Journal articles on the topic 'Wimax structure'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Wimax structure.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Huang, Shanshan, Jun Li, and Jianzhong Zhao. "Miniaturized CPW-Fed Triband Antenna with Asymmetric Ring for WLAN/WiMAX Applications." Journal of Computer Networks and Communications 2014 (2014): 1–8. http://dx.doi.org/10.1155/2014/419642.
Full textTaha, Abd-Elhamid M., Pandeli Kolomitro, Hossam Hassanein, and Najah Abu Ali. "Evaluating frame structure design in WiMAX relay networks." Concurrency and Computation: Practice and Experience 25, no. 5 (2011): 608–25. http://dx.doi.org/10.1002/cpe.1803.
Full textYang, Tang, Gao Wen, Gao Jinsong, and Feng Xiaoguo. "Compact multi-band printed antenna with multi-triangular ground plane for WLAN/WiMAX/RFID applications." International Journal of Microwave and Wireless Technologies 8, no. 2 (2014): 277–81. http://dx.doi.org/10.1017/s1759078714001482.
Full textOsklang, Pracha, Chuwong Phongcharoenpanich, and Prayoot Akkaraekthalin. "Triband Compact Printed Antenna for 2.4/3.5/5 GHz WLAN/WiMAX Applications." International Journal of Antennas and Propagation 2019 (August 28, 2019): 1–13. http://dx.doi.org/10.1155/2019/8094908.
Full textCho, HanGyu, Taeyoung Kim, Yu-Tao Hsieh, and Jong-Kae Fwu. "Physical layer structure of next generation mobile WiMAX technology." Computer Networks 55, no. 16 (2011): 3648–58. http://dx.doi.org/10.1016/j.comnet.2011.03.022.
Full textEdward, N., Z. Zakaria, and N. A. Shairi. "Reconfigurable Feeding Network with Dual-band Filter for WiMAX Application." International Journal of Electrical and Computer Engineering (IJECE) 7, no. 5 (2017): 2411. http://dx.doi.org/10.11591/ijece.v7i5.pp2411-2419.
Full textWang, Zhi Ping. "The Application of WiMAX and Mesh Network Technology at Fire Communication." Applied Mechanics and Materials 192 (July 2012): 365–69. http://dx.doi.org/10.4028/www.scientific.net/amm.192.365.
Full textMalik, Jagannath, Parth C. Kalaria, and Machavaram V. Kartikeyan. "Complementary Sierpinski gasket fractal antenna for dual-band WiMAX/WLAN (3.5/5.8 GHz) applications." International Journal of Microwave and Wireless Technologies 5, no. 4 (2013): 499–505. http://dx.doi.org/10.1017/s1759078713000123.
Full textZhai, Huiqing, Lu Liu, Zhihui Ma, and Changhong Liang. "A Printed Monopole Antenna for Triple-Band WLAN/WiMAX Applications." International Journal of Antennas and Propagation 2015 (2015): 1–7. http://dx.doi.org/10.1155/2015/254268.
Full textAzman, Nuradlina, Mohd Fairus Mohd Yusoff, and Muhammad Akram Mohd Sobri. "Dual-band Metamaterial Filtenna for WiMAX Application." ELEKTRIKA- Journal of Electrical Engineering 18, no. 1 (2019): 47–50. http://dx.doi.org/10.11113/elektrika.v18n1.106.
Full textSingla, Geetanjali, and Rajesh Khanna. "Double-ring multiband microstrip patch antenna with parasitic strip structure for heterogeneous wireless communication systems." International Journal of Microwave and Wireless Technologies 9, no. 8 (2017): 1757–62. http://dx.doi.org/10.1017/s1759078717000502.
Full textF, E. Ismael, K. Syed Yusof S, Abbas M, Fisal N, and Muazzah N. "Frame structure for Mobile multi-hop relay (MMR) WiMAX networks." International Journal of Physical Sciences 8, no. 17 (2013): 776–92. http://dx.doi.org/10.5897/ijps12.275.
Full textHajj, M., R. Chantalat, E. Rodes, E. Arnaud, T. Monédière, and B. Jecko. "Bipolar M-EBG structure for WIMAX base station sectoral antennas." Electronics Letters 46, no. 5 (2010): 319. http://dx.doi.org/10.1049/el.2010.3159.
Full textAboud kadhim, Mohammed, and Widad Ismail. "Implementation of WiMAX (IEEE802.16.d) OFDM Baseband Transceiver-Based Multiwavelet OFDM on a Multi-Core Software-Defined Radio Platform." ISRN Signal Processing 2011 (April 14, 2011): 1–9. http://dx.doi.org/10.5402/2011/750878.
Full textN, Rakesh. "Design of Wideband Antenna Array for WiMax Application." International Journal for Research in Applied Science and Engineering Technology 9, no. 8 (2021): 958–62. http://dx.doi.org/10.22214/ijraset.2021.37332.
Full textKunwar, Alaknanda, Anil Kumar Gautam, and Binod Kumar Kanaujia. "Inverted L-slot triple-band antenna with defected ground structure for WLAN and WiMAX applications." International Journal of Microwave and Wireless Technologies 9, no. 1 (2015): 191–96. http://dx.doi.org/10.1017/s1759078715001105.
Full textBehera, S. B., D. Barad, and S. Behera. "A Triple-band Suspended Microstrip Antenna with Symmetrical USlots for WLAN/WiMax Applications." Advanced Electromagnetics 7, no. 2 (2018): 41–47. http://dx.doi.org/10.7716/aem.v7i2.608.
Full textSanjeeva Reddy, B. R., Naresh K. Darimireddy, Chan-Wang Park, and Abdellah Chehri. "Performance of Reconfigurable Antenna Fabricated on Flexible and Nonflexible Materials for Band Switching Applications." Energies 14, no. 9 (2021): 2553. http://dx.doi.org/10.3390/en14092553.
Full textKaur, Jaswinder, Rajesh Khanna, and Machavaram Kartikeyan. "Novel dual-band multistrip monopole antenna with defected ground structure for WLAN/IMT/BLUETOOTH/WIMAX applications." International Journal of Microwave and Wireless Technologies 6, no. 1 (2013): 93–100. http://dx.doi.org/10.1017/s1759078713000858.
Full textJung, Young-Bae, and Soon-Young Eom. "A Compact MultiBand and Dual-Polarized Mobile Base-Station Antenna Using Optimal Array Structure." International Journal of Antennas and Propagation 2015 (2015): 1–11. http://dx.doi.org/10.1155/2015/178245.
Full textHao, Hong Gang, Wen Shuai Hu, Hai Yan Tian, and Yi Ren. "A Dual-Band LTCC Antenna with Cross Circuitous Structure." Advanced Materials Research 601 (December 2012): 163–67. http://dx.doi.org/10.4028/www.scientific.net/amr.601.163.
Full textSivabalan, A., G. Keerthi Vijayadhasan, T. Thandapani, and R. Balamurali. "Design of Frequency Reconfigurable Multiband Compact Antenna." Journal of Computational and Theoretical Nanoscience 17, no. 8 (2020): 3671–75. http://dx.doi.org/10.1166/jctn.2020.9256.
Full textV.Prashanth, K., Bonthu Umamaheswari, G. Akhil, G. Vamsi krishna, and M. Venkata Sai chandu. "A Compact Antenna with WiMAX and WLAN bands notched for UWB applications." International Journal of Engineering & Technology 7, no. 2.7 (2018): 489. http://dx.doi.org/10.14419/ijet.v7i2.7.10869.
Full textMabrok, Mussa, Zahriladha Zakaria, Yully Erwanti Masrukin, Tole Sutikno, and Hussein Alsariera. "Effect of the defected microstrip structure shapes on the performance of dual-band bandpass filter for wireless communications." Bulletin of Electrical Engineering and Informatics 10, no. 1 (2021): 232–40. http://dx.doi.org/10.11591/eei.v10i1.2662.
Full textAqeel, Sajid, M. R. Kamarudin, Aftab Ahmad Khan, et al. "A Compact Frequency Reconfigurable Hybrid DRA for LTE/Wimax Applications." International Journal of Antennas and Propagation 2017 (2017): 1–13. http://dx.doi.org/10.1155/2017/3607195.
Full textLi, Bing, and Jing-song Hong. "Design of Two Novel Dual Band-Notched UWB Antennas." International Journal of Antennas and Propagation 2012 (2012): 1–7. http://dx.doi.org/10.1155/2012/303264.
Full textKIM, Jongwoo, Suwon PARK, Seung Hyong RHEE, Yong-Hoon CHOI, Ho Young HWANG, and Young-uk CHUNG. "Coexistence of WiFi and WiMAX Systems Based on Coexistence Zone within WiMAX Frame Structure and Modified Power Saving Mode of WiFi System." IEICE Transactions on Communications E94-B, no. 6 (2011): 1781–84. http://dx.doi.org/10.1587/transcom.e94.b.1781.
Full textJayaprakasan, V., S. Vijayakumar, and Pandya Vyomal Naishadhkumar. "Design of CIC based decimation filter structure using FPGA for WiMAX applications." IEICE Electronics Express 16, no. 7 (2019): 20190074. http://dx.doi.org/10.1587/elex.16.20190074.
Full textIbrahim, Amirudin, Nur Arina Fazil, and Raimi Dewan. "Triple-band antenna with defected ground structure (DGS) for WLAN/WiMAX applications." Journal of Physics: Conference Series 1432 (January 2020): 012071. http://dx.doi.org/10.1088/1742-6596/1432/1/012071.
Full textNabaoui, Driss El, Abdelali Tajmouati, Jamal Zbitou, Ahmed Errkik, Larbi Elabdellaoui, and Mohamed Latrach. "A Novel Low Cost Fractal Antenna Structure for ISM and WiMAX Applications." TELKOMNIKA (Telecommunication Computing Electronics and Control) 16, no. 5 (2018): 1901. http://dx.doi.org/10.12928/telkomnika.v16i5.8527.
Full textWang, Tuo, Ying-Zeng Yin, Jian Yang, Yong-Li Zhang, and Jiao-Jiao Xie. "COMPACT TRIPLE-BAND ANTENNA USING DEFECTED GROUND STRUCTURE FOR WLAN/WIMAX APPLICATIONS." Progress In Electromagnetics Research Letters 35 (2012): 155–64. http://dx.doi.org/10.2528/pierl12082814.
Full textMurmu, Lakhindar, Santasri Koley, Amit Bage, and Sushrut Das. "A Simple WiMAX and RFID Band-Notched UWB Bandpass Filter and Its Susceptibility Study." Journal of Circuits, Systems and Computers 28, no. 11 (2019): 1950196. http://dx.doi.org/10.1142/s0218126619501962.
Full textDavid, Rajiv Mohan, Mohammad Saadh AW, Tanweer Ali, and Pradeep Kumar. "A Multiband Antenna Stacked with Novel Metamaterial SCSRR and CSSRR for WiMAX/WLAN Applications." Micromachines 12, no. 2 (2021): 113. http://dx.doi.org/10.3390/mi12020113.
Full textXia, Hui. "Research on Delay in Wireless Muti-Hop Heterogeneous Body Area Networks." Applied Mechanics and Materials 644-650 (September 2014): 2715–18. http://dx.doi.org/10.4028/www.scientific.net/amm.644-650.2715.
Full textChen, Zubin, Baijun Lu, Yanzhou Zhu, and Hao Lv. "A Compact Printed Monopole Antenna for WiMAX/WLAN and UWB Applications." Future Internet 10, no. 12 (2018): 122. http://dx.doi.org/10.3390/fi10120122.
Full textSamsuzzaman, M., T. Islam, N. H. Abd Rahman, M. R. I. Faruque, and J. S. Mandeep. "Compact Modified Swastika Shape Patch Antenna for WLAN/WiMAX Applications." International Journal of Antennas and Propagation 2014 (2014): 1–8. http://dx.doi.org/10.1155/2014/825697.
Full textAl-Moliki, Yahya Mohammed Hameed, Kamarul Ariffin Bin Noordin, MHD Nour Hindia, and Mohd Fadzli Bin Mohd Salleh. "Concatenated RS-Convolutional Codes for Cooperative Wireless Communication." Open Electrical & Electronic Engineering Journal 7, no. 1 (2013): 9–20. http://dx.doi.org/10.2174/1874129001307010009.
Full textLi, Si, Atef Elsherbeni, Zhenfeng Ding, and Yunlong Mao. "A Metamaterial Inspired Compact Miniaturized Triple-band Near Field Resonant Parasitic Antenna for WLAN/WiMAX Applications." Applied Computational Electromagnetics Society 35, no. 12 (2021): 1539–47. http://dx.doi.org/10.47037/2020.aces.j.351213.
Full textNouri, H., J. Nourinia, and Ch Ghobadi. "Multiband printed dipole antenna with log-periodic toothed structure for WLAN/WiMAX applications." Microwave and Optical Technology Letters 53, no. 3 (2011): 536–39. http://dx.doi.org/10.1002/mop.25790.
Full textSachan, Ritesh, and D. C. Dhubkarya. "Photonic band gap structure microstrip patch antenna for WiMAX and Wi-Fi application." Photonic Network Communications 41, no. 3 (2021): 280–86. http://dx.doi.org/10.1007/s11107-021-00938-8.
Full textJabire, Adamu Halilu, Anas Abdu, Sani Saminu, Abubakar Muhammad Sadiq, and Mohammed Jajere Adamu. "Isolation Frequency Switchable MIMO Antenna for PCS, WIMAX and WLAN Application." ELEKTRIKA- Journal of Electrical Engineering 18, no. 3 (2019): 27–33. http://dx.doi.org/10.11113/elektrika.v18n3.178.
Full textSahoo, Amiya Bhusana, Guru Prasad Mishra, and Biswa B. Mangaraj. "Optimal Design of Compact Dual-Band Slot Antenna Using Particle Swarm Optimization for WLAN and WiMAX Applications." Recent Advances in Electrical & Electronic Engineering (Formerly Recent Patents on Electrical & Electronic Engineering) 12, no. 5 (2019): 425–31. http://dx.doi.org/10.2174/2352096511666180706130127.
Full textDevi, Meenakshi, Anil Kumar Gautam, and Binod Kumar Kanaujia. "A compact ultra wideband antenna with triple band-notch characteristics." International Journal of Microwave and Wireless Technologies 8, no. 7 (2015): 1069–75. http://dx.doi.org/10.1017/s1759078715000409.
Full textSharma, Manish, Yogendra Kumar Awasthi, and Himanshu Singh. "Planar high rejection dual band-notch UWB antenna with X & Ku-bands wireless applications." International Journal of Microwave and Wireless Technologies 9, no. 8 (2017): 1725–33. http://dx.doi.org/10.1017/s1759078717000393.
Full textKahina, D., C. Mouloud, D. Mokrane, M. Faiza, and A. Rabia. "A Compact ACS-Fed Tri-band Microstrip Monopole Antenna for WLAN/WiMAX Applications." Advanced Electromagnetics 7, no. 5 (2018): 87–93. http://dx.doi.org/10.7716/aem.v7i5.853.
Full textMouhouche, F., A. Azrar, M. Dehmas, and K. Djafri. "A Compact Multi-Band Monopole Antenna using Metamaterial for WLAN/WiMAX Applications." Advanced Electromagnetics 8, no. 3 (2019): 92–98. http://dx.doi.org/10.7716/aem.v8i3.929.
Full textPradeep, Pendli. "A Compact Metamaterial based Dual-Band Antenna with Improved Gain for WLAN Applications." International Journal for Research in Applied Science and Engineering Technology 9, no. VI (2021): 2778–83. http://dx.doi.org/10.22214/ijraset.2021.35586.
Full textMadhav, B. T. P., K. Thirumalarao, M. Venkateswara Rao, V. N. V. Saiteja, J. Kranthi Kumar, and P. N. V. S. Reavanth. "Metamaterial inspire multiband monopole antenna with defected ground structure." International Journal of Engineering & Technology 7, no. 1.5 (2017): 90. http://dx.doi.org/10.14419/ijet.v7i1.5.9128.
Full textZahraoui, I., A. Errkik, M. C. Abounaima, A. Tajmouati, L. E. Abdellaoui, and M. Latrach. "A New Planar Multiband Antenna for GPS, ISM and WiMAX Applications." International Journal of Electrical and Computer Engineering (IJECE) 7, no. 4 (2017): 2018. http://dx.doi.org/10.11591/ijece.v7i4.pp2018-2026.
Full textLan, Nguyễn Ngọc, Nguyễn Thị Thu Hằng, and Hồ Văn Cừu. "A Microstrip MIMO Antenna with Enhanced Isolation for WiMAX Applications." Journal of Research and Development on Information and Communication Technology 2019, no. 2 (2019): 99–105. http://dx.doi.org/10.32913/mic-ict-research.v2019.n2.869.
Full text