Academic literature on the topic 'Wind converter'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Wind converter.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Wind converter"
Akhmatov, Vladislav. "Full-Load Converter Connected Asynchronous Generators for MW Class Wind Turbines." Wind Engineering 29, no. 4 (June 2005): 341–51. http://dx.doi.org/10.1260/030952405774857833.
Full textSheryazov, Saken Koishybayevich, Sultanbek Sansyzbayevich Issenov, and Argyn Bauyrzhanuly Kaіdar. "EVOLUTION OF ENERGY CONVERTERS FOR WIND TURBINES." Bulletin of Toraighyrov University. Energetics series, no. 1.2021 (March 29, 2021): 317–29. http://dx.doi.org/10.48081/fxjn4704.
Full textLeila, Merabet, Mekki Mounira, Ourici Amel, and Saad Salah. "Modelling and control of wind turbine doubly fed induction generator with MATLAB simulink." Global Journal of Computer Sciences: Theory and Research 7, no. 2 (December 1, 2017): 77–91. http://dx.doi.org/10.18844/gjcs.v7i2.2714.
Full textQuester, Matthias, Fisnik Loku, Otmane El Azzati, Leonel Noris, Yongtao Yang, and Albert Moser. "Investigating the Converter-Driven Stability of an Offshore HVDC System." Energies 14, no. 8 (April 20, 2021): 2341. http://dx.doi.org/10.3390/en14082341.
Full textThayumanavan, Porselvi, Deepa Kaliyaperumal, Umashankar Subramaniam, Mahajan Sagar Bhaskar, Sanjeevikumar Padmanaban, Zbigniew Leonowicz, and Massimo Mitolo. "Combined Harmonic Reduction and DC Voltage Regulation of A Single DC Source Five-Level Multilevel Inverter for Wind Electric System." Electronics 9, no. 6 (June 12, 2020): 979. http://dx.doi.org/10.3390/electronics9060979.
Full textRannestad, Bjorn, Anders Eggert Maarbjerg, Kristian Frederiksen, Stig Munk-Nielsen, and Kristian Gadgaard. "Converter Monitoring Unit for Retrofit of Wind Power Converters." IEEE Transactions on Power Electronics 33, no. 5 (May 2018): 4342–51. http://dx.doi.org/10.1109/tpel.2017.2716946.
Full textShafiee, Mahmood, Michael Patriksson, Ann-Brith Strömberg, and Lina Bertling Tjernberg. "Optimal Redundancy and Maintenance Strategy Decisions for Offshore Wind Power Converters." International Journal of Reliability, Quality and Safety Engineering 22, no. 03 (June 2015): 1550015. http://dx.doi.org/10.1142/s0218539315500151.
Full textSharma, Himanshu, Nitai Pal, Pankaj Kumar, and Ashiwani Yadav. "A control strategy of hybrid solar-wind energy generation system." Archives of Electrical Engineering 66, no. 2 (June 27, 2017): 241–51. http://dx.doi.org/10.1515/aee-2017-0018.
Full textBuswig, Y. M. Y., Wahyu Mulyo Utomo, Zainal Alam Haron, and S. S. Yi. "Multi-Input Boost Converter for Hybrid PV and Wind Generator Systems." Advanced Materials Research 925 (April 2014): 619–24. http://dx.doi.org/10.4028/www.scientific.net/amr.925.619.
Full textLazarov, Vladimir, Daniel Roye, Zahari Zarkov, and Dimitar Spirov. "Analysis of DC converters for wind generators." Facta universitatis - series: Electronics and Energetics 22, no. 2 (2009): 235–44. http://dx.doi.org/10.2298/fuee0902235l.
Full textDissertations / Theses on the topic "Wind converter"
Winberg, Helena, and Micaela Tiestö. "Theoretical analysis of the performance of a small wind energy converter." Thesis, University of Gävle, University of Gävle, Ämnesavdelningen för energi- och maskinteknik, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-4939.
Full textAbstract
This thesis has been done in Barcelona, Spain, in cooperation with the University of Gävle (HiG) and the Universitat Politècnica de Catalunya (UPC). At UPC there is a project carried out where the goal is to analyze the characteristics and performance of the wind turbine IT-100, with an intention to optimize it. This is carried out by assignment of Engineers Without Borders and Practical Action. The purpose of the thesis has been to present what power, value of tension and current the turbine will produce in different wind velocities.
The IT-100 is built to generate electricity to the population in the countryside in, among other countries, Peru. The energy the turbine captures from the wind will be used to charge vehicle batteries that are used in the households as a source of electricity. This is an effective, cheap and environmental-friendly way of supplying households with electricity.
The idea of using the energy in the wind has been known for thousands of years. It started with simple windmills for grinding grain and later more complicated machines like wind turbines were created. Wind power is one of the worlds cleanest sources of energy with as good as no emissions at all while in running.
The result of the work with this thesis work is an Excel file where the, by the purpose requested, parameters are presented in relation to different wind velocities. With some conditions set from the start, some known values of reference and the rotor blades rotational speed as a key variable, these parameters were possible to calculate.
During the work, the project came upon some difficulties such as; not enough information about the wind turbine, too little previous knowledge among the students and trouble with the Spanish language. However, on the whole the project has been successful and a good learning experience.
Abu-hamdeh, Muthanna S. "Modeling of Bi-directional Converter for Wind Power Generation." The Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=osu1259684130.
Full textTrilla, Romero Lluís. "Power converter optimal control for wind energy conversion systems." Doctoral thesis, Universitat Politècnica de Catalunya, 2013. http://hdl.handle.net/10803/134602.
Full textWind energy has increased its presence in many countries and it is expected to have even a higher weight in the electrical generation share with the implantation of offshore wind farms. Consequently, the wind energy industry has to take greater responsibility towards the integration and stability of the power grid. In this sense, there are proposed in the present work control systems that aim to improve the response and robustness of the wind energy conversion systems without increasing their complexity in order to facilitate their applicability. In the grid-side converter it is proposed to implement an optimal controller with its design based on H-infinity control theory in order to ensure the stability, obtain an optimal response of the system and also provide robustness. In the machine-side converter the use of a Linear Parameter-Varying controller is selected, this choice provides a controller that dynamically adapts itself to the operating point of the system, in this way the response obtained is always the desired one, the one defined during the design process. Preliminary analysis of the controllers are performed using models validated with field test data obtained from operational wind turbines, the validation process followed the set of rules included in the official regulations of the electric sector or grid codes. In the last stage an experimental test bench has been developed in order to test and evaluate the proposed controllers and verify its correct performance.
Zhou, Yao. "High voltage DC/DC converter for offshore wind application." Thesis, University of Edinburgh, 2015. http://hdl.handle.net/1842/18749.
Full textPrieto, Araujo Eduardo. "Power converter control for offshore wind energy generation and transmission." Doctoral thesis, Universitat Politècnica de Catalunya, 2016. http://hdl.handle.net/10803/396110.
Full textLa present tesi tracta sobre el control dels diferents convertidors que tindran un paper essencial en els futurs sistemes eòlics marins, permetent la integració de la potència generada pels aerogeneradors a la xarxa terrestre. En primer lloc, es presenta un estudi sobre levolució dels aerogeneradors, des dels primers conceptes a les opcions en ús més modernes. A continuació, es detalla una estratègia de control descentralitzada d'una màquina síncrona d'imants permanents de triple estator trifàsic, una topologia específicament dissenyada per eòlica marina. La proposta de control es valida per mitjà d'un emulador de turbina eòlica juntament amb una màquina de nou fases a escala de 30 kW. En els darrers anys s'ha contemplat la possibilitat de que els futurs parcs eòlics emprin corrent continu dins la seva xarxa interna. Per tal de construir aquesta xarxa resulten necessaris convertidors d'adaptació DC/DC entre la sortida de la turbina i la xarxa interna del parc en corrent continu. En base a aquesta proposta, es realitza el disseny del control d'un convertidor DC/DC Dual Bridge Series Resonant Converter (DBSRC). Per validar els resultats obtinguts, es desenvolupa un prototip del convertidor a escala de 50 kW. L'alta disponibilitat de recursos eòlics en indrets allunyats de la costa, afavoreix la creació de nous parcs eòlics marins, fet que presenta reptes econòmics i tècnics importants. Amb aquesta finalitat, la tecnologia Voltage Source Converter High Voltage Direct Current (VSC-HVDC) permet realitzar la transmissió de potència salvant llargues distàncies, on la transmissió High Voltage Alternating Current (HVAC) no és adient. El Modular Multilevel Converter (MMC) és la topologia preferida per assolir altes tensions en AC i DC. En aquest treball, es desenvolupa el disseny del control d'un convertidor MMC amb cel¿les de mig pont per tal d'operar en presència de sots de tensió desequilibrats a la xarxa. Finalment, degut a que en un futur proper s'instal·laran al mar del Nord un gran nombre de parcs eòlics marins, es preveu la creació d'una gran xarxa multiterminal HVDC interconnectant diferents plantes de producció eòlica amb diferents punts de la xarxa terrestre. Per tal d'assegurar l'estabilitat de la xarxa, es proposa una metodologia de disseny del control primari de tensió de la xarxa basada en l'anàlisi freqüencial multivariable, capaç davaluar el comportament dinàmic del sistema.
Ström, Mikael. "Wind Power and Railway Feeding : Solution with three sided converter." Thesis, KTH, Elkraftteknik, 2000. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-139389.
Full textNR 20140805
Ehlers, P., CG Richards, and DV Nicolae. "Small power, three to one phase matrix converter for wind generators." International Review of Electrical Engineering, 2013. http://encore.tut.ac.za/iii/cpro/DigitalItemViewPage.external?sp=1001152.
Full textHanssen, Mari Røed. "Operation Features of a Reduced Matrix Converter for Offshore Wind Power." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for elkraftteknikk, 2011. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-12581.
Full textNicolae, DV, CG Richards, and P. Ehlers. "Small power, three to one phase matrix converter for wind generators." Tshwane University of Technology, 2010. http://encore.tut.ac.za/iii/cpro/DigitalItemViewPage.external?sp=1001164.
Full textDu, Plooy Jon-Pierre. "Development of a converter-fed reluctance synchronous generator wind turbine controller." Thesis, Stellenbosch : Stellenbosch University, 2015. http://hdl.handle.net/10019.1/97015.
Full textENGLISH ABSTRACT: The growing contribution of wind energy to utility grids has sparked interest in small-scale wind turbines and thus a growing global cumulative installed capacity. Small-scale wind turbines find use in the saving of cost of electricity or for the carbon footprint reduction of small farms and small-holdings, as well as the electrification of rural communities. A goal of any wind turbine is to produce power at as low of a cost per unit energy as possible. Thus, a generator with a high power density and high efficiency is essential. The reluctance synchronous machine (RSM) is a strong competitor in this regard. Additionally, the RSM is a robust brushless topology that has good properties of manufacturability. However, studies published on the use of RSMs as generators in wind turbines is limited. This study serves to explore the performance and controllability of an RSM as a generator in a small-scale 9:2 kW wind turbine. For maximum power capture, it is desirable to have a wind turbine vary its rotor speed. However, there is a limit to the power that the generator may produce and so techniques are employed to reduce the captured power when operating above the rated wind speed. A turbine controller is developed that employs a speed-controlled maximum power point tracking (MPPT) technique for maximum power capture and soft-stalling of the blades to reduce power capture at excessive wind speeds. The RSM is modelled along with a turbine simulation model, complete with a wind source generator, to evaluate the performance of the system. Speed-controlled MPPT is known to sacrifice torque smoothness for fast tracking performance. To mitigate these harsh effects on the drivetrain, the speed reference of the generator is filtered to provide an average response to the optimal speed reference. This is shown to reduce the frequent and excessive speed, torque, and electrical power variations though optimal performance is not possible. However, any reduction on drivetrain fatigue that will maximise operation time of the turbine is considered an important gain. The RSM proves to have qualities that are applicable to wind turbine applications with its high efficiency, good manufacturability properties, low cost, and high robustness. Its higher power density over induction machines is also favourable though power electronics are required for optimal operation of the machine.
AFRIKAANSE OPSOMMING: Die groeiende bydrae van wind energie te nut roosters het aanleiding gegee tot belangstelling in kleinskaalse wind turbines en dus 'n groeiende w^ereldwye kumulatiewe geïnstalleerde kapasiteit. Kleinskaalse wind turbines vind ook gebruik in die besparing van koste van elektrisiteit, of vir die koolstofvoetspoor vermindering van klein plase en klein-hoewes, sowel as die elektrifisering van landelike gemeenskappe. Een van die doelwitte van enige wind turbine is om krag te produseer teen so laag van 'n koste per eenheid energie as moontlik. Dus, 'n kragopwekker met 'n hoë krag digtheid en hoë doeltreffendheid is noodsaaklik. Die reluktansie sinchroonmajien (RSM) is 'n sterk mededinger in hierdie verband. Daarbenewens is die RSM 'n robuuste borsellose topologie wat goeie eienskappe van vervaardigbaarheid het. Maar studies oor die gebruik van RSMs as kragopwekkers gepubliseer in die wind turbines is beperk. Hierdie studie dien om die prestasie te ondersoek en die beheerbaarheid van 'n RSM as 'n a kragopwekker in 'n klein-skaal 9:2 kW wind turbine te verken. Vir maksimum krag vang is dit wenslik dat die wind turbine sy rotor spoed wissel. Maar daar is 'n beperking op die krag wat die kragopwekker kan produseer en daarom work tegnieke gebruik om die gevange krag te verminder wanneer daar bo die gegradeerde wind spoed gewerk word. 'n Turbine beheerder word ontwikkel wat werk om 'n spoedbeheer maksimum kragpunt dop tegniek vir maksimum krag vang en die sagtestaking van die lemme krag vang deur oormatige wind spoed te verminder. Die RSM is gemodeleer saam met 'n turbine simulasie model kompleet met 'n wind bron kragopwekker om die prestasie van die stelsel te evalueer. Spoedbeheerde maksimum kragpunt dop is bekend om wringkrag gladheid vir 'n vinnige dop prestasie te offer. Om hierdie harde gevolge op die kragoorbringstelsel te versag is die spoed verwysing van die kragopwekker gefiltreer om 'n gemiddelde reaksie op die optimale spoed verwysing te verskaf. Dit word getoon om gereelde en hoë spoed, wringkrag en elektriese krag variases te verminder al is optimale prestasie nie moontlik nie. Enige afname van aandrystelsel moegheid wat operasie tyd van die turbine maksimeer word beskou as 'n belangrike gewin. Die RSM bewys eienskappe wat van toepassing is op die turbine aansoeke na aanleiding met sy hoë doeltreffendheid, goeie vervaardigbaarheid eienskappe, lae koste end ' hoë robuustheid. Sy hoër krag digtheid oor induksiemasjien is ook gunstig al is drywingselektronika nodig vir optimale werking van die masjien.
Books on the topic "Wind converter"
Feng li fa dian zhong de dian li dian zi bian liu ji shu: Power electronic converter technology in wind power generation. Beijing Shi: Ji xie gong ye chu ban she, 2008.
Find full textBjerregaard, E. T. D. Data on existing wind energy converters in Denmark. Luxembourg: Commission of the European Communities, 1987.
Find full textTeodorescu, Remus, Marco Liserre, and Pedro Rodríguez. Grid Converters for Photovoltaic and Wind Power Systems. Chichester, UK: John Wiley & Sons, Ltd, 2011. http://dx.doi.org/10.1002/9780470667057.
Full textTeodorescu, Remus. Grid converters for photovoltaic and wind power systems. Chichester: Wiley, 2011.
Find full textJensen, S. A. Collecting of new data on existing wind energy converters. Luxembourg: Commission of the European Communities, 1986.
Find full text1937-, Palz W., ed. European wind energy technology: State of the art of wind energy converters in the European Community. Dordrecht: D. Reidel for the Commission of the European Communities, 1986.
Find full textBandy, Sandra L. Jump the wind. Washington, DC: Review and Herald Pub. Association, 1990.
Find full textBurgel, R. System design considerations on combined wind-photovoltaic multi-Kilowatt energy converters. Luxembourg: Commission of the European Communities, 1985.
Find full textHoffmann, Christian H. Zwischen allen Stühlen: Ein Deutscher wird Muslim. Bonn: Bouvier, 1995.
Find full textBook chapters on the topic "Wind converter"
Fortmann, Jens. "Generator and Converter." In Modeling of Wind Turbines with Doubly Fed Generator System, 81–111. Wiesbaden: Springer Fachmedien Wiesbaden, 2014. http://dx.doi.org/10.1007/978-3-658-06882-0_5.
Full textWagner, Hermann-Josef, and Jyotirmay Mathur. "Components of a Wind Energy Converter." In Introduction to Wind Energy Systems, 31–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-32976-0_4.
Full textWagner, Hermann-Josef, and Jyotirmay Mathur. "Components of a Wind Energy Converter." In Introduction to Wind Energy Systems, 29–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02023-0_4.
Full textWagner, Hermann-Josef, and Jyotirmay Mathur. "Components of a Wind Energy Converter." In Introduction to Wind Energy Systems, 31–44. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-68804-6_4.
Full textTawfiq, Kotb B., A. F. Abdou, and E. E. EL-Kholy. "Wind Energy System with Matrix Converter." In Renewable Energy and the Environment, 143–74. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-7287-1_5.
Full textKhan, Md Shafquat Ullah. "Multilevel Converter-based Wind Power Conversion." In Advanced Multilevel Converters and Applications in Grid Integration, 413–32. Chichester, UK: John Wiley & Sons, Ltd, 2018. http://dx.doi.org/10.1002/9781119476030.ch17.
Full textRahman, Mohammad Lutfur, Shunsuke Oka, and Yasuyuki Shirai. "HOTT Power Controller With Bi-Directional Converter (HPB)." In Wind Energy Conversion Systems, 485–99. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-2201-2_20.
Full textGlasdam, Jakob Bærholm. "Multi-level Converter Modelling and Evaluation." In Harmonics in Offshore Wind Power Plants, 89–104. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-26476-9_6.
Full textBormann, Alexander, Maximilian Ranneberg, Peter Kövesdi, Christian Gebhardt, and Stefan Skutnik. "Development of a Three-Line Ground-Actuated Airborne Wind Energy Converter." In Airborne Wind Energy, 427–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-39965-7_24.
Full textMa, Ke. "Criteria and Tools for Evaluating Wind Power Converter." In Research Topics in Wind Energy, 31–43. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-21248-7_3.
Full textConference papers on the topic "Wind converter"
Perez-Collazo, Carlos, Deborah Greaves, and Gregorio Iglesias. "Proof of Concept of a Novel Hybrid Wind-Wave Energy Converter." In ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/omae2018-78150.
Full textTucker, A., J. M. Pemberton, D. T. Swift-Hook, J. M. Swift-Hook, and J. W. Phillips. "Laminated Reinforced Concrete Technology for the Sperboytm Wave Energy Converter." In Marine Renewable & Offshore Wind Energy. RINA, 2010. http://dx.doi.org/10.3940/rina.mre.2010.13.
Full textHenry, A., K. Doherty, L. Cameron, R. Doherty, and T. Whittaker. "Advances in the Design of the Oyster Wave Energy Converter." In Marine Renewable & Offshore Wind Energy. RINA, 2010. http://dx.doi.org/10.3940/rina.mre.2010.14.
Full textABBOTOY, M., and R. MENASSA. "An oscillatory wind energy converter." In 24th Aerospace Sciences Meeting. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1986. http://dx.doi.org/10.2514/6.1986-71.
Full textZhu, Pengcheng, Yunfeng Liu, Roesner Robert, and Xin Hao. "Offshore wind converter reliability evaluation." In ECCE Asia (ICPE 2011- ECCE Asia). IEEE, 2011. http://dx.doi.org/10.1109/icpe.2011.5944655.
Full textR. F. B. de Souza, Victor, Luciano S. Barros, and Flavio B. Costa. "Performance Comparison of Converter Topologies for Double Fed Induction Generator-based Wind Energy Conversion Systems." In Congresso Brasileiro de Automática - 2020. sbabra, 2020. http://dx.doi.org/10.48011/asba.v2i1.1512.
Full textTaufik, Taufik, Jameson Thornton, and Dale Dolan. "Piezoelectric Converter for Wind Energy Harvesting." In 2012 Ninth International Conference on Information Technology: New Generations (ITNG). IEEE, 2012. http://dx.doi.org/10.1109/itng.2012.38.
Full textMolenaar, David-P., O. H. Bosgra, and M. J. Hoeijmakers. "Identification of Synchronous Generator Transfer Functions From Standstill Test Data." In ASME 2002 Wind Energy Symposium. ASMEDC, 2002. http://dx.doi.org/10.1115/wind2002-55.
Full textBaygildina, Elvira, Pasi Peltoniemi, Olli Pyrhonen, Ke Ma, and Frede Blaabjerg. "Thermal loading of wind power converter considering dynamics of wind speed." In IECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics Society. IEEE, 2013. http://dx.doi.org/10.1109/iecon.2013.6699331.
Full textIvanovic, Zeljko, Branko Dokic, Branko Blanusa, and Mladen Knezic. "Boost converter efficiency optimization in wind turbine." In 2010 14th International Power Electronics and Motion Control Conference (EPE/PEMC 2010). IEEE, 2010. http://dx.doi.org/10.1109/epepemc.2010.5606839.
Full textReports on the topic "Wind converter"
Darren Hammell and Mark Holveck. Reliable, Efficient and Cost-Effective Electric Power Converter for Small Wind Turbines Based on AC-link Technology. Office of Scientific and Technical Information (OSTI), August 2006. http://dx.doi.org/10.2172/889356.
Full textErickson, R., S. Angkititrakul, and K. Almazeedi. New Family of Multilevel Matrix Converters for Wind Power Applications: Final Report, July 2002 - March 2006. Office of Scientific and Technical Information (OSTI), December 2006. http://dx.doi.org/10.2172/897520.
Full textR. Lynette & Associates and Pacific Northwest Laboratory staff exchange: Analysis and evaluation of the application of the Pulse Amplitude Synthesis and Control (PASC) converter in a wind power plant. Office of Scientific and Technical Information (OSTI), December 1998. http://dx.doi.org/10.2172/565644.
Full textINFLUENCE OF EXECUTION TOLERANCES FOR FRICTION CONNECTIONS IN CIRCULAR AND POLYGONAL TOWERS FOR WIND CONVERTERS. The Hong Kong Institute of Steel Construction, December 2017. http://dx.doi.org/10.18057/ijasc.2017.13.4.2.
Full text