coherent Optical Control of Electronic Excitations in Wide-Band-Gap Semiconductor Structures. Fort Belvoir, VA: Defense Technical Information Center, May 2015. http://dx.doi.org/10.21236/ada620146.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Edgar, James H. MOVPE Reactor for Deposition of Wide Band Gap Semiconductors. Fort Belvoir, VA: Defense Technical Information Center, April 2001. http://dx.doi.org/10.21236/ada393589.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bagayoko, Diola, and G. L. Zhao. Predictive Computations of Properties of Wide-Gap and Nano-Semiconductors. Fort Belvoir, VA: Defense Technical Information Center, September 2005. http://dx.doi.org/10.21236/ada439378.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hommerich, Uwe. Optical Characterization of Rare Earth-doped Wide Band Gap Semiconductors. Fort Belvoir, VA: Defense Technical Information Center, August 1999. http://dx.doi.org/10.21236/ada369833.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bagayoko, Diola, and G. L. Zhao. Predictive Computations of Properties of Wide-Gap and Nano-Semiconductors. Fort Belvoir, VA: Defense Technical Information Center, January 2007. http://dx.doi.org/10.21236/ada460186.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Rockett, A. Properties of Wide-Gap Chalcopyrite Semiconductors for Photovoltaic Applications: Final Report, 8 July 1998 -- 17 October 2001. Office of Scientific and Technical Information (OSTI), July 2003. http://dx.doi.org/10.2172/15004289.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Schubert, Fred. Workshop on Doping, Dopants and Low Field Carrier Dynamics in Wide Gap Semiconductors Held in Copper Mountain Resort, Copper Mountain, CO on April 2-6, 2000. Meeting Program and Abstract Book. Fort Belvoir, VA: Defense Technical Information Center, March 2000. http://dx.doi.org/10.21236/ada375866.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography