Journal articles on the topic 'Width of Glass Transition'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Width of Glass Transition.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Schmelzer, Jürn W. P., Timur V. Tropin, Vladimir M. Fokin, et al. "Correlation between glass transition temperature and the width of the glass transition interval." International Journal of Applied Glass Science 10, no. 4 (2019): 502–13. http://dx.doi.org/10.1111/ijag.13240.
Full textCONIGLIO, ANTONIO. "FRACTALS IN THE GLASS TRANSITION." Fractals 04, no. 03 (1996): 349–54. http://dx.doi.org/10.1142/s0218348x96000467.
Full textBrüning, Ralf, and Mark Sutton. "Fragility of glass-forming systems and the width of the glass transition." Journal of Non-Crystalline Solids 205-207 (October 1996): 480–84. http://dx.doi.org/10.1016/s0022-3093(96)00264-5.
Full textWang, Yu, Xiao Bing Ren, and Kazuhiro Otsuka. "Strain Glass: Glassy Martensite." Materials Science Forum 583 (May 2008): 67–84. http://dx.doi.org/10.4028/www.scientific.net/msf.583.67.
Full textTorregrosa Cabanilles, Constantino, José Molina-Mateo, Roser Sabater i Serra, José María Meseguer-Dueñas, and José Luis Gómez Ribelles. "Non-Markovian Methods in Glass Transition." Polymers 12, no. 9 (2020): 1997. http://dx.doi.org/10.3390/polym12091997.
Full textXIA, L., C. L. JO, and Y. D. DONG. "GLASS FORMING ABILITY OF HARD MAGNETIC Nd55Al20Fe25 BULK GLASSY ALLOY WITH DISTINCT GLASS TRANSITION." International Journal of Modern Physics B 19, no. 22 (2005): 3493–500. http://dx.doi.org/10.1142/s021797920503219x.
Full textKim, Jong Sun, Kyung Hwan Yoon, and Julia A. Kornfield. "Measurement of Stress-Optical Coefficients of COC’s with Different Composition." Key Engineering Materials 326-328 (December 2006): 183–86. http://dx.doi.org/10.4028/www.scientific.net/kem.326-328.183.
Full textMa, H., E. Ma, and J. Xu. "A new Mg65Cu7.5Ni7.5Zn5Ag5Y10 bulk metallic glass with strong glass-forming ability." Journal of Materials Research 18, no. 10 (2003): 2288–91. http://dx.doi.org/10.1557/jmr.2003.0319.
Full textLewis, K. L. M., J. A. Myers, F. Fuller, P. F. Tekavec, and J. P. Ogilvie. "Two-dimensional electronic spectroscopy signatures of the glass transition." Spectroscopy 24, no. 3-4 (2010): 393–97. http://dx.doi.org/10.1155/2010/342156.
Full textСандитов, Д. С., В. В. Мантатов та С. Ш. Сангадиев. "Oбобщенный кинетический критерий перехода жидкость--стекло". Физика твердого тела 62, № 10 (2020): 1706. http://dx.doi.org/10.21883/ftt.2020.10.49925.082.
Full textBusiello, G. "Glass Transition in Quantum Dipole Glass Model." Advanced Materials Research 590 (November 2012): 138–42. http://dx.doi.org/10.4028/www.scientific.net/amr.590.138.
Full textChudinov, S., S. Stizza, B. Kościelska, L. Murawski, W. Sadowski, and R. J. Barczyński. "Superconducting Properties of Bi-Sr-Ca-Cu-O Crystallized Glass." International Journal of Modern Physics B 13, no. 09n10 (1999): 985–89. http://dx.doi.org/10.1142/s0217979299000837.
Full textZhang, L. C., Z. Q. Shen, and J. Xu. "Glass formation in a (Ti, Zr, Hf)–(Cu, Ni, Ag)–Al high-order alloy system by mechanical alloying." Journal of Materials Research 18, no. 9 (2003): 2141–49. http://dx.doi.org/10.1557/jmr.2003.0300.
Full textBoucher, Virginie M., Daniele Cangialosi, Angel Alegría, and Juan Colmenero. "Reaching the ideal glass transition by aging polymer films." Physical Chemistry Chemical Physics 19, no. 2 (2017): 961–65. http://dx.doi.org/10.1039/c6cp07139b.
Full textZhang, Yue, Shachi Katira, Andrew Lee, et al. "Kinetically controlled glass transition measurement of organic aerosol thin films using broadband dielectric spectroscopy." Atmospheric Measurement Techniques 11, no. 6 (2018): 3479–90. http://dx.doi.org/10.5194/amt-11-3479-2018.
Full textVerma, Arvind Kumar, Anchal Srivastava, R. K. Shukla, and K. C. Dubey. "Thermal Behavior of Chalcogenide glasses Te90Se10 and Se90Te10." SAMRIDDHI : A Journal of Physical Sciences, Engineering and Technology 7, no. 02 (2015): 113–18. http://dx.doi.org/10.18090/samriddhi.v7i2.8636.
Full textVivek, Skanda, Colm P. Kelleher, Paul M. Chaikin, and Eric R. Weeks. "Long-wavelength fluctuations and the glass transition in two dimensions and three dimensions." Proceedings of the National Academy of Sciences 114, no. 8 (2017): 1850–55. http://dx.doi.org/10.1073/pnas.1607226113.
Full textCao, Cong, Jianshan Liao, Victor Breedveld, and Eric R. Weeks. "Rheology finds distinct glass and jamming transitions in emulsions." Soft Matter 17, no. 9 (2021): 2587–95. http://dx.doi.org/10.1039/d0sm02097d.
Full textSu, Ming Horng, and Hung Chang Chen. "A Molecular Dynamics Investigation into the Cooling Characteristics of Ni and Cu Alloys at High Pressure." Materials Science Forum 505-507 (January 2006): 1093–98. http://dx.doi.org/10.4028/www.scientific.net/msf.505-507.1093.
Full textReis, Ana Karoline dos, Francisco Maciel Monticelli, Roberta Motta Neves, Luis Felipe de Paula Santos, Edson Cocchieri Botelho, and Heitor Luiz Ornaghi Jr. "Creep behavior of polyetherimide semipreg and epoxy prepreg composites: Structure vs. property relationship." Journal of Composite Materials 54, no. 27 (2020): 4121–31. http://dx.doi.org/10.1177/0021998320927774.
Full textFarzaneh, S., and A. Tcharkhtchi. "Viscoelastic Properties of Polypropylene Reinforced with Mica in and Transition Zones." International Journal of Polymer Science 2011 (2011): 1–5. http://dx.doi.org/10.1155/2011/427095.
Full textPhillips, J. C. "Universal non-Landau, self-organized, lattice disordering percolative dopant network sub-Tc phase transition in ceramic superconductors." Proceedings of the National Academy of Sciences 106, no. 37 (2009): 15534–37. http://dx.doi.org/10.1073/pnas.0908634106.
Full textYoon, Heedong, and Gregory B. McKenna. "Testing the paradigm of an ideal glass transition: Dynamics of an ultrastable polymeric glass." Science Advances 4, no. 12 (2018): eaau5423. http://dx.doi.org/10.1126/sciadv.aau5423.
Full textHenschke, Olaf, Frank Köller, and Manfred Arnold. "Polyolefins with high glass transition temperatures." Macromolecular Rapid Communications 18, no. 7 (1997): 617–23. http://dx.doi.org/10.1002/marc.1997.030180712.
Full textFranz, S., M. Mézard, F. Ricci-Tersenghi, M. Weigt, and R. Zecchina. "A ferromagnet with a glass transition." Europhysics Letters (EPL) 55, no. 4 (2001): 465–71. http://dx.doi.org/10.1209/epl/i2001-00438-4.
Full textWunder, Bernd. "Abrupt high/low-transition in flux-grown Mg-cordierite single crystals with hour-glass structure." European Journal of Mineralogy 3, no. 5 (1991): 809–18. http://dx.doi.org/10.1127/ejm/3/5/0809.
Full textYamamoto, Tokujiro, Kouichi Hayashi, Ichiro Seki, Kosuke Suzuki, and Masahisa Ito. "Pd-based metallic glass with a low glass transition temperature." Journal of Non-Crystalline Solids 359 (January 2013): 46–50. http://dx.doi.org/10.1016/j.jnoncrysol.2012.09.029.
Full textZhao, Z. F., Z. Zhang, P. Wen, et al. "A highly glass-forming alloy with low glass transition temperature." Applied Physics Letters 82, no. 26 (2003): 4699–701. http://dx.doi.org/10.1063/1.1588367.
Full textModgil, Vivek, and V. S. Rangra. "Effect of Sn Addition on Thermal and Optical Properties of Pb9Se71Ge20-xSnx (8≤x≤12) Glass." Journal of Materials 2014 (March 27, 2014): 1–8. http://dx.doi.org/10.1155/2014/318262.
Full textShi, Frank G. "Glass transition: A unified treatment." Journal of Materials Research 9, no. 7 (1994): 1908–16. http://dx.doi.org/10.1557/jmr.1994.1908.
Full textYue, Li Jie, Jin Sheng Han, and Kun Xie. "The Microalloying Effects in Cu-Based Bulk Metallic Glasses." Materials Science Forum 688 (June 2011): 407–12. http://dx.doi.org/10.4028/www.scientific.net/msf.688.407.
Full textRoland, C. Michael. "GLASS TRANSITION IN RUBBERY MATERIALS." Rubber Chemistry and Technology 85, no. 3 (2012): 313–26. http://dx.doi.org/10.5254/rct.12.87987.
Full textTong, H. J., J. P. Reid, D. L. Bones, B. P. Luo, and U. K. Krieger. "Measurements of the timescales for the mass transfer of water in glassy aerosol at low relative humidity and ambient temperature." Atmospheric Chemistry and Physics 11, no. 10 (2011): 4739–54. http://dx.doi.org/10.5194/acp-11-4739-2011.
Full textPATEL, ASHMI T., and ARUN PRATAP. "STUDY OF GLASS TRANSITION KINETICS FOR Co66Si12B16Fe4Mo2 METALLIC GLASS." International Journal of Modern Physics: Conference Series 22 (January 2013): 321–26. http://dx.doi.org/10.1142/s2010194513010295.
Full textZhang, W., H. Guo, M. W. Chen, Y. Saotome, C. L. Qin, and A. Inoue. "New Au-based bulk glassy alloys with ultralow glass transition temperature." Scripta Materialia 61, no. 7 (2009): 744–47. http://dx.doi.org/10.1016/j.scriptamat.2009.06.020.
Full textFan, J., E. I. Cooper, and C. A. Angell. "Glasses with Strong Calorimetric .beta.-Glass Transitions and the Relation to the Protein Glass Transition Problem." Journal of Physical Chemistry 98, no. 37 (1994): 9345–49. http://dx.doi.org/10.1021/j100088a041.
Full textZamani, Nurhidayah R., Aidah Jumahat, and Rosnadiah Bahsan. "Dynamic Mechanical Analysis of Nanosilica Filled Epoxy Nanocomposites." Applied Mechanics and Materials 699 (November 2014): 239–44. http://dx.doi.org/10.4028/www.scientific.net/amm.699.239.
Full textXia, L., M. B. Tang, H. Xu, et al. "Kinetic nature of hard magnetic Nd50Al15Fe15Co20 bulk metallic glass with distinct glass transition." Journal of Materials Research 19, no. 5 (2004): 1307–10. http://dx.doi.org/10.1557/jmr.2004.0172.
Full textStoev, Krassimir, and Kenji Sakurai. "X-ray reflectivity study of the glass transition temperature of thin films." Acta Crystallographica Section A Foundations and Advances 70, a1 (2014): C885. http://dx.doi.org/10.1107/s2053273314091141.
Full textWu, Botao, Jianrong Qiu, Nan Jiang та ін. "Optical properties of transparent alkali gallium silicate glass-ceramics containing Ni2+-doped β-Ga2O3 nanocrystals". Journal of Materials Research 22, № 12 (2007): 3410–14. http://dx.doi.org/10.1557/jmr.2007.0429.
Full textXia, L., M. B. Tang, M. X. Pan, W. H. Wang, and Y. D. Dong. "Glass forming ability and magnetic properties of Nd48Al20Fe27Co5bulk metallic glass with distinct glass transition." Journal of Physics D: Applied Physics 37, no. 12 (2004): 1706–9. http://dx.doi.org/10.1088/0022-3727/37/12/017.
Full textBUSIELLO, G., and R. V. SABUROVA. "SOFT MODE AND SPIN-GLASS LIKE TRANSITION IN INSULATING GLASS." International Journal of Modern Physics B 13, no. 07 (1999): 819–31. http://dx.doi.org/10.1142/s0217979299000680.
Full textLiu, Hao, Xi Tang Wang, Bao Guo Zhang, and Zhou Fu Wang. "Influence of Composition on the Characterization and Crystallization of Calcium-Magnesium-Silicate Glass-Ceramics." Advanced Materials Research 105-106 (April 2010): 592–96. http://dx.doi.org/10.4028/www.scientific.net/amr.105-106.592.
Full textSchmelzer, Jürn W. P., and Timur V. Tropin. "Dependence of the width of the glass transition interval on cooling and heating rates." Journal of Chemical Physics 138, no. 3 (2013): 034507. http://dx.doi.org/10.1063/1.4775802.
Full textYano, Ryuzi, and Naoshi Uesugi. "Transition frequency and temperature dependences of homogeneous width of Nd3+ ion in silicate glass." Optics Communications 119, no. 5-6 (1995): 545–51. http://dx.doi.org/10.1016/0030-4018(95)00423-6.
Full textLi, Hai, and Rui Xiao. "Glass Transition Behavior of Wet Polymers." Materials 14, no. 4 (2021): 730. http://dx.doi.org/10.3390/ma14040730.
Full textMariani, Manuel Sebastian, Giorgio Parisi, and Corrado Rainone. "Calorimetric glass transition in a mean-field theory approach." Proceedings of the National Academy of Sciences 112, no. 8 (2015): 2361–66. http://dx.doi.org/10.1073/pnas.1500125112.
Full textYang, Zhongmin, Shiqing Xu, Jianhu Yang, Lili Hu, and Zhonghong Jiang. "Thermal analysis and optical transition of Yb3+, Er3+ co-doped lead–germanium–tellurite glasses." Journal of Materials Research 19, no. 6 (2004): 1630–37. http://dx.doi.org/10.1557/jmr.2004.0226.
Full textAngelini, Maria Chiara, and Giulio Biroli. "Real space renormalization group theory of disordered models of glasses." Proceedings of the National Academy of Sciences 114, no. 13 (2017): 3328–33. http://dx.doi.org/10.1073/pnas.1613126114.
Full textGao, Qian, and Zengyun Jian. "Predicting the Thermodynamic Ideal Glass Transition Temperature in Glass-Forming Liquids." Materials 13, no. 9 (2020): 2151. http://dx.doi.org/10.3390/ma13092151.
Full text