Academic literature on the topic 'Wide gap semiconductor'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Wide gap semiconductor.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Wide gap semiconductor"

1

Kato, Masashi. "Bulk and surface recombination of carriers in SiC and related wide band gap semiconductor materials." Japanese Journal of Applied Physics 64, no. 6 (2025): 060101. https://doi.org/10.35848/1347-4065/adda80.

Full text
Abstract:
Abstract Carrier recombination is important in the field of semiconductors because it contributes to the performance of bipolar devices and solar cells. However, as the semiconductor field expands from conventional materials to wide band gap semiconductors: SiC and related wide band gap semiconductor materials, concerns have emerged regarding the detailed analysis and accurate estimation of carrier recombination lifetime. Therefore, this review discusses bulk and surface recombination of carriers in SiC and related wide band gap semiconductor materials, both in theoretical and experimental vie
APA, Harvard, Vancouver, ISO, and other styles
2

Keßler, P., K. Lorenz, and R. Vianden. "Implanted Impurities in Wide Band Gap Semiconductors." Defect and Diffusion Forum 311 (March 2011): 167–79. http://dx.doi.org/10.4028/www.scientific.net/ddf.311.167.

Full text
Abstract:
Wide band gap semiconductors, mainly GaN, have experienced much attention due to their application in photonic devices and high-power or high-temperature electronic devices. Especially the synthesis of InxGa1-xN alloys has been studied extensively because of their use in LEDs and laser diodes. Here, In is added during the growth process and devices are already very successful on a commercial scale. Indium in nitride ternary and quaternary alloys plays a special role; however, the mechanisms leading to more efficient light emission in In-containing nitrides are still under debate. Therefore, th
APA, Harvard, Vancouver, ISO, and other styles
3

Buniatyan, V. V., and V. M. Aroutiounian. "Wide gap semiconductor microwave devices." Journal of Physics D: Applied Physics 40, no. 20 (2007): 6355–85. http://dx.doi.org/10.1088/0022-3727/40/20/s18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Yasaki, Yoichi, Noriyuki Sonoyama, and Tadayoshi Sakata. "Semiconductor sensitization of colloidal In2S3 on wide gap semiconductors." Journal of Electroanalytical Chemistry 469, no. 2 (1999): 116–22. http://dx.doi.org/10.1016/s0022-0728(99)00184-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

TREW, R. J., and M. W. SHIN. "HIGH FREQUENCY, HIGH TEMPERATURE FIELD-EFFECT TRANSISTORS FABRICATED FROM WIDE BAND GAP SEMICONDUCTORS." International Journal of High Speed Electronics and Systems 06, no. 01 (1995): 211–36. http://dx.doi.org/10.1142/s0129156495000067.

Full text
Abstract:
Electronic and optical devices fabricated from wide band gap semiconductors have many properties ideal for high temperature, high frequency, high power, and radiation hard applications. Progress in wide band gap semiconductor materials growth has been impressive and high quality epitaxial layers are becoming available. Useful devices, particularly those fabricated from SiC, are rapidly approaching the commercialization stage. In particular, MESFETs (MEtal Semiconductor Field-Effect Transistors) fabricated from wide band gap semiconductors have the potential to be useful in microwave power ampl
APA, Harvard, Vancouver, ISO, and other styles
6

Millán, J. "Wide band-gap power semiconductor devices." IET Circuits, Devices & Systems 1, no. 5 (2007): 372. http://dx.doi.org/10.1049/iet-cds:20070005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Klimm, Detlef. "Electronic materials with a wide band gap: recent developments." IUCrJ 1, no. 5 (2014): 281–90. http://dx.doi.org/10.1107/s2052252514017229.

Full text
Abstract:
The development of semiconductor electronics is reviewed briefly, beginning with the development of germanium devices (band gapEg= 0.66 eV) after World War II. A tendency towards alternative materials with wider band gaps quickly became apparent, starting with silicon (Eg= 1.12 eV). This improved the signal-to-noise ratio for classical electronic applications. Both semiconductors have a tetrahedral coordination, and by isoelectronic alternative replacement of Ge or Si with carbon or various anions and cations, other semiconductors with widerEgwere obtained. These are transparent to visible lig
APA, Harvard, Vancouver, ISO, and other styles
8

Yasaki, Yoichi, Noriyuki Sonoyama, and Tadayoshi Sakata. "ChemInform Abstract: Semiconductor Sensitization of Colloidal In2S3 on Wide Gap Semiconductors." ChemInform 30, no. 44 (2010): no. http://dx.doi.org/10.1002/chin.199944013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Petoral, R. M., G. R. Yazdi, A. Lloyd Spetz, R. Yakimova, and K. Uvdal. "Organosilane-functionalized wide band gap semiconductor surfaces." Applied Physics Letters 90, no. 22 (2007): 223904. http://dx.doi.org/10.1063/1.2745641.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Suski, T., P. Perlin, A. Pietraszko, et al. "(GaMg)N — New Wide Band Gap Semiconductor." physica status solidi (a) 176, no. 1 (1999): 343–46. http://dx.doi.org/10.1002/(sici)1521-396x(199911)176:1<343::aid-pssa343>3.0.co;2-u.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Wide gap semiconductor"

1

Buzzo, Marco. "Dopant imaging and profiling of wide bandgap semiconductor devices /." Konstanz : Hartung-Gorre, 2007. http://www.loc.gov/catdir/toc/fy0715/2007427206.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Farahmand, Maziar. "Advanced simulation of wide band gap semiconductor devices." Diss., Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/14777.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Schwarz, Casey Minna. "Radiation Effects on Wide Band Gap Semiconductor Transport Properties." Doctoral diss., University of Central Florida, 2012. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/5488.

Full text
Abstract:
In this research, the transport properties of ZnO were studied through the use of electron and neutron beam irradiation. Acceptor states are known to form deep in the bandgap of doped ZnO material. By subjecting doped ZnO materials to electron and neutron beams we are able to probe, identify and modify transport characteristics relating to these deep accepter states. The impact of irradiation and temperature on minority carrier diffusion length and lifetime were monitored through the use of the Electron Beam Induced Current (EBIC) method and Cathodoluminescence (CL) spectroscopy. The minori
APA, Harvard, Vancouver, ISO, and other styles
4

Fay, Michael W. "Advanced electron microscopy of wide band-gap semiconductor materials." Thesis, University of Sheffield, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.340213.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Martin, Aude. "Nonlinear Photonic Nanostructures based on Wide Gap Semiconductor Compounds." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS526/document.

Full text
Abstract:
La consommation d’énergie liée aux technologies de l’information augmente trèsrapidement et dans la mesure où la société a besoin d’être toujours plus connectée tout ens’appuyant sur des solutions durables, les technologies actuelles ne suffisent plus. La photoniqueintégrée s’impose dès lors comme une alternative à l’électronique pour réaliser du traitementdu signal économe en énergie. Au cours de cette thèse, j’ai étudié des structures sub-longueurd’onde en semiconducteur, les cristaux photoniques, qui présentent des propriétés non linéairesimpressionnantes. Plus précisément, le confinement f
APA, Harvard, Vancouver, ISO, and other styles
6

Bellotti, E. (Enrico). "Advanced modeling of wide band gap semiconductor materials and devices." Diss., Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/15354.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Orange, Catherine Louise. "Spin-flip Raman scattering of wide band gap semiconductor heterostructures." Thesis, University of East Anglia, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.267773.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sodipe, Olukayode O. "Wide-band Gap Devices for DC Breaker Applications." DigitalCommons@CalPoly, 2016. https://digitalcommons.calpoly.edu/theses/1529.

Full text
Abstract:
With the increasing interest in wide-band gap devices, their potential benefits in power applications have been studied and explored with numerous studies conducted for both SiC and GaN devices. This thesis investigates the use of wide-band gap devices as the switching element in a semiconductor DC breaker. It involves the design of an efficient semiconductor DC breaker, its simulation in SPICE, construction of a hardware prototype and the comparative study of SiC and Si versions of the aforementioned breaker. The results obtained from the experiments conducted in the process of concluding thi
APA, Harvard, Vancouver, ISO, and other styles
9

Lajn, Alexander. "Transparent rectifying contacts on wide-band gap oxide semiconductors." Doctoral thesis, Universitätsbibliothek Leipzig, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-102799.

Full text
Abstract:
Die vorliegenden Arbeit befasst sich mit der Herstellung und Charakterisierung von transparenten Metall-Halbleiter- Feldeffekttransistoren. Dazu werden im ersten Kapitel transparente gleichrichtende Kontakte, basierend auf dem Konzept von Metalloxidkontakten, hergestellt und im Hinblick auf chemische Zusammensetzung des Kontaktmaterials, Barriereninhomogenität und Kompatibilität mit amorphen Halbleitern untersucht. Außerdem wird die Anwendbarkeit der Kontakte als UV-Sensor studiert. Im zweiten Kapitel werden transparente leitfähige Oxide vorgestellt und insbesondere deren optische und
APA, Harvard, Vancouver, ISO, and other styles
10

Mayrock, Oliver. "Localization, disorder, and polarization fields in wide-gap semiconductor quantum wells." Doctoral thesis, [S.l. : s.n.], 2001. http://deposit.ddb.de/cgi-bin/dokserv?idn=96140437X.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Wide gap semiconductor"

1

Consonni, Vincent, and Guy Feuillets, eds. Wide Band Gap Semiconductor Nanowires 2. John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118984291.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Consonni, Vincent, and Guy Feuillet, eds. Wide Band Gap Semiconductor Nanowires 1. John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118984321.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Buzzo, Marco. Dopant imaging and profiling of wide bandgap semiconductor devices. Hartung-Gorre, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Szweda, Roy. Gallium nitride & related wide bandgap materials & devices: A market & technology overview 1996-2001. Elsevier Advanced Technology, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Trieste ICTP-IUPAP Semiconductor Symposium (7th 1992). Wide-band-gap semiconductors: Proceedings of the Seventh Trieste ICTP-IUPAP Semiconductor Symposium, International Centre for Theoretical Physics, Trieste, Italy, 8-12 June 1992. Edited by Van de Walle, Chris Gilbert. North-Holland, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

National Research Council (U.S.). Committee on Materials for High-Temperature Semiconductor Devices., ed. Materials for high-temperature semiconductor devices. National Academy Press, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

1992), Trieste IUPAP-ICTP Semiconductor Symposium (7th. Wide-band-gap semiconductors: Proceedings of the seventh Trieste ICTP-IUPAP Semiconductor Symposium, International Centre for Theoretical Physics, Trieste, Italy, 8-12 June 1992. North Holland, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

H, Carter Calvin, and Materials Research Society. Meeting Symposium D., eds. Diamond, SiC and nitride wide bandgap semiconductors: Symposium held April 4-8, 1994, San Francisco, California, U.S. Materials Research Society, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Pearton, S. J. Processing of wide bandgap semiconductors. Noyes Publications/William Andrews Pub., 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bhargava, Rameshwar. Properties of wide bandgap II-VI semiconductors. IEE, INSPEC, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Wide gap semiconductor"

1

Korzhik, Mikhail, Gintautas Tamulaitis, and Andrey N. Vasil’ev. "Wide-Band-Gap Semiconductor Scintillators." In Physics of Fast Processes in Scintillators. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-21966-6_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Nurmikko, Arto V., and R. L. Gunshor. "Prospects in Wide-Gap Semiconductor Lasers." In Future Trends in Microelectronics. Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-1746-0_27.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kotina, I. M., T. A. Antonova, G. V. Patsekina, et al. "Application of Amorphous Hydrogenated Carbon Coating to Semiconductor Radiation Detectors." In Wide Band Gap Electronic Materials. Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0173-8_30.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Teubert, Jörg, Jordi Arbiol, and Martin Eickhoff. "AlGaN/GaN Nanowire Heterostructures." In Wide Band Gap Semiconductor Nanowires 2. John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118984291.ch1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Baxter, Jason B. "ZnO Nanowire-Based Solar Cells." In Wide Band Gap Semiconductor Nanowires 2. John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118984291.ch10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Daudin, Bruno. "InGaN Nanowire Heterostructures." In Wide Band Gap Semiconductor Nanowires 2. John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118984291.ch2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Feuillet, Guy, and Pierre Ferret. "ZnO-Based Nanowire Heterostructures." In Wide Band Gap Semiconductor Nanowires 2. John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118984291.ch3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zhang, Yong. "ZnO and GaN Nanowire-Based Type II Heterostructures." In Wide Band Gap Semiconductor Nanowires 2. John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118984291.ch4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wang, Qi, Hieu N'Guyen, Songrui Zhao, and Zetian Mi. "Axial GaN Nanowire-Based LEDs." In Wide Band Gap Semiconductor Nanowires 2. John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118984291.ch5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Li, Shunfeng. "Radial GaN Nanowire-Based LEDs." In Wide Band Gap Semiconductor Nanowires 2. John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118984291.ch6.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Wide gap semiconductor"

1

Liu, Yan, Yupu Wang, Siming Wang, et al. "Analysis and Characterization Techniques for Wide Band Gap Semiconductor Materials." In 2024 IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA). IEEE, 2024. http://dx.doi.org/10.1109/ipfa61654.2024.10690925.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Das, Arnab, Soumya Kanti Raj, Aritra Acharyya, Sneha Ray, and Sangeeta Jana Mukhopadhyay. "Terahertz IMPATTs Based on Wide Band Gap Semiconductor Transit Time Sources." In 2025 Devices for Integrated Circuit (DevIC). IEEE, 2025. https://doi.org/10.1109/devic63749.2025.11012605.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Priyadarshini, Saundarya, Lanka Sridutt, Suyash Prakash, Kanimozhi Gunasekaran, and Ravi Samikannu. "Thermal Modelling and Efficiency Analysis of On-Board Charger Using Wide-Gap Semiconductor Devices for EV Application." In 2024 3rd Odisha International Conference on Electrical Power Engineering, Communication and Computing Technology (ODICON). IEEE, 2024. https://doi.org/10.1109/odicon62106.2024.10797485.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Janotti, Anderson, Intuon Chatratin, and Igor Evangelista. "Doping and defects in wide-band-gap perovskite semiconductors." In Oxide-based Materials and Devices XVI, edited by Féréchteh H. Teherani and David J. Rogers. SPIE, 2025. https://doi.org/10.1117/12.3054978.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Millan, Jose, and Philippe Godignon. "Wide Band Gap power semiconductor devices." In 2013 Spanish Conference on Electron Devices (CDE). IEEE, 2013. http://dx.doi.org/10.1109/cde.2013.6481400.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Das, Arnima, Maitreyi Ray Kanjilal, Moumita Mukherjee, and Arpita Santra. "Review on Wide Band Gap Semiconductor." In 2022 IEEE International Conference of Electron Devices Society Kolkata Chapter (EDKCON). IEEE, 2022. http://dx.doi.org/10.1109/edkcon56221.2022.10032898.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Gunshor, R. L., L. A. Kolodziejski, N. Otsuka, and A. v. Nurmikko. "Growth And Characterization Of Wide Gap II-VI Heterostructures." In Semiconductor Conferences, edited by Sayan D. Mukherjee. SPIE, 1987. http://dx.doi.org/10.1117/12.941038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Dong, Hongxing, Yang Liu, Zhanghai Chen, and Long Zhang. "Wide-band-gap semiconductor oxide optical microcavities." In Laser Science. OSA, 2016. http://dx.doi.org/10.1364/ls.2016.lf2d.4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Delfyett, P. J., R. Dorsinville, and R. R. Alfano. "Transient Gratings In Wide Band Gap Semiconductors -Impurities And Optical Phonon Dynamics-." In Semiconductor Conferences, edited by Robert R. Alfano. SPIE, 1987. http://dx.doi.org/10.1117/12.940875.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Rafin, S. M. Sajjad Hossain, Roni Ahmed, and Osama A. Mohammed. "Wide Band Gap Semiconductor Devices for Power Electronic Converters." In 2023 Fourth International Symposium on 3D Power Electronics Integration and Manufacturing (3D-PEIM). IEEE, 2023. http://dx.doi.org/10.1109/3d-peim55914.2023.10052586.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Wide gap semiconductor"

1

Davis, Robert F. Wide Band Gap Semiconductor Technology Initiative. Defense Technical Information Center, 2004. http://dx.doi.org/10.21236/ada419730.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kizilyalli, Isik C., Eric P. Carlson, Daniel W. Cunningham, Joseph S. Manser, Yanzhi Ann Xu, and Alan Y. Liu. Wide Band-Gap Semiconductor Based Power Electronics for Energy Efficiency. Office of Scientific and Technical Information (OSTI), 2018. http://dx.doi.org/10.2172/1464211.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lambrecht, Walter R. Modeling of Wide Band Gap Semiconductor Alloys and Related Topics. Defense Technical Information Center, 2000. http://dx.doi.org/10.21236/ada389496.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Rudin, Sergey, Gregory Garrett, and Vladimir Malinovsky. Coherent Optical Control of Electronic Excitations in Wide-Band-Gap Semiconductor Structures. Defense Technical Information Center, 2015. http://dx.doi.org/10.21236/ada620146.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Edgar, James H. MOVPE Reactor for Deposition of Wide Band Gap Semiconductors. Defense Technical Information Center, 2001. http://dx.doi.org/10.21236/ada393589.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bagayoko, Diola, and G. L. Zhao. Predictive Computations of Properties of Wide-Gap and Nano-Semiconductors. Defense Technical Information Center, 2005. http://dx.doi.org/10.21236/ada439378.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hommerich, Uwe. Optical Characterization of Rare Earth-doped Wide Band Gap Semiconductors. Defense Technical Information Center, 1999. http://dx.doi.org/10.21236/ada369833.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bagayoko, Diola, and G. L. Zhao. Predictive Computations of Properties of Wide-Gap and Nano-Semiconductors. Defense Technical Information Center, 2007. http://dx.doi.org/10.21236/ada460186.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Rockett, A. Properties of Wide-Gap Chalcopyrite Semiconductors for Photovoltaic Applications: Final Report, 8 July 1998 -- 17 October 2001. Office of Scientific and Technical Information (OSTI), 2003. http://dx.doi.org/10.2172/15004289.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Schubert, Fred. Workshop on Doping, Dopants and Low Field Carrier Dynamics in Wide Gap Semiconductors Held in Copper Mountain Resort, Copper Mountain, CO on April 2-6, 2000. Meeting Program and Abstract Book. Defense Technical Information Center, 2000. http://dx.doi.org/10.21236/ada375866.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!