Academic literature on the topic 'William Rowan Hamilton'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'William Rowan Hamilton.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "William Rowan Hamilton"
Haidar, Riad. "Sir William Rowan Hamilton." Photoniques, no. 63 (January 2013): 18–19. http://dx.doi.org/10.1051/photon/20136318.
Full textMukunda, N. "Sir William Rowan Hamilton." Resonance 21, no. 6 (June 2016): 493–510. http://dx.doi.org/10.1007/s12045-016-0356-y.
Full textWilkins, David R. "William Rowan Hamilton: mathematical genius." Physics World 18, no. 8 (August 2005): 33–36. http://dx.doi.org/10.1088/2058-7058/18/8/34.
Full textTomalin, Marcus. "William Rowan Hamilton and the Poetry of Science." Articles, no. 54 (December 15, 2009): 0. http://dx.doi.org/10.7202/038763ar.
Full textSimmons, Charlotte. "William Rowan Hamilton and George Boole." BSHM Bulletin: Journal of the British Society for the History of Mathematics 23, no. 2 (May 2008): 96–102. http://dx.doi.org/10.1080/17498430801968050.
Full textOates, F. H. C., and Sean O'Donnell. "William Rowan Hamilton: Portrait of a Prodigy." Mathematical Gazette 72, no. 461 (October 1988): 252. http://dx.doi.org/10.2307/3618286.
Full textSen, Siddhartha. "Why William Rowan Hamilton was not an FRS." Notes and Records of the Royal Society 59, no. 3 (August 31, 2005): 305–8. http://dx.doi.org/10.1098/rsnr.2005.0100.
Full textBrown, Daniel. "William Rowan Hamilton and William Wordsworth: the Poetry of Science." Studies in Romanticism 51, no. 4 (2012): 475–501. http://dx.doi.org/10.1353/srm.2012.0000.
Full textNakane, Michiyo. "The Mathematical Papers of Sir William Rowan Hamilton." Historia Mathematica 30, no. 4 (November 2003): 514–16. http://dx.doi.org/10.1016/j.hm.2003.07.004.
Full textDavidson, Michael W. "Pioneers in Optics: William Rowan Hamilton and John Kerr." Microscopy Today 20, no. 4 (July 2012): 50–52. http://dx.doi.org/10.1017/s1551929512000405.
Full textDissertations / Theses on the topic "William Rowan Hamilton"
Montelpare, Luca. "Sir William Rowan Hamilton: il numero nella scienza del tempo puro." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2011. http://amslaurea.unibo.it/2815/.
Full textSinegre, Luc. "Au dela du temps pur : aspects geometriques, constructions. et pratiques dans l'oeuvre algebrique de sir william rowan hamilton (1805-1865)." Paris 7, 1994. http://www.theses.fr/1994PA070147.
Full textSantos, Davi José dos. "A álgebra dos complexos/quatérnios/octônios e a construção de Cayley-Dickson." Universidade Federal de Goiás, 2016. http://repositorio.bc.ufg.br/tede/handle/tede/6596.
Full textApproved for entry into archive by Jaqueline Silva (jtas29@gmail.com) on 2016-12-15T17:28:21Z (GMT) No. of bitstreams: 2 Dissertação - Davi José dos Santos - 2016.pdf: 5567090 bytes, checksum: 5606aa47f640cc5cd4495d2694f38cda (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Made available in DSpace on 2016-12-15T17:28:21Z (GMT). No. of bitstreams: 2 Dissertação - Davi José dos Santos - 2016.pdf: 5567090 bytes, checksum: 5606aa47f640cc5cd4495d2694f38cda (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2016-08-30
This research with theoretical approach seeks to investigate inmathematics, octonions,which is a non-associative extension of the quaternions. Its algebra division 8-dimensional formed on the real numbers is more extensive than can be obtained by constructing Cayley-Dickson. In this perspective we have as main goal to answer the following question: "What number systems allow arithmetic operations addition, subtraction, multiplication and division? " In the genesis of octonions is the Irish mathematician William Rowan Hamilton, motivated by a deep belief that quaternions could revolutionize mathematics and physics, was the pioneer of a new theory that transformed the modern world. Today, it is confirmed that the complexs/quaternions/octonions and its applications are manifested in different branches of science such as mechanics, geometry, mathematical physics, with great relevance in 3D animation and robotics. In order to investigate the importance of this issue and make a small contribution, we make an introduction to the theme from the numbers complex and present the rationale and motivations of Hamilton in the discovery of quaternions/octonions. Wemake a presentation of the algebraic structure and its fundamental properties. Then discoremos about constructing Cayley-Dickson algebras that produces a sequence over the field of real numbers, each with twice the previous size. Algebras produced by this process are known as Cayley-Dickson algebras; since they are an extension of complex numbers, that is, hypercomplex numbers. All these concepts have norm, algebra and conjugate. The general idea is that the multiplication of an element and its conjugate should be the square of its norm. The surprise is that, in addition to larger, the following algebra loses some specific algebraic property. Finally, we describe and analyze certain symmetry groups with multiple representations through matrixes and applications to show that This content has a value in the evolution of technology.
Esta pesquisa com abordagem teórica busca investigar na matemática, os octônios, que é uma extensão não-associativa dos quatérnios. Sua álgebra com divisão formada de 8 dimensões sobre os números reais é a mais extensa que pode ser obtida através da construção de Cayley-Dickson. Nessa perspectiva temos comometa principal responder a seguinte questão: "Que sistemas numéricos permitemas operações aritméticas de adição, subtração, multiplicação e divisão?" Na gênese dos octônios está o matemático irlandêsWilliam Rowan Hamilton que, motivado por uma profunda convicção de que os quatérnios poderiam revolucionar a Matemática e a Física, foi o pioneiro de uma nova teoria que transformou o mundo moderno. Hoje, confirma-se que os complexos/quatérnios/octônios e suas aplicações se manifestam em diferentes ramos da ciências tais como a mecânica, a geometria, a física matemática, com grande relevância na animação 3D e na robótica. Com o propósito de investigar a importância deste tema e dar uma pequena contribuição, fazemos uma introdução ao tema desde os números complexos e apresentamos o raciocínio e motivações de Hamilton na descoberta dos quatérnios/octônios. Fazemos uma apresentação da estrutura algébrica, bem como as suas propriedades fundamentais. Emseguida discoremos sobre a construção de Cayley-Dickson que produz uma sequência de álgebras sobre o campo de números reais, cada uma com o dobro do tamanho anterior. Álgebras produzidas por este processo são conhecidas como álgebras Cayley-Dickson; uma vez que elas são uma extensão dos números complexos, isto é, os números hipercomplexos. Todos esses conceitos têm norma, álgebra e conjugado. A idéia geral é que o produto de um elemento e seu conjugado deve ser o quadrado de sua norma. A surpresa é que, além de maior dimensão, a álgebra seguinte perde alguma propriedade álgebrica específica. Por fim, descrevemos e analisamos alguns grupos de simetria, com várias representações através de matrizes e aplicações que demonstram que este conteúdo tem uma utilidade na evolução da tecnologia.
Owens, Thomas A. R. "'The language of the heavens' : Wordsworth, Coleridge and astronomy." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:e2967508-a7fe-4558-82a2-9db41105d476.
Full textLewis, Elizabeth Faith. "Peter Guthrie Tait : new insights into aspects of his life and work : and associated topics in the history of mathematics." Thesis, University of St Andrews, 2015. http://hdl.handle.net/10023/6330.
Full textBooks on the topic "William Rowan Hamilton"
McGovern, Iggy. A mystic dream of 4: A sonnet sequence based on the life of William Rowan Hamilton. Dublin, Ireland: Quaternia Press, 2013.
Find full textHancarville, Pierre d'. The collection of antiquities from the cabinet of Sir William Hamilton =: Collection des antiquités du cabinet de Sir William Hamilton = Die antikensammlung aus dem kabinett von Sir William Hamilton. Köln: Tashen, 2004.
Find full textHancarville, Pierre d'. The collection of antiquities from the cabinet of Sir William Hamilton. Edited by Petra Lamers-Schütze. Köln: Taschen, 2004.
Find full textHankins, Thomas L. Sir William Rowan Hamilton. The Johns Hopkins University Press, 2004.
Find full textS, Ball Robert. Great Astronomers: William Rowan Hamilton: ( ANNOTATED ). Independently published, 2019.
Find full textHamilton, William Rowan. Mathematical Papers of Sir William Rowan Hamilton Volume IV. Cambridge University Press, 2001.
Find full textvarious. A Collection Of Papers In Memory Of Sir William Rowan Hamilton. Kessinger Publishing, LLC, 2007.
Find full textPerplexingly Easy: Selected Correspondence Between William Rowan Hamilton and Peter Guthrie Tait. Not Avail, 2005.
Find full textWilkins, David R. Perplexingly Easy: Selected Correspondence Between William Rowan Hamilton and Peter Guthrie Tait (FitzGerald Series). Not Avail, 2005.
Find full textBook chapters on the topic "William Rowan Hamilton"
Strick, Heinz Klaus. "William Rowan Hamilton – ein unglückliches Genie aus Irland." In Mathematik – einfach genial!, 337–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 2020. http://dx.doi.org/10.1007/978-3-662-60449-6_17.
Full text"Sir William Rowan Hamilton." In Coleridge the Talker, 231–35. Ithaca, NY: Cornell University Press, 2019. http://dx.doi.org/10.7591/9781501741067-042.
Full text"William Rowan Hamilton 1805–1865,." In Physicists of Ireland, 75–82. CRC Press, 2003. http://dx.doi.org/10.1201/9781420033175-11.
Full text"VI.37 William Rowan Hamilton." In The Princeton Companion to Mathematics, 765. Princeton University Press, 2010. http://dx.doi.org/10.1515/9781400830398.765a.
Full textLanczos, C. "William Rowan Hamilton—An Appreciation." In Mathematics: People · Problems · Results, 134–44. Chapman and Hall/CRC, 2019. http://dx.doi.org/10.1201/9781351074315-16.
Full textWordsworth, William. "299. W. W. to William Rowan Hamilton." In The Letters of William and Dorothy Wordsworth, Vol. 4: The Later Years: Part I: 1821–1828 (Second Revised Edition), edited by Ernest De Selincourt and Alan G. Hill, 546–47. Oxford University Press, 2000. http://dx.doi.org/10.1093/oseo/instance.00083456.
Full textWordsworth, William, and Dorothy Wordsworth. "412. W. W. to William Rowan Hamilton." In The Letters of William and Dorothy Wordsworth, Vol. 5: The Later Years: Part II: 1829–1834 (Second Revised Edition), 30–31. Oxford University Press, 2000. http://dx.doi.org/10.1093/oseo/instance.00083574.
Full textWordsworth, William, and Dorothy Wordsworth. "444. W. W. to William Rowan Hamilton." In The Letters of William and Dorothy Wordsworth, Vol. 5: The Later Years: Part II: 1829–1834 (Second Revised Edition), 96–97. Oxford University Press, 2000. http://dx.doi.org/10.1093/oseo/instance.00083606.
Full textWordsworth, William, and Dorothy Wordsworth. "448. W. W. to William Rowan Hamilton." In The Letters of William and Dorothy Wordsworth, Vol. 5: The Later Years: Part II: 1829–1834 (Second Revised Edition), 101. Oxford University Press, 2000. http://dx.doi.org/10.1093/oseo/instance.00083610.
Full textWordsworth, William, and Dorothy Wordsworth. "453. W. W. to William Rowan Hamilton." In The Letters of William and Dorothy Wordsworth, Vol. 5: The Later Years: Part II: 1829–1834 (Second Revised Edition), 110. Oxford University Press, 2000. http://dx.doi.org/10.1093/oseo/instance.00083616.
Full text