Journal articles on the topic 'Wilting point permanent'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Wilting point permanent.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Obi, Chinedu Innocent, Jude C. Obi, and Emmanuel U. Onweremadu. "Modeling of Permanent Wilting from Particle Size Fractions of Coastal Plain Sands Soils in Southeastern Nigeria." ISRN Soil Science 2012 (July 31, 2012): 1–5. http://dx.doi.org/10.5402/2012/198303.
Full textLaktionova, T., and S. Nakisko. "Particle Size Distribution as a Basic Characteristic for Pedotransfer Prediction of Permanent Wilting Point." Agricultural Science and Practice 1, no. 1 (2014): 13–19. http://dx.doi.org/10.15407/agrisp1.01.013.
Full textDayana, Ingri, Bandi Hermawan, Yudhi Harini Bertham, and Dwi Wahyuni Ganefianti. "Effects of Arbuscular Mycorrhiza Fungi and Coffee Pulp Compost in Improving Soil Water Uptake by Chilli Around the Permanent Wilting Point Conditions." TERRA : Journal of Land Restoration 3, no. 1 (2020): 23–26. http://dx.doi.org/10.31186/terra.3.1.23-26.
Full textBussiéres, P., J. Hostalery, and A. Battilani. "SIMPLE DEVICE FOR ESTIMATING SOIL WATER CONTENT AT PERMANENT WILTING POINT." Acta Horticulturae, no. 613 (September 2003): 163–68. http://dx.doi.org/10.17660/actahortic.2003.613.21.
Full textBechtold, Michel, Ullrich Dettmann, Lena Wöhl, Wolfgang Durner, Arndt Piayda, and Bärbel Tiemeyer. "Comparing Methods for Measuring Water Retention of Peat Near Permanent Wilting Point." Soil Science Society of America Journal 82, no. 3 (2018): 601–5. http://dx.doi.org/10.2136/sssaj2017.10.0372.
Full textFilgueiras, Roberto, Vinicius Mendes Rodrigues de Oliveira, Fernando França da Cunha, Everardo Chartuni Mantovani, and Epitácio Jose de Souza. "MODELOS DE CURVA DE RETENÇÃO DE ÁGUA NO SOLO." IRRIGA 1, no. 1 (2018): 115. http://dx.doi.org/10.15809/irriga.2016v1n1p115-120.
Full text., Bilal Cemek, Ramazan Meral ., Mehmet Apan ., and Hasan Merdun . "Pedotransfer Functions for the Estimation of the Field Capacity and Permanent Wilting Point." Pakistan Journal of Biological Sciences 7, no. 4 (2004): 535–41. http://dx.doi.org/10.3923/pjbs.2004.535.541.
Full textChen, Chong, Hu Zhou, Jianying Shang, Kelin Hu, and Tusheng Ren. "Estimation of soil water content at permanent wilting point using hygroscopic water content." European Journal of Soil Science 71, no. 3 (2019): 392–98. http://dx.doi.org/10.1111/ejss.12887.
Full textSilva, Bruno Montoani, Érika Andressa da Silva, Geraldo César de Oliveira, Mozart Martins Ferreira, and Milson Evaldo Serafim. "Plant-available soil water capacity: estimation methods and implications." Revista Brasileira de Ciência do Solo 38, no. 2 (2014): 464–75. http://dx.doi.org/10.1590/s0100-06832014000200011.
Full textHohenegger, Cathy, and Bjorn Stevens. "The role of the permanent wilting point in controlling the spatial distribution of precipitation." Proceedings of the National Academy of Sciences 115, no. 22 (2018): 5692–97. http://dx.doi.org/10.1073/pnas.1718842115.
Full textGhanbarian-Alavijeh, B., and H. Millán. "The relationship between surface fractal dimension and soil water content at permanent wilting point." Geoderma 151, no. 3-4 (2009): 224–32. http://dx.doi.org/10.1016/j.geoderma.2009.04.014.
Full textVopravil, Jan, Pavel Formánek, and Tomáš Khel. "Comparison of the physical properties of soils belonging to different reference soil groups." Soil and Water Research 16, No. 1 (2020): 29–38. http://dx.doi.org/10.17221/31/2020-swr.
Full textCzyż, E. A., and A. R. Dexter. "Influence of soil type on the wilting of plants." International Agrophysics 27, no. 4 (2013): 385–90. http://dx.doi.org/10.2478/intag-2013-0008.
Full textFarrick, Kegan K., Mark N. Wuddivira, and Osei Martin. "Estimation of soil texture from permanent wilting point measured with a chilled-mirror dewpoint technique." Journal of Plant Nutrition and Soil Science 182, no. 1 (2018): 119–25. http://dx.doi.org/10.1002/jpln.201700573.
Full textWiecheteck, Lucia H., Neyde F. B. Giarola, Renato P. de Lima, Cassio A. Tormena, Lorena C. Torres, and Ariane L. de Paula. "Comparing the classical permanent wilting point concept of soil (−15,000 hPa) to biological wilting of wheat and barley plants under contrasting soil textures." Agricultural Water Management 230 (March 2020): 105965. http://dx.doi.org/10.1016/j.agwat.2019.105965.
Full textÖztekin, Tekin. "Short-Term Effects of Land Leveling on Irrigation-Related Some Soil Properties in a Clay Loam Soil." Scientific World Journal 2013 (2013): 1–16. http://dx.doi.org/10.1155/2013/187490.
Full textMashayekhi, Parisa, Shoja Ghorbani-Dashtaki, Mohammad Reza Mosaddeghi, Hossein Shirani, and Ali Reza Mohammadi Nodoushan. "Different scenarios for inverse estimation of soil hydraulic parameters from double-ring infiltrometer data using HYDRUS-2D/3D." International Agrophysics 30, no. 2 (2016): 203–10. http://dx.doi.org/10.1515/intag-2015-0087.
Full textKeshavarzi, Ali, Fereydoon Sarmadian, Ali Asghar Zolfaghari, and Paria Pezeshki. "Estimating Water Content at Field Capacity and Permanent Wilting Point Using Non-parametric K-NN Algorithm." International Journal of Agricultural Research 7, no. 3 (2012): 166–68. http://dx.doi.org/10.3923/ijar.2012.166.168.
Full textYao, Ning, Yi Li, Fang Xu, et al. "Permanent wilting point plays an important role in simulating winter wheat growth under water deficit conditions." Agricultural Water Management 229 (February 2020): 105954. http://dx.doi.org/10.1016/j.agwat.2019.105954.
Full textJin, Xinxin, Shuai Wang, Na Yu, et al. "Spatial predictions of the permanent wilting point in arid and semi-arid regions of Northeast China." Journal of Hydrology 564 (September 2018): 367–75. http://dx.doi.org/10.1016/j.jhydrol.2018.07.038.
Full textGhorbani, Mohammad Ali, Shahaboddin Shamshirband, Davoud Zare Haghi, Atefe Azani, Hossein Bonakdari, and Isa Ebtehaj. "Application of firefly algorithm-based support vector machines for prediction of field capacity and permanent wilting point." Soil and Tillage Research 172 (September 2017): 32–38. http://dx.doi.org/10.1016/j.still.2017.04.009.
Full textAssi, Amjad T., John Blake, Rabi H. Mohtar, and Erik Braudeau. "Soil aggregates structure-based approach for quantifying the field capacity, permanent wilting point and available water capacity." Irrigation Science 37, no. 4 (2019): 511–22. http://dx.doi.org/10.1007/s00271-019-00630-w.
Full textRab, M. A., S. Chandra, P. D. Fisher, et al. "Modelling and prediction of soil water contents at field capacity and permanent wilting point of dryland cropping soils." Soil Research 49, no. 5 (2011): 389. http://dx.doi.org/10.1071/sr10160.
Full textOstovari, Yaser, Kamran Asgari, and Wim Cornelis. "Performance Evaluation of Pedotransfer Functions to Predict Field Capacity and Permanent Wilting Point Using UNSODA and HYPRES Datasets." Arid Land Research and Management 29, no. 4 (2015): 383–98. http://dx.doi.org/10.1080/15324982.2015.1029649.
Full textMohanty, M., Nishant K. Sinha, D. K. Painuli, et al. "Modelling Soil Water Contents at Field Capacity and Permanent Wilting Point Using Artificial Neural Network for Indian Soils." National Academy Science Letters 38, no. 5 (2015): 373–77. http://dx.doi.org/10.1007/s40009-015-0358-4.
Full textKay, B. D., A. P. da Silva, and J. A. Baldock. "Sensitivity of soil structure to changes in organic carbon content: Predictions using pedotransfer functions." Canadian Journal of Soil Science 77, no. 4 (1997): 655–67. http://dx.doi.org/10.4141/s96-094.
Full textCruz, D. R., L. F. S. Leandro, D. A. Mayfield, Y. Meng, and G. P. Munkvold. "Effects of Soil Conditions on Root Rot of Soybean Caused by Fusarium graminearum." Phytopathology® 110, no. 10 (2020): 1693–703. http://dx.doi.org/10.1094/phyto-02-20-0052-r.
Full textPollacco, J. A. P. "A generally applicable pedotransfer function that estimates field capacity and permanent wilting point from soil texture and bulk density." Canadian Journal of Soil Science 88, no. 5 (2008): 761–74. http://dx.doi.org/10.4141/cjss07120.
Full textTunçay, Tülay, Oğuz Başkan, Ilhami Bayramın, Orhan Dengız, and Şeref Kılıç. "Geostatistical approach as a tool for estimation of field capacity and permanent wilting point in semi-arid terrestrial ecosystem." Archives of Agronomy and Soil Science 64, no. 9 (2018): 1240–53. http://dx.doi.org/10.1080/03650340.2017.1422081.
Full textSilva, Antonio Carlos da, Jeane Cruz Portela, Rafael Oliveira Batista, et al. "Soil Water Retention in the Semiarid Region of Brazil." Journal of Agricultural Science 10, no. 9 (2018): 105. http://dx.doi.org/10.5539/jas.v10n9p105.
Full textDaniells, IG. "Degradation and restoration of soil structure in a cracking grey clay used for cotton production." Soil Research 27, no. 2 (1989): 455. http://dx.doi.org/10.1071/sr9890455.
Full textQiao, Jiangbo, Yuanjun Zhu, Xiaoxu Jia, Laiming Huang, and Ming’an Shao. "Pedotransfer functions for estimating the field capacity and permanent wilting point in the critical zone of the Loess Plateau, China." Journal of Soils and Sediments 19, no. 1 (2018): 140–47. http://dx.doi.org/10.1007/s11368-018-2036-x.
Full textBUAKUM, B., V. LIMPINUNTANA, N. VORASOOT, K. PANNANGPETCH, and R. W. BELL. "IS DEEP SOWING BENEFICIAL FOR DRY SEASON CROPPING WITHOUT IRRIGATION ON SANDY SOIL WITH SHALLOW WATER TABLE?" Experimental Agriculture 49, no. 3 (2013): 366–81. http://dx.doi.org/10.1017/s0014479713000161.
Full textLo, Tsz Him, Derek M. Heeren, Luciano Mateos, et al. "Field Characterization of Field Capacity and Root Zone Available Water Capacity for Variable Rate Irrigation." Applied Engineering in Agriculture 33, no. 4 (2017): 559–72. http://dx.doi.org/10.13031/aea.11963.
Full textCerligione, Lisa J., Anthony E. Liberta, and Roger C. Anderson. "Effects of soil moisture and soil sterilization on vesicular–arbuscular mycorrhizal colonization and growth of little bluestem (Schizachyrium scoparium)." Canadian Journal of Botany 66, no. 4 (1988): 757–61. http://dx.doi.org/10.1139/b88-112.
Full textTaşan, Sevda, and Yusuf Demir. "Comparative Analysis of MLR, ANN, and ANFIS Models for Prediction of Field Capacity and Permanent Wilting Point for Bafra Plain Soils." Communications in Soil Science and Plant Analysis 51, no. 5 (2020): 604–21. http://dx.doi.org/10.1080/00103624.2020.1729374.
Full textVaheddoost, Babak, Yiqing Guan, and Babak Mohammadi. "Application of hybrid ANN-whale optimization model in evaluation of the field capacity and the permanent wilting point of the soils." Environmental Science and Pollution Research 27, no. 12 (2020): 13131–41. http://dx.doi.org/10.1007/s11356-020-07868-4.
Full textAssi, Amjad T., Rabi H. Mohtar, Erik F. Braudeau, and Cristine L. S. Morgan. "Quantification of Available Water Capacity Comparing Standard Methods and a Pedostructure Method on a Weakly Structured Soil." Transactions of the ASABE 62, no. 2 (2019): 289–301. http://dx.doi.org/10.13031/trans.13073.
Full textNguyen, T. T., S. Fuentes, and P. Marschner. " Effects of compost on water availability and gas exchange in tomato during drought and recovery." Plant, Soil and Environment 58, No. 11 (2012): 495–502. http://dx.doi.org/10.17221/403/2012-pse.
Full textRoy, Debjit, Xinhua Jia, Xuefeng Chu, and Jennifer M. Jacobs. "Hydraulic Conductivity Measurement for Three Frozen and Unfrozen Soils in the Red River of the North Basin." Transactions of the ASABE 64, no. 3 (2021): 761–70. http://dx.doi.org/10.13031/trans.14224.
Full textIrmak, Suat, Vasudha Sharma, Ali T. Mohammed, and Koffi Djaman. "Impacts of Cover Crops on Soil Physical Properties: Field Capacity, Permanent Wilting Point, Soil-Water Holding Capacity, Bulk Density, Hydraulic Conductivity, and Infiltration." Transactions of the ASABE 61, no. 4 (2018): 1307–21. http://dx.doi.org/10.13031/trans.12700.
Full textLi, Xiangdong, Ming’an Shao, and Chunlei Zhao. "Estimating the field capacity and permanent wilting point at the regional scale for the Hexi Corridor in China using a state-space modeling approach." Journal of Soils and Sediments 19, no. 11 (2019): 3805–16. http://dx.doi.org/10.1007/s11368-019-02314-6.
Full textKozłowski, Michał, and Jolanta Komisarek. "Analysis of the suitability of Polish soil texture classification for estimating soil water retention and hydraulic properties." Soil Science Annual 68, no. 4 (2017): 197–204. http://dx.doi.org/10.1515/ssa-2017-0025.
Full textBlodgett, Allyson M., David J. Beattie, and John W. White. "Growth and Shelf Life of Impatiens in Media Amended with Hydrophilic Polymer and Wetting Agent." HortTechnology 5, no. 1 (1995): 38–40. http://dx.doi.org/10.21273/horttech.5.1.38.
Full textMeerow, Alan W., and Timothy K. Broschat. "Growth of Hibiscus in Media Amended with a Ceramic Diatomaceous Earth Granule and Treated with a Kelp Extract." HortTechnology 6, no. 1 (1996): 70–73. http://dx.doi.org/10.21273/horttech.6.1.70.
Full textChan, KY. "Effects of flooding and subsequent drying on consolidation of beds of aggregates of a gray clay from Narrabri, NSW." Soil Research 25, no. 4 (1987): 567. http://dx.doi.org/10.1071/sr9870567.
Full textPATIL, N. G., G. S. RAJPUT, R. K. NEMA, and R. B. SINGH. "Predicting hydraulic properties of seasonally impounded soils." Journal of Agricultural Science 148, no. 2 (2009): 159–70. http://dx.doi.org/10.1017/s002185960999030x.
Full textVasques, Gustavo Mattos, Maurício Rizzato Coelho, Ricardo Oliveira Dart, Ronaldo Pereira Oliveira, and Wenceslau Geraldes Teixeira. "Mapping soil carbon, particle-size fractions, and water retention in tropical dry forest in Brazil." Pesquisa Agropecuária Brasileira 51, no. 9 (2016): 1371–85. http://dx.doi.org/10.1590/s0100-204x2016000900036.
Full textSchellenberg, M. P., J. Waddington, and J. R. King. "Direct seeding of alfalfa into established Russian wildrye pasture in southwest Saskatchewan." Canadian Journal of Plant Science 74, no. 3 (1994): 539–42. http://dx.doi.org/10.4141/cjps94-096.
Full textLayne, Richard E. C., Chin S. Tan, and David M. Hunter. "Cultivar, Ground-cover, and Irrigation Treatments and Their Interactions Affect Long-term Performance of Peach Trees." Journal of the American Society for Horticultural Science 119, no. 1 (1994): 12–19. http://dx.doi.org/10.21273/jashs.119.1.12.
Full text