Academic literature on the topic 'Wilf’s conjecture'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Wilf’s conjecture.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Wilf’s conjecture"
Bruns, Winfried, Pedro García-Sánchez, Christopher O’Neill, and Dane Wilburne. "Wilf’s conjecture in fixed multiplicity." International Journal of Algebra and Computation 30, no. 04 (March 13, 2020): 861–82. http://dx.doi.org/10.1142/s021819672050023x.
Full textEliahou, Shalom. "Wilf’s conjecture and Macaulay’s theorem." Journal of the European Mathematical Society 20, no. 9 (June 6, 2018): 2105–29. http://dx.doi.org/10.4171/jems/807.
Full textEliahou, Shalom, and Jean Fromentin. "Near-misses in Wilf’s conjecture." Semigroup Forum 98, no. 2 (February 20, 2018): 285–98. http://dx.doi.org/10.1007/s00233-018-9926-5.
Full textAngjelkoska, Violeta, and Donco Dimovski. "On a special case of Wilf’s conjecture." Asian-European Journal of Mathematics 13, no. 08 (May 28, 2020): 2050159. http://dx.doi.org/10.1142/s1793557120501594.
Full textGarcía-García, J. I., D. Marín-Aragón, and A. Vigneron-Tenorio. "An extension of Wilf’s conjecture to affine semigroups." Semigroup Forum 96, no. 2 (November 15, 2017): 396–408. http://dx.doi.org/10.1007/s00233-017-9906-1.
Full textSammartano, Alessio. "Numerical semigroups with large embedding dimension satisfy Wilf’s conjecture." Semigroup Forum 85, no. 3 (January 4, 2012): 439–47. http://dx.doi.org/10.1007/s00233-011-9370-2.
Full textCisto, Carmelo, Michael DiPasquale, Gioia Failla, Zachary Flores, Chris Peterson, and Rosanna Utano. "A generalization of Wilf’s conjecture for generalized numerical semigroups." Semigroup Forum 101, no. 2 (January 21, 2020): 303–25. http://dx.doi.org/10.1007/s00233-020-10085-7.
Full textGu, Ze. "Compositions of a numerical semigroup." Discrete Mathematics and Applications 29, no. 5 (October 25, 2019): 345–50. http://dx.doi.org/10.1515/dma-2019-0032.
Full textBrochard, Sylvain. "Proof of de Smit’s conjecture: a freeness criterion." Compositio Mathematica 153, no. 11 (August 14, 2017): 2310–17. http://dx.doi.org/10.1112/s0010437x17007370.
Full textBüyükboduk, Kâzim. "Stickelberger elements and Kolyvagin systems." Nagoya Mathematical Journal 203 (September 2011): 123–73. http://dx.doi.org/10.1017/s0027763000010345.
Full textDissertations / Theses on the topic "Wilf’s conjecture"
Dhayni, Mariam. "Problèmes dans la théorie des semigroupes numériques." Thesis, Angers, 2017. http://www.theses.fr/2017ANGE0041/document.
Full textThe thesis is made up of two parts. We study in the first part Wilf’s conjecture for numerical semigroups. We give an equivalent form of Wilf’s conjecture in terms of the Apéry set, embedding dimension and multiplicity of a numerical semigroup. We also give an affirmative answer for the conjecture in certain cases. In the second part, we consider a class of almost arithmetic numerical semigroups and give for this class of semigroups explicit formulas for the Apéry set, the Frobenius number, the genus and the pseudo-Frobenius numbers. We also characterize the symmetric (resp. pseudo-symmetric) numerical semigroups for this class of numerical semigroups
Book chapters on the topic "Wilf’s conjecture"
Amdeberhan, Tewodros, Valerio De Angelis, and Victor H. Moll. "Complementary Bell Numbers: Arithmetical Properties and Wilf’s Conjecture." In Advances in Combinatorics, 23–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-30979-3_2.
Full textKlazar, Martin. "The Füredi-Hajnal Conjecture Implies the Stanley-Wilf Conjecture." In Formal Power Series and Algebraic Combinatorics, 250–55. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04166-6_22.
Full textDelgado, Manuel. "Conjecture of Wilf: A Survey." In Numerical Semigroups, 39–62. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-40822-0_4.
Full textDiamond, Fred, and Kenneth A. Ribet. "ℓ-adic Modular Deformations and Wiles’s “Main Conjecture”." In Modular Forms and Fermat’s Last Theorem, 357–73. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4612-1974-3_12.
Full textLubinsky, Doron S. "Reflections on the Baker–Gammel–Wills (Padé) Conjecture." In Analytic Number Theory, Approximation Theory, and Special Functions, 561–71. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-0258-3_21.
Full textBras-Amorós, Maria, and César Marín Rodríguez. "New Eliahou Semigroups and Verification of the Wilf Conjecture for Genus up to 65." In Modeling Decisions for Artificial Intelligence, 17–27. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-85529-1_2.
Full textWilson, Robin. "5. More triangles and squares." In Number Theory: A Very Short Introduction, 79–96. Oxford University Press, 2020. http://dx.doi.org/10.1093/actrade/9780198798095.003.0005.
Full text