To see the other types of publications on this topic, follow the link: Wind converter.

Dissertations / Theses on the topic 'Wind converter'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Wind converter.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Winberg, Helena, and Micaela Tiestö. "Theoretical analysis of the performance of a small wind energy converter." Thesis, University of Gävle, University of Gävle, Ämnesavdelningen för energi- och maskinteknik, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-4939.

Full text
Abstract:

Abstract

This thesis has been done in Barcelona, Spain, in cooperation with the University of Gävle (HiG) and the Universitat Politècnica de Catalunya (UPC). At UPC there is a project carried out where the goal is to analyze the characteristics and performance of the wind turbine IT-100, with an intention to optimize it. This is carried out by assignment of Engineers Without Borders and Practical Action. The purpose of the thesis has been to present what power, value of tension and current the turbine will produce in different wind velocities.

 

The IT-100 is built to generate electricity to the population in the countryside in, among other countries, Peru. The energy the turbine captures from the wind will be used to charge vehicle batteries that are used in the households as a source of electricity. This is an effective, cheap and environmental-friendly way of supplying households with electricity.

 

The idea of using the energy in the wind has been known for thousands of years. It started with simple windmills for grinding grain and later more complicated machines like wind turbines were created. Wind power is one of the worlds cleanest sources of energy with as good as no emissions at all while in running.

 

The result of the work with this thesis work is an Excel file where the, by the purpose requested, parameters are presented in relation to different wind velocities. With some conditions set from the start, some known values of reference and the rotor blades rotational speed as a key variable, these parameters were possible to calculate.

 

During the work, the project came upon some difficulties such as; not enough information about the wind turbine, too little previous knowledge among the students and trouble with the Spanish language. However, on the whole the project has been successful and a good learning experience.

APA, Harvard, Vancouver, ISO, and other styles
2

Abu-hamdeh, Muthanna S. "Modeling of Bi-directional Converter for Wind Power Generation." The Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=osu1259684130.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Trilla, Romero Lluís. "Power converter optimal control for wind energy conversion systems." Doctoral thesis, Universitat Politècnica de Catalunya, 2013. http://hdl.handle.net/10803/134602.

Full text
Abstract:
L'energia eòlica ha incrementat la seva presència a molts països i s'espera que tingui encara un pes més gran en la generació elèctrica amb la implantació de la tecnologia eòlica marina. En aquest context el desenvolupament de models dels Sistemes de Generació per Turbina de Vent (SGTV) precisos és important pels operadors de xarxa per tal d'avaluar-ne el comportament. Els codis de xarxa ofereixen un seguit de normes per validar models amb dades obtingudes de proves de camp. A la primera part d'aquesta tesi un model de SGTV amb màquina d'inducció doblement alimentada (DFIG) és validat d'acord amb les normatives espanyola i alemanya. Avui dia molts parc eòlics utilitzen DFIG i, en conseqüència, les dades de camp disponibles son per aquesta tecnologia. Per a la indústria eòlica marina un avanç prometedor son els SGTV amb generadors síncrons d'imants permanents (PMSG). Per aquesta raó la segona part d'aquesta tesi es centra en SGTV basats en PMSG amb convertidor back-to-back de plena potència. Aquest convertidor es pot dividir en dues parts: el costat de xarxa (GSC) que interactua amb la xarxa elèctrica i el costat de màquina (MSC) que controla el generador. En general, el sistema de control del convertidor recau en els tradicionals controladors PI i, en ocasions, incorpora desacoblaments per reduir les influencies creuades entre les variables. Aquest controlador pot ser sintonitzat i implementat fàcilment donat que la seva estructura és simple, però, no presenta una resposta ideal donat que no aprofita tots els graus de llibertat disponibles en el sistema. És important desenvolupar controladors fiables que puguin oferir una resposta previsible del sistema i proveir robustesa i estabilitat. En especial per zones on la presència eòlica és gran i per parcs eòlics connectats a xarxes dèbils. En aquest treball es proposa un sistema de control pel convertidor basat en teoria de control H-infinit i en controladors Lineals amb Paràmetres Variants (LPV). La teoria de control òptim proveeix un marc de treball on més opcions es poden tenir en consideració a l'hora de dissenyar el controlador. En concret la teoria de control H-inifinit permet crear controladors multivariables per tal d'obtenir una òptima resposta del sistema, proveir certa robustesa i assegurar l'estabilitat. Amb aquesta tècnica durant la síntesi del controlador el pitjor cas de senyals de pertorbació és contemplat, d'aquesta manera el controlador resultant robustifica l'operació del sistema. Es proposa aquest control per al GSC posant especial èmfasi en obtenir un control de baixa complexitat que mantingui els beneficis d'aplicar la teoria de control òptim i faciliti la seva implementació en computadors industrials. Pel MSC es proposa una estratègia diferent basada en control LPV donat que el punt d'operació del generador canvia constantment. El sistema de control basat en LPV és capaç d'adaptar-se dinàmicament al punt d'operació del sistema, així s'obté en tot moment la resposta definida durant el procés de disseny. Amb aquesta tècnica l'estabilitat del sistema sobre tot el rang d'operació queda garantida i, a més, s'obté una resposta predictible i uniforme. El controlador està dissenyat per tenir una estructura simple, com a resultat s'obté un control que no és computacionalment exigent i es proveeix una solució que pot ser utilitzada amb equips industrials. S'utilitza una bancada de proves que inclou el PMSG i el convertidor back-to-back per tal d'avaluar experimentalment l'estratègia de control dissenyada al llarg d'aquest treball. L'enfoc orientat a la implementació dels controls proposats facilita el seu ús amb el processador de senyals digitals inclòs a la placa de control de la bancada. Els experiments realitzats verifiquen en un ambient realista els beneficis teòrics i els resultats de simulació obtinguts prèviament. Aquestes proves han ajudat a valorar el funcionament dels controls en un sistema discret i la seva tolerància al soroll de senyals i mesures
Wind energy has increased its presence in many countries and it is expected to have even a higher weight in the electrical generation share with the implantation of offshore wind farms. Consequently, the wind energy industry has to take greater responsibility towards the integration and stability of the power grid. In this sense, there are proposed in the present work control systems that aim to improve the response and robustness of the wind energy conversion systems without increasing their complexity in order to facilitate their applicability. In the grid-side converter it is proposed to implement an optimal controller with its design based on H-infinity control theory in order to ensure the stability, obtain an optimal response of the system and also provide robustness. In the machine-side converter the use of a Linear Parameter-Varying controller is selected, this choice provides a controller that dynamically adapts itself to the operating point of the system, in this way the response obtained is always the desired one, the one defined during the design process. Preliminary analysis of the controllers are performed using models validated with field test data obtained from operational wind turbines, the validation process followed the set of rules included in the official regulations of the electric sector or grid codes. In the last stage an experimental test bench has been developed in order to test and evaluate the proposed controllers and verify its correct performance.
APA, Harvard, Vancouver, ISO, and other styles
4

Zhou, Yao. "High voltage DC/DC converter for offshore wind application." Thesis, University of Edinburgh, 2015. http://hdl.handle.net/1842/18749.

Full text
Abstract:
With the increasing interest in offshore wind power, the related technologies, including HVDC networks, are gaining similar levels of attention. For large scale wind farms far from shore, high voltage DC transmission can provide several advantages over traditional high voltage AC transmission. This thesis focuses on DC/DC converters, a core part of the HVDC network, especially for use in the high voltage, high power and offshore wind environment. The thesis examines a wide range of possible DC/DC converter topologies for the application. Different topologies are compared and evaluated in detail for use in a high power situation. Based on these results, three DC/DC converter topologies are selected for more detailed modelling. The simulation processes and results are presented in the thesis, which reveals the limitations and behaviour of the topologies when they are used at the MW level. In addition, the high power semiconductor switching devices are discussed and evaluated for each topology. To assess the suitability of the DC/DC converter topologies in the offshore wind application, the selected converter topologies are also analysed and modelled combined with a PMSG wind turbine. Finally, a down-scaled DC/DC converter prototype is built to verify the analysis and simulation results.
APA, Harvard, Vancouver, ISO, and other styles
5

Prieto, Araujo Eduardo. "Power converter control for offshore wind energy generation and transmission." Doctoral thesis, Universitat Politècnica de Catalunya, 2016. http://hdl.handle.net/10803/396110.

Full text
Abstract:
This thesis discusses the control of different power converters that will have a key role in future offshore wind power systems, enabling the integration of the power generated by the wind turbines into the mainland grid. First, an overview of the evolution of wind turbines is presented, from the first prototypes to the latest topologies in use. Then, a new decentralized control strategy of a triple three-phase permanent magnet synchronous generator, a machine topology specifically designed for offshore wind, is presented. The proposed controller is tested on a wind turbine emulator with a scaled down 30 kW nine-phase generator. It has been suggested that future wind power plants could use medium voltage DC collection networks. These would require DC/DC converters to adapt the voltages between the turbine output and the DC collection grid. Based on this idea, the control design of a DC/DC Dual Bridge Series Resonant Converter (DBSRC) unit is developed and tested in a scaled 50 kW converter prototype. The availability of significant energy resources far from the coast favors the idea of creating offshore wind farms. This poses important technical and economical challenges. To this end, Voltage Source Converter-based High Voltage Direct Current (VSC-HVDC) technology enables high power transmission across distances where High Voltage Alternating Current (HVAC) is impractical. The Modular Multilevel Converter (MMC) is the preferred topology to reach high AC and DC voltages. In this work, the control design of a half-bridge based MMC to enable the converter operation under both normal and unbalanced AC voltage conditions, is addressed. Finally, considering that many offshore wind power plants will be installed in the North Sea in the coming years, a multi-terminal HVDC grid interconnecting several production plants and different points of the mainland grid is envisaged. To deal with DC multi-terminal grid voltage stability, a methodology to address the grid primary voltage control design is proposed based on multivariable frequency methods which are able to evaluate the dynamic behavior of the system.
La present tesi tracta sobre el control dels diferents convertidors que tindran un paper essencial en els futurs sistemes eòlics marins, permetent la integració de la potència generada pels aerogeneradors a la xarxa terrestre. En primer lloc, es presenta un estudi sobre levolució dels aerogeneradors, des dels primers conceptes a les opcions en ús més modernes. A continuació, es detalla una estratègia de control descentralitzada d'una màquina síncrona d'imants permanents de triple estator trifàsic, una topologia específicament dissenyada per eòlica marina. La proposta de control es valida per mitjà d'un emulador de turbina eòlica juntament amb una màquina de nou fases a escala de 30 kW. En els darrers anys s'ha contemplat la possibilitat de que els futurs parcs eòlics emprin corrent continu dins la seva xarxa interna. Per tal de construir aquesta xarxa resulten necessaris convertidors d'adaptació DC/DC entre la sortida de la turbina i la xarxa interna del parc en corrent continu. En base a aquesta proposta, es realitza el disseny del control d'un convertidor DC/DC Dual Bridge Series Resonant Converter (DBSRC). Per validar els resultats obtinguts, es desenvolupa un prototip del convertidor a escala de 50 kW. L'alta disponibilitat de recursos eòlics en indrets allunyats de la costa, afavoreix la creació de nous parcs eòlics marins, fet que presenta reptes econòmics i tècnics importants. Amb aquesta finalitat, la tecnologia Voltage Source Converter High Voltage Direct Current (VSC-HVDC) permet realitzar la transmissió de potència salvant llargues distàncies, on la transmissió High Voltage Alternating Current (HVAC) no és adient. El Modular Multilevel Converter (MMC) és la topologia preferida per assolir altes tensions en AC i DC. En aquest treball, es desenvolupa el disseny del control d'un convertidor MMC amb cel¿les de mig pont per tal d'operar en presència de sots de tensió desequilibrats a la xarxa. Finalment, degut a que en un futur proper s'instal·laran al mar del Nord un gran nombre de parcs eòlics marins, es preveu la creació d'una gran xarxa multiterminal HVDC interconnectant diferents plantes de producció eòlica amb diferents punts de la xarxa terrestre. Per tal d'assegurar l'estabilitat de la xarxa, es proposa una metodologia de disseny del control primari de tensió de la xarxa basada en l'anàlisi freqüencial multivariable, capaç davaluar el comportament dinàmic del sistema.
APA, Harvard, Vancouver, ISO, and other styles
6

Ström, Mikael. "Wind Power and Railway Feeding : Solution with three sided converter." Thesis, KTH, Elkraftteknik, 2000. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-139389.

Full text
Abstract:
In this thesis it is investigated if it would be technically and economicallypossible to combine wind power and railway feeding. As a case studyBlekinge Kustbana (BKB), a railway section in the south of Sweden ischosen. The thesis includes an extensive power and energy flow analysison the railway section where large-scale wind power production is directlyconnected.When the work of this thesis started it was first of all a three sided convertersolution that should be studied. Where three-sided converter consists of aPWM-converter with the wind power connected to the DC-Iink. But duringthe work it was concluded that this solution is not the best solution for thecase. A better solution is the three-sided transformer, were the wind poweris connected through a third winding to the railway transformer on the 50Hzside.Also different railway feeding systems and their influence on how the windpower can be used are investigated.From the conclusions it can be mentioned that it would be profitable todirectly connect 4.5MW wind power to BKB.

NR 20140805

APA, Harvard, Vancouver, ISO, and other styles
7

Ehlers, P., CG Richards, and DV Nicolae. "Small power, three to one phase matrix converter for wind generators." International Review of Electrical Engineering, 2013. http://encore.tut.ac.za/iii/cpro/DigitalItemViewPage.external?sp=1001152.

Full text
Abstract:
This paper investigates the concept of an isolated small wind power system based on a three-phase generator and a direct ac-to-ac conversion. The ac-to-ac conversion is performed by a matrix converter and thus removing the need of a large smoothing capacitor in the typical rectifier-inverter solution. The paper is briefly presenting the operation for a particular topology of a three-phase to single-phase matrix converter. The control of this conversion ensures system’s frequency and voltage stability. Simulation results and practical results are presented to validate the frequency and voltage regulation of the isolated power system.
APA, Harvard, Vancouver, ISO, and other styles
8

Hanssen, Mari Røed. "Operation Features of a Reduced Matrix Converter for Offshore Wind Power." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for elkraftteknikk, 2011. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-12581.

Full text
Abstract:
When a wind park is sited offshore, compact, lightweight and reliable components are important requirements. In this Master's thesis a wind energy conversion system has been proposed, where the objective is to meet the requirements of an offshore environment. The system consists of a permanent magnet generator, a reduced matrix converter, a high frequency transformer and a full-bridge converter. It is the reduced matrix converter which is the main focus of the thesis. The reduced matrix converter (RMC) provides direct AC-AC conversion without the need of a bulky DC link capacitor, it is thus a compact solution. It is built with six bi-directional switches. Each switch consists of two reverse blocking IGBTs in antiparallel. The reverse blocking IGBT is different from the conventional IGBT because it blocks voltage of both polarities.Due to the direct AC-AC conversion of the RMC it is necessary to implement a special protection scheme for the circuit. The scheme provides reliable operation of the RMC so the switches are not damaged. This is achieved by the introduction of a clamp circuit. The clamp circuit has been studied during normal operation and the operation during faults has been described. The entire WECS has been implemented in the simulation program PSIM to simulate behavior of the clamp circuit during normal operation and to calculate switching and clamp circuit losses. Both losses are related to the RMC, and are important for the study of the overall energy efficiency of the converter. Total losses have been compared for two different modulation techniques, these are carrier based modulation and space vector modulation. The simulation results indicated that space vector modulation is the most energy efficient solution for the system.
APA, Harvard, Vancouver, ISO, and other styles
9

Nicolae, DV, CG Richards, and P. Ehlers. "Small power, three to one phase matrix converter for wind generators." Tshwane University of Technology, 2010. http://encore.tut.ac.za/iii/cpro/DigitalItemViewPage.external?sp=1001164.

Full text
Abstract:
Abstract- This paper will investigate the use of a three-to-one Matrix converter to synchronize the electrical energy and condition the output of the wind generator. A Matrix converter is a direct ACAC solution, removing the need for large smoothing capacitors in a typical rectifier/inverter solution. This paper will briefly review the Matrix converter operational theory. A simulation and the practical results of a three-to-one phase matrix converter for varying input frequencies are also presented. The conclusion shows that the proposal is a viable solution for small power wind harvesting.
APA, Harvard, Vancouver, ISO, and other styles
10

Du, Plooy Jon-Pierre. "Development of a converter-fed reluctance synchronous generator wind turbine controller." Thesis, Stellenbosch : Stellenbosch University, 2015. http://hdl.handle.net/10019.1/97015.

Full text
Abstract:
Thesis (MEng)--Stellenbosch University, 2015.
ENGLISH ABSTRACT: The growing contribution of wind energy to utility grids has sparked interest in small-scale wind turbines and thus a growing global cumulative installed capacity. Small-scale wind turbines find use in the saving of cost of electricity or for the carbon footprint reduction of small farms and small-holdings, as well as the electrification of rural communities. A goal of any wind turbine is to produce power at as low of a cost per unit energy as possible. Thus, a generator with a high power density and high efficiency is essential. The reluctance synchronous machine (RSM) is a strong competitor in this regard. Additionally, the RSM is a robust brushless topology that has good properties of manufacturability. However, studies published on the use of RSMs as generators in wind turbines is limited. This study serves to explore the performance and controllability of an RSM as a generator in a small-scale 9:2 kW wind turbine. For maximum power capture, it is desirable to have a wind turbine vary its rotor speed. However, there is a limit to the power that the generator may produce and so techniques are employed to reduce the captured power when operating above the rated wind speed. A turbine controller is developed that employs a speed-controlled maximum power point tracking (MPPT) technique for maximum power capture and soft-stalling of the blades to reduce power capture at excessive wind speeds. The RSM is modelled along with a turbine simulation model, complete with a wind source generator, to evaluate the performance of the system. Speed-controlled MPPT is known to sacrifice torque smoothness for fast tracking performance. To mitigate these harsh effects on the drivetrain, the speed reference of the generator is filtered to provide an average response to the optimal speed reference. This is shown to reduce the frequent and excessive speed, torque, and electrical power variations though optimal performance is not possible. However, any reduction on drivetrain fatigue that will maximise operation time of the turbine is considered an important gain. The RSM proves to have qualities that are applicable to wind turbine applications with its high efficiency, good manufacturability properties, low cost, and high robustness. Its higher power density over induction machines is also favourable though power electronics are required for optimal operation of the machine.
AFRIKAANSE OPSOMMING: Die groeiende bydrae van wind energie te nut roosters het aanleiding gegee tot belangstelling in kleinskaalse wind turbines en dus 'n groeiende w^ereldwye kumulatiewe geïnstalleerde kapasiteit. Kleinskaalse wind turbines vind ook gebruik in die besparing van koste van elektrisiteit, of vir die koolstofvoetspoor vermindering van klein plase en klein-hoewes, sowel as die elektrifisering van landelike gemeenskappe. Een van die doelwitte van enige wind turbine is om krag te produseer teen so laag van 'n koste per eenheid energie as moontlik. Dus, 'n kragopwekker met 'n hoë krag digtheid en hoë doeltreffendheid is noodsaaklik. Die reluktansie sinchroonmajien (RSM) is 'n sterk mededinger in hierdie verband. Daarbenewens is die RSM 'n robuuste borsellose topologie wat goeie eienskappe van vervaardigbaarheid het. Maar studies oor die gebruik van RSMs as kragopwekkers gepubliseer in die wind turbines is beperk. Hierdie studie dien om die prestasie te ondersoek en die beheerbaarheid van 'n RSM as 'n a kragopwekker in 'n klein-skaal 9:2 kW wind turbine te verken. Vir maksimum krag vang is dit wenslik dat die wind turbine sy rotor spoed wissel. Maar daar is 'n beperking op die krag wat die kragopwekker kan produseer en daarom work tegnieke gebruik om die gevange krag te verminder wanneer daar bo die gegradeerde wind spoed gewerk word. 'n Turbine beheerder word ontwikkel wat werk om 'n spoedbeheer maksimum kragpunt dop tegniek vir maksimum krag vang en die sagtestaking van die lemme krag vang deur oormatige wind spoed te verminder. Die RSM is gemodeleer saam met 'n turbine simulasie model kompleet met 'n wind bron kragopwekker om die prestasie van die stelsel te evalueer. Spoedbeheerde maksimum kragpunt dop is bekend om wringkrag gladheid vir 'n vinnige dop prestasie te offer. Om hierdie harde gevolge op die kragoorbringstelsel te versag is die spoed verwysing van die kragopwekker gefiltreer om 'n gemiddelde reaksie op die optimale spoed verwysing te verskaf. Dit word getoon om gereelde en hoë spoed, wringkrag en elektriese krag variases te verminder al is optimale prestasie nie moontlik nie. Enige afname van aandrystelsel moegheid wat operasie tyd van die turbine maksimeer word beskou as 'n belangrike gewin. Die RSM bewys eienskappe wat van toepassing is op die turbine aansoeke na aanleiding met sy hoë doeltreffendheid, goeie vervaardigbaarheid eienskappe, lae koste end ' hoë robuustheid. Sy hoër krag digtheid oor induksiemasjien is ook gunstig al is drywingselektronika nodig vir optimale werking van die masjien.
APA, Harvard, Vancouver, ISO, and other styles
11

Smith, Christopher John. "Holistic physics-of-failure approach to wind turbine power converter reliability." Thesis, Durham University, 2018. http://etheses.dur.ac.uk/12567/.

Full text
Abstract:
As the cost of wind energy becomes of increasing importance to the global surge of clean and green energy sources, the reliability-critical power converter is a target for vast improvements in availability through dedicated research. To this end, this thesis concentrates on providing a new holistic approach to converter reliability research to facilitate reliability increasing, cost reducing innovations unique to the wind industry. This holistic approach combines both computational and physical experimentation to provide a test bench for detailed reliability analysis of the converter power modules under the unique operating conditions of the wind turbine. The computational models include a detailed permanent magnet synchronous generator wind turbine with a power loss and thermal model representing the machine side converter power module response to varying wind turbine conditions. The supporting experimental test rig consists of an inexpensive, precise and extremely fast temperature measurement approach using a PbSe photoconductive infra-red sensor unique in the wind turbine reliability literature. This is used to measure spot temperatures on a modified power module to determine the junction temperature swings experienced during current cycling. A number of key conclusions have been made from this holistic approach. -Physics-of-failure analysis (and indeed any wind turbine power converter based reliability analysis) requires realistic wind speed data as the temporal changes in wind speed have a significant impact on the thermal loading on the devices. -The use of drive train modelling showed that the current throughput of the power converter is decoupled from the incoming wind speed due to drive train dynamics and control. Therefore, the power converter loading cannot be directly derived from the wind speed input without this modelling. -The minimum wind speed data frequency required for sufficiently accurate temperature profiles was determined, and the use of SCADA data for physics-of failure reliability studies was subsequently shown to be entirely inadequate. -The experimental emulation of the power converter validated a number of the aspects of the simulation work including the increase in temperature with wind speed and the detectability of temperature variations due to the current's fundamental frequency. Most importantly, this holistic approach provides an ideal test bench for optimising power converter designs for wind turbine, or for other industries with stochastic loading, conditions whilst maintaining or exceeding present reliability levels to reduce wind turbine's cost of energy, and therefore, society.
APA, Harvard, Vancouver, ISO, and other styles
12

Kluger, Jocelyn Maxine. "Synergistic design of a combined floating wind turbine - wave energy converter." Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/111692.

Full text
Abstract:
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2017.
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 241-251).
Offshore energy machines have great potential: higher capacity factors, more available space, and lower visual impacts than onshore machines. This thesis investigates how combining a wave energy converter (WEC) with a floating wind turbine (FWT) may produce offshore renewable energy cost savings. Attaching the WEC to the FWT greatly reduces the WEC's steel frame, mooring lines, electric transmission lines, and siting/permitting costs, which may comprise 56% of a standalone WEC's cost. A 5 MW FWT currently requires up to 1700 tons of platform steel and 5700 tons of ballast concrete for stabilization in the ocean. This required material may be reduced if the WEC stabilizes the FWT. This thesis addresses several challenges to designing a combined FWT-WEC. First, parameter sweeps for optimizing ocean machine performance are limited by high dimensionalities and nonlinearities, including power takeoff control and wave viscous forcing, which normally require computationally expensive time-domain simulations. This thesis develops a statistical linearization approach to rapidly compute machine dynamics statistics while accounting for nonlinearities in the frequency domain. It is verified that the statistical linearization method may capture significant dynamics effects that are neglected by the traditional Taylor series linearization approach, while computing the results approximately 100 times faster than time domain simulations. Using Morison's equation for wave viscosity and quasi-steady blade-element/momentum theory for rotor aerodynamics, we find that viscous effects and nonlinear aerodynamics may increase the FWT motion and tower stress by up to 15% in some wind-sea states compared the the Taylor series linearized system. Second, the WEC must stabilize rather than destabilize the FWT. This thesis investigates the dynamics statistics of dierent FWT-WEC configurations using a long wavelength, structurally coupled model. It is shown that simultaneous targeted energy transfer from both the FWT and waves to the WEC when the WEC and FWT are linked by a tuned spring is unlikely. That being said, this thesis considers heave-mode oscillating water column WEC's that are linked to the FWT platform by 4-bar linkages, so that the FWT and WEC's are uncoupled for small heave motions and rigidly coupled in all other degrees of freedom. It is shown that this configuration allows the WEC to move with a large amplitude in its energy harvesting degree of freedom, and therefore harvest a significant amount of power without significantly increasing the FWT motion in the same direction. In the rigidly-connected modes, the WEC inertial resistance to motion must be greater than the wave forcing, as these properties are transmitted to the FWT. Third, the WEC requires power robustness in dierent sea states. Typical WEC's require control schemes to maintain good power performance when the ocean wave dominant frequency differs from the WEC resonant frequency. This thesis introduces a nonlinearity into the WEC design that passively increases power adaptability in dierent sea states. While the optimized nonlinear WEC requires 57% more steel than the optimized linear WEC, the nonlinear WEC produces 72% more power on average, resulting in a 3% lower levelized cost of energy. Further optimization of the nonlinear WEC may find improved performance. This thesis determines that attaching a single linear hinged floating spar oscillating water column to the FWT reduces the levelized cost of energy from $0.31/kWh for the standalone system to $0.27/kWh (13%) without changing stress on the FWT tower. Attaching a single nonlinear hinged floating spar oscillating water column to the FWT reduces the levelized cost of energy to $0.26/kWh (16%) and reduces the lifetime equivalent fatigue stress on the FWT tower from 32.4 MPa to 31 MPa (5%). A 6-unit array of the nonlinear WEC's encircling the FWT platform may generate an average of 400 kW while reducing the FWT tower stress by over 50%. In wave tank experiments, the response statistics of four dierent combined FWT-WEC configurations are measured, verifying the FWT-WEC dynamics model.
by Jocelyn Maxine Kluger.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
13

Garces, Ruiz Alejandro. "DESIGN, OPERATION AND CONTROL OF SERIES-CONNECTED POWER CONVERTERS FOR OFFSHORE WIND PARKS." Doctoral thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for elkraftteknikk, 2012. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-17001.

Full text
Abstract:
OFFSHORE wind farms need to develop technologies that fulfill three main objectives:Efficiency, power density and reliability. The purpose of this thesisis to study an HVDC transmission system based on series connection of the turbineswhich theoretically meet these three objectives. A new topology of matrixconverter operated at high frequency is proposed. This converter is studied usingdifferent modulation algorithms. Simulation and experimental results demonstratedthat the converter can be operated as a current source converter with highefficiency. An optimal control based on a linear quadratic regulator is proposedto control the matrix converter as well as the converter placed on shore. Resultsdemonstrated the high performance of this type of control and its simplicity forimplementation. An stationary state study based on non-linear programming andMontecarlo simulation was carried out to determine the performance of the conceptfor long-term operation. Series connection is an efficient technology if and only ifthe differences in the effective wind velocity are small. This aspect limits the numberof wind turbines that can be connected in series, since a numerous number ofturbines will lead to high covariances in the distribution of the wind. A complementarystudy about active filter and reactive power compensation was carried outusing an optimization-based algorithm.
APA, Harvard, Vancouver, ISO, and other styles
14

Perez-Collazo, Carlos. "Evaluation of the WEC sub-system of a hybrid wind-wave energy converter." Thesis, University of Plymouth, 2017. http://hdl.handle.net/10026.1/9485.

Full text
Abstract:
The sustainable development of the offshore wind and wave energy sectors requires optimising the exploitation of the resources, and it is in relation to this and the shared challenge for both industries to reduce their costs that the option of integrating offshore wind and wave energy arose during the past decade. The relevant aspects of this integration are addressed in this work, and in particular the evaluation of the Wave Energy Converter (WEC) sub-system of a hybrid wind-wave energy converter: the state of the art of combined technologies; the definition of a novel hybrid prototype, based on a preliminary feasibility analysis of a conceptual proposal; and the evaluation of a simplified version of this prototype by means of physical and numerical modelling as a mean to set the reference and define new tools and methods for future evaluation and optimisation of the prototype. Because of the novelty of combined wave and offshore wind systems, fundamental knowledge was lacking as, for example a comprehensive review and classification, which was published as a journal paper framed in the present work. In particular, the core of this PhD thesis deals with the WEC sub-system of a hybrid device that integrates an Oscillating Water Column (OWC) device into the typical monopile substructure of an offshore wind turbine. A new prototype of the hybrid energy converter has been proposed, and a patent application was filled. Furthermore, an experimental set-up was designed, built and tested at a wave flume. On the basis of this experimental campaign the performance of the device is analysed. Finally, a full 3D-numerical mirror of the experimental set-up, including the hybrid energy converter, is defined and validated, and the flume enclosure effects studied for regular waves.
APA, Harvard, Vancouver, ISO, and other styles
15

Lei, Ting. "Doubly-fed induction generator wind turbine modelling, control and reliability." Thesis, University of Manchester, 2014. https://www.research.manchester.ac.uk/portal/en/theses/doublyfed-induction-generator-wind-turbine-modelling-control-and-reliability(2ceb051a-a6fb-43e6-be40-a5023dae4bea).html.

Full text
Abstract:
The trend of future wind farms moving further offshore requires much higher reliability for each wind turbine in order to reduce maintenance cost. The drive-train system and power electronic converter system have been identified as critical sub-assemblies that are subject to higher failure rates than the other sub-assemblies in a wind turbine. Modern condition monitoring techniques may help schedule the maintenance and reduce downtime. However, when it comes to offshore wind turbines, it is more crucial to reduce the failure rates (or reduce the stresses) for the wind turbines during operation since the harsh weather and a frequently inaccessible environment will dramatically reduce their availability once a failure happens. This research examines the mechanical, electrical and thermal stresses in the sub-assemblies of a doubly-fed induction generator (DFIG) wind turbine and how to reduce them by improved control strategies. The DFIG control system (the rotor-side and the grid-side converter control) as well as the wind turbine control system are well established. The interactions of these control systems have been investigated. This research examines several further strategies to reduce the mechanical and electrical stresses. The control system's coordination with the protection schemes (crowbar and dc-chopper) during a grid fault is presented as well. An electro-thermal model of the power converter has been developed to integrate with the DFIG wind turbine model, for the evaluation of the thermal stresses under different operating states and control schemes. The main contributions of this thesis are twofold. A first contribution is made by providing all the control loops with well-tuned controllers in a more integrated methodology. The dynamics of these controllers are determined from their mathematical models to minimize the interference between different control-loops and also to reduce the electrical transients. This thesis proposes a coordination strategy for the damping control, pitch control and crowbar protection which significantly reduces the mechanical oscillations. On the other hand, an integrated model of the wind turbine and converter electro-thermal system is established that can illustrate the performance integration with different control strategies.
APA, Harvard, Vancouver, ISO, and other styles
16

Meier, Stephan. "Novel voltage source converter based HVDC transmission system for offshore wind farms." Licentiate thesis, KTH, School of Electrical Engineering (EES), 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-568.

Full text
Abstract:

Offshore wind farms have recently emerged as promising renewable energy sources. For increasing distances between offshore generation and onshore distribution grid, HVDC transmission systems based on voltage source converters can be a feasible and competitive solution. This thesis presents a comprehensive evaluation of a novel integrated wind farm topology that includes the generator drive system, the turbine interconnection and the HVDC transmission.

In the proposed concept, every wind turbine is connected to a single-phase medium-frequency collection grid via a distribution transformer and a cycloconverter, which allows the wind turbines to operate at variable speed. The collection grid is connected to an HVDC cable via a transmission transformer and a single-phase voltage source converter. This thesis evaluates in detail the principle of operation, which is also verified with system simulations in PSCAD.

The proposed concept promises several potential benefits. Converter switching losses and stress on the semiconductors for example can be considerably reduced by applying a soft-switched commutation scheme in all points of operation. Single-phase medium-frequency transformers have comparably low losses and their compact size and low weight implies an important benefit in an offshore environment. In addition, the voltage source converter is considerably simplified by the reduction to one phase leg, which implies a substantial cost saving.

Several technical challenges are identified and critically evaluated in order to guarantee the feasibility of the proposed concept. Especially the design of the medium-frequency collection grid is crucial as unwanted system resonances can cause dangerous overvoltages. Most of the technical challenges concern the specific characteristics of the proposed concept. The insulation of the single-phase medium-frequency transformers for example needs to withstand the high voltage derivatives. This thesis contains also considerations regarding the dimensioning and optimization of different system components.

A survey of different transmission systems for the grid connection of wind farms shows the potential of the proposed concept, which addresses several problems associated with electrical systems of wind farms. Both the requirements for variable-speed operation of the wind turbines and an interface for HVDC transmission are fulfilled in a cost-effective way. Compared to conventional voltage source converter based HVDC transmission systems, the initial costs are reduced and the expected annual energy production is increased. In addition, the proposed voltage source converter based HVDC transmission system can fully comply with recent requirements regarding the grid connection of wind farms.

APA, Harvard, Vancouver, ISO, and other styles
17

Wyllie, Peter Bruce. "Electrothermal modelling for doubly fed induction generator converter reliability in wind power." Thesis, Durham University, 2014. http://etheses.dur.ac.uk/10902/.

Full text
Abstract:
Increased reliance upon renewable energy sources, chiefly wind, places a growing emphasis on the reliability of the technology used in Wind Turbines. The current Wind Turbine fleet is dominated by the Doubly Fed Induction Machine WT, which utilises a partially rated power electronic converter to vary the speed of the rotor and thus ensure the maximum energy capture available from the wind. This converter is associated with a significant percentage of WT failures. This thesis examines the low frequency temperature cycling occurring in one half of the back to back converter which results in a high failure rate of the rotor side converter as compared to the grid side converter. To this end a MATLAB/PLECS model was constructed to demonstrate the temperature cycling occurring in a 2.5MW DFIG WT. Lifetime of the semiconductor devices was extrapolated. An adaptation to the standard Maximum Power Point Tracking control method was suggested in which the lowest operating frequencies (less than 2.33Hz) were avoided. In doing so, lifetime was observed to increase at a minor cost to energy yield from the WT.
APA, Harvard, Vancouver, ISO, and other styles
18

Diaz, Matias. "Control of the modular multilevel matrix converter for wind energy conversion systems." Thesis, University of Nottingham, 2017. http://eprints.nottingham.ac.uk/47157/.

Full text
Abstract:
The nominal power of single Wind Energy Conversion Systems has been steadily growing, reaching power ratings close to 10 MW. In the power conversion stage, medium-voltage power converters are replacing the conventional low-voltage back-to-back topology. Modular Multilevel Converters have appeared as a promising solution for Multi-MW WECSs due to their characteristics such as modularity, reliability and the capability to reach high nominal voltages. Thereby, this thesis discusses the application of the Modular Multilevel Matrix Converter to drive Multi-MW Wind Energy Conversion Systems (WECSs). The modelling and control systems required for this application are extensively analysed and discussed in this document. The proposed control strategies enable decoupled operation of the converter, providing maximum power point tracking capability at the generator-side, grid-code compliance and Low Voltage Ride Through Control at the grid-side and good steady-state and dynamic performance for balancing the capacitor voltages of the converter. The effectiveness of the proposed control strategies is validated through simulations and experimental results. Simulation results are obtained with a 10MW, 6.6 kV Modular Multilevel Matrix Converter based WECS model developed in PLECS software. Additionally, a 5 kVA downscale prototype has been designed and constructed during this Ph.D. The downscale prototype is composed of 27 H-Bridges power cells. The system is controlled using a Digital Signal Processor connected to three Field Programmable Gate Array which are equipped with 50 analogue-digital channels and 108 gate drive signals. Two programmable AMETEK power supplies emulate the electrical grid and the generator. The wind turbine dynamics is programmed in the generator-side power supply to emulate a generator operating in variable speed/voltage mode. The output port of the Modular Multilevel Matrix Converter is connected to another power source which can generate programmable grid sag-swell conditions. Simulation and experimental results for variable-speed operation, grid-code compliance, and capacitor voltage regulation have confirmed the successful operation of the Modular Multilevel Matrix Converter based WECSs. In all the experiments, the proposed control systems ensure proper capacitor voltage balancing, keeping the flying capacitor voltages bounded and with low ripple. Additionally, the performance of the generator-side and grid-side control system have been validated for Maximum Power Point Tracking and Low-Voltage Ride Through, respectively.
APA, Harvard, Vancouver, ISO, and other styles
19

Díaz, Díaz Matías David. "Control of the modular multilevel Matrix converter for wind energy conversion systems." Tesis, Universidad de Chile, 2017. http://repositorio.uchile.cl/handle/2250/147484.

Full text
Abstract:
Doctor en Ingeniería Eléctrica. Doctor of Philosophy in Electrical and Electronic Engineering
La potencia nominal de los Sistemas de Conversión de Energía Eólica se ha incrementado constantemente alcanzando niveles de potencia cercanos a los 10 MW. Por tanto, convertidores de potencia de media tensión están reemplazando a los convertidores Back-to-Back de baja tensión habitualmente empleados en la etapa de conversión de energía. Convertidores Modulares Multinivel se han posicionado como una solución atractiva para Sistemas de Conversión de Energía Eólica de alta potencia debido a sus buenas prestaciones. Algunas de estas prestaciones son la capacidad de alcanzar altos voltajes, modularidad y confiabilidad. En este contexto, esta tesis discute la aplicación del Convertidor Modular Matricial Multinivel para conectar Sistemas de Conversión de Energía Eólica de alta potencia. Los modelos matemáticos y estrategias de control requeridas para esta aplicación son descritos y discutidos en este documento. Las estrategias de control propuestas habilitan una operación desacoplada del convertidor, proporcionando seguimiento del máximo punto de potencia en el lado del generador eléctrico del sistema eólico, cumplimiento de normas de conexión en el lado de la red eléctrica y regulación de los condensadores flotantes del convertidor. La efectividad de las estrategias de control propuestas es validada a través de simulaciones y experimentos realizados con un prototipo de laboratorio. Las simulaciones se realizan con un Sistemas de Conversión de Energía Eólica de 10 MW operando a 6.6 kV. Dicho sistema se implementa en el software PLECS. Por otro, se ha desarrollado un prototipo de laboratorio de 6kVA durante el desarrollo de este proyecto. El prototipo de laboratorio considera un Convertidor Modular Matricial Multinivel de 27 módulos Puente-H . El sistema es controlado empleando una plataforma de control basada en una Digital Signal Processor conectada a tres tarjetas del tipo Field Programmable Gate Array que proveen de 50 mediciones análogo-digital y 108 señales de disparo. La entrada del convertidor es conectada a una fuente programable marca Ametek que emula el comportamiento de la turbina eólica. A su vez, la salida del convertidor es conectada a otra fuente programable con capacidad de producir fallas en la tensión. Los resultados obtenidos, tanto en el prototipo experimental como en simulación, confirman la operación exitosa del Convertidor Modular Matricial Multinivel en aplicaciones eólicas de alta potencia. En todos los casos, las estrategias de control propuestas aseguran regulación de la tensión en los condensadores flotantes, seguimiento del máximo punto de potencia en el lado del generador eléctrico del sistema eólico y cumplimiento de normas de conexión en el lado de la red eléctrica.
The nominal power of single Wind Energy Conversion Systems has been steadily growing, reaching power ratings close to 10MW. In the power conversion stage, medium-voltage power converters are replacing the conventional low-voltage back-to-back topology. Modular Multilevel Converters have appeared as a promising solution for Multi-MW WECSs due to their characteristics such as modularity, reliability and the capability to reach high nominal voltages. Thereby, this thesis discusses the application of the Modular Multilevel Matrix Converter (\mc) to drive Multi-MW Wind Energy Conversion Systems (WECSs). The modelling and control systems required for this application are extensively analysed and discussed in this document. The proposed control strategies enable decoupled operation of the converter, providing maximum power point tracking capability at the generator-side, grid-code compliance and Low Voltage Ride Through Control at the grid-side and good steady state and dynamic performance for balancing the capacitor voltages of the converter.\\ The effectiveness of the proposed control strategies is validated through simulations and experimental results. Simulation results are obtained with a 10MW, 6.6 kVM3C based WECS model developed in PLECS software. Additionally, a 5 kVA downscale prototype has been designed and constructed during this Ph.D. The downscale prototype is composed of 27 H-Bridges power cells. The system is controlled using a Digital Signal Processor connected to three Field Programmable Gate Array which are equipped with 50 analogue-digital channels and 108 gate drive signals. Two programmable AMETEK power supplies emulate the electrical grid and the generator. The wind turbine dynamics is programmed in the generator-side power supply to emulate a generator operating in variable speed/voltage mode. The output port of the M3C is connected to another power source which can generate programmable grid sag-swell conditions. Simulation and experimental results for variable-speed operation, grid-code compliance, and capacitor voltage regulation have confirmed the successful operation of the \mc{} based WECSs. In all the experiments, the proposed control systems ensure proper capacitor voltage balancing, keeping the flying capacitor voltages bounded and with low ripple. Additionally, the performance of the generator-side and grid-side control system have been validated for Maximum Power Point Tracking and Low-Voltage Ride Through, respectively.
APA, Harvard, Vancouver, ISO, and other styles
20

Singh, Akanksha. "A boost current source inverter based generator-converter topology for direct drive wind turbines." Diss., Kansas State University, 2017. http://hdl.handle.net/2097/34676.

Full text
Abstract:
Doctor of Philosophy
Department of Electrical and Computer Engineering
Behrooz Mirafzal
In this dissertation, a new topology for Direct-Drive Wind Turbines (DDWTs) with a new power electronics interface and a low-voltage generator design is presented. In the presented power electronics interface, the grid - side converter is replaced by a boost Current Source Inverter (CSI) which eliminates the required dc-bus capacitors resulting in an increase in the lifetime of DDWTs. The inherently required dc-link inductor for this topology is eliminated by utilizing the inductance of the Permanent Magnet Synchronous Generator (PMSG). The proposed three-phase boost CSI is equipped with Reverse-Blocking IGBTs (RB-IGBT) and the Phasor Pulse Width Modulation (PPWM) switching pattern to provide a 98% efficiency and high boost ratios ([superscript V]LL/V[subscript dc]) up to 3.5 in a single stage. In this dissertation, Phasor Pulse Width Modulation (PPWM) pattern for the boost – CSI is also modified and verified through simulation and experimental results. In order to realize potential capabilities of the boost inverter and to assist its penetration into renewable energy systems, the boost inverter dynamic behaviors are studied in this dissertation. Then, the developed models are verified using circuit simulations and experiments on a laboratory-scale boost – CSI equipped with RB-IGBTs. The developed dynamic models are used to study the stability of the boost – CSI through root locus of small signal poles (eigenvalues) as control inputs and load parameters vary within the boost inverter's operating limits. The dynamic models are also used to design the control schemes for the boost – CSI for both stand-alone and grid-tied modes of operation. The developed controllers of the boost – CSI are verified through simulation and experimental results. In this dissertation, the boost – CSI steady-state characterization equations are also developed and verified. The developed boost – CSI is used to replace the grid - side converter in a DDWT. A reliability analysis on the power electronics interface of an existing and developed topology is presented to demonstrate the increase in the mean time between failures. The boost – CSI enables conversion of a low dc voltage to a higher line-to-line voltage enabling the implementation of a low-voltage generator. This further enables a reduction in the number poles required in DDWT generators. The feasibility of the presented low-voltage generator is investigated through finite element computations. In this dissertation, a 1.5MW low-voltage generator designed for the proposed topology is compared with an existing 1.5MW permanent magnet synchronous generator for DDWTs to demonstrate the reduction in the volume, weight, and amount of permanent magnet materials required in the generator. The feasibility of the developed system is supported by a set of MATLAB/Simulink simulations and laboratory experiments on the closed-loop stand-alone and grid-tied systems.
APA, Harvard, Vancouver, ISO, and other styles
21

Al-Qrimli, Fadhil Abbas Mehdi. "An energy conversion scheme using a permanent magnet generator and a PWM, GTO converter." Thesis, University of Liverpool, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.304736.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Fan, Shixiong. "Current source DC/DC converter based multi-terminal DC wind energy conversion system." Thesis, University of Strathclyde, 2012. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=17007.

Full text
Abstract:
Wind power energy conversion is growing rapidly in the world. There are two main wind farm types, namely ac grid-based and dc grid-based wind farms. The dc grid-based approach reduces the size and weight of the magnetic components and cables. In the dc system, the step-up dc/dc converter is the key component when interfacing the wind turbine to the ac grid, via its low/medium voltage generator. This thesis focuses on the control and design of a wind energy conversion system based on dc/dc current source converters. An optimized One-Power-Point method for maximum power tracking is proposed. It incorporates One-Power-Point control and Maximum Power Differential Voltage control to allow the wind turbine to extract more energy during rapid wind speed changes. A current output hard-switched full bridge converter and serial-parallel resonant converter with an intermediate high frequency transformer are investigated for interfacing wind turbines to a local dc grid. These converters are assessed and compared in terms of semiconductor stresses and losses. A new modified One-Power-Point control method is proposed for the dc/dc converter, which tracks the maximum power during wind speed changes. A design procedure for the serial-parallel resonant converter is presented, based on its characteristics specific to a wind energy conversion system (WECS). A current source dc/dc converter based multi-terminal dc WECS is presented, investigated, and simulated. A practical multi-terminal dc WECS verifies its feasibility and stability, using two dc current output wind turbine units. Furthermore, a coordinated de-loading control scheme for the current sourcing based WECS is proposed, to cater for ac grid demand changes. It combines pitch control, dc dumping chopper control, and dc/dc converter control, to safely and quickly establish de-loading control. Both simulation and experimental results verify the de-loading scheme.
APA, Harvard, Vancouver, ISO, and other styles
23

Assaad, Michael. "Arduino Based Hybrid MPPT Controller for Wind and Solar." Thesis, University of North Texas, 2017. https://digital.library.unt.edu/ark:/67531/metadc1062827/.

Full text
Abstract:
Renewable power systems are becoming more affordable and provide better options than fossil-fuel generation, for not only the environment, but a benefit of a reduced cost of operation. Methods to optimize charging batteries from renewable technologies is an important subject for off-grid and micro-grids, and is becoming more relevant for larger installations. Overcharging or undercharging the battery can result in failure and reduction of battery life. The Arduino hybrid MPPT controller takes the advantage of solar and wind energy sources by controlling two systems simultaneously. The ability to manage two systems with one controller is better for an overall production of energy, cost, and manageability, at a minor expense of efficiency. The hybrid MPPT uses two synchronous buck DC-DC converters to control both wind and solar. The hybrid MPPT performed at a maximum of 93.6% efficiency, while the individual controller operated at a maximum 97.1% efficiency when working on the bench test. When designing the controller to manage power production from a larger generator, the inductor size was too large due to the frequency provided by the Arduino. A larger inductor means less allowable current to flow before the inductor becomes over saturated, reducing the efficiency of the controller. Utilizing a different microcontroller like the PIC16C63A produces a much faster frequency, which will reduce the inductor size needed and allow more current before over saturation.
APA, Harvard, Vancouver, ISO, and other styles
24

Ahnlund, Joakim. "Short-circuit Contributions from Fully-rated Converter Wind Turbines : Modeling and simulation of steady-state short-circuit contributions from FRC wind turbines in offshore wind power plants." Thesis, KTH, Elektriska energisystem, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-144846.

Full text
Abstract:
In recent years there has been an increase in wind power plants installed out at sea. The generated power of wind turbine generators (WTGs) are collected through numerous subsea cables into a single hub, the offshore platform. Subsequently, this platform is interconnected with the onshore main grid through a further stretch of cable. In the event of a fault, a sudden increase in current, so called short-circuit current, will occur somewhere in the system. The short-circuit current will, depending on the duration and location of the fault, potentially harm the power system. In order to accurately determine the dimensions and rating of the equipment installed in the offshore wind power plant (OWPP), the magnitude of this current needs to be studied. Furthermore, depending on the country in which the OWPP is installed, the transmission system operator (TSO) might pose different low-voltage-ride-through (LVRT) requirements on the system. One such requirement is that the installed turbines should provide voltage regulation through injection of reactive current. A type of generator able to achieve this is a so-called fully-rated converter windturbine generator (FRC WTG). Through a power electronic interface, the reactive and active current components of the generator can be freely controlled. With a high level of reactive current injected during a fault in the OWPP, the short-circuit contribution from these FRC WTGs needs to be evaluated. In this master’s thesis, a method has been developed in order to determine the steady-state short-circuit contribution from multiple FRC WTGs. This methodology is based on an iterative algorithm, and has been implemented in the simulation tool PowerFactory. To evaluate the performance of the method, two case studies were performed. In order to improve simulation times, an already existing WTG aggregation model has been implemented to reduce the number of turbines in the test system. From the results, it is concluded that the method obtains the expected FRC WTG short-circuit currents with sufficient accuracy. Furthermore, the deviation from the expected results are evaluated using a numerical tool. This project was initiated and conducted at ABB in Västerås, Sweden.
APA, Harvard, Vancouver, ISO, and other styles
25

Fuchs, Felix [Verfasser]. "Converter control for wind turbines when operating in weak grids containing resonances / Felix Fuchs." Hannover : Technische Informationsbibliothek (TIB), 2017. http://d-nb.info/1153077833/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Spahić, Ervin. "Voltage source converter HVDC connection of offshore wind farms and the application of batteries." Aachen Shaker, 2008. http://d-nb.info/992480779/04.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Meier, Stephan. "System Aspects and Modulation Strategies of an HVDC-based Converter System for Wind Farms." Doctoral thesis, Stockholm : Skolan för elektro- och systemteknik, Kungliga Tekniska högskolan, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-10267.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Wang, Puyu. "A multi-terminal modular multilevel converter-based HVDC system with an offshore wind farm." Thesis, University of Birmingham, 2016. http://etheses.bham.ac.uk//id/eprint/6442/.

Full text
Abstract:
The increased demand for electrical power and the concern of environmental pollution drive the development of bulk-power transmission over long distance and renewable energy. The use of multi-terminal (MT) modular multilevel converter (MMC) high-voltage direct current (HVDC) technology to integrate power from the offshore wind farm (OWF) is becoming increasingly popular. However, some technological barriers and potential risks may exist in the new technology, which requires comprehensive research and innovative developments. This thesis investigates several important aspects of an offshore integrated MMC multi-terminal HVDC (MTDC) system, including start-up control, control and protection under AC and DC fault conditions. For the start-up control, a hierarchical start-up scheme is proposed for the terminals with active AC networks and a reduced DC voltage start-up scheme is proposed for the terminal with the OWF. Synthesising both schemes forms a comprehensive start-up control scheme for the start-up control of the MTDC system, which can effectively mitigate the voltage spikes and current surges during the start-up process. For control and protection against AC fault conditions, associated control and protection strategies and detailed control and protection sequences are proposed for the faults occurring at the converter AC-side. In addition, a special control and protection strategy is proposed when the faulted-side MMC experiences blocking failure following the fault. For the DC fault management, a fault isolation strategy is proposed and the system recovery scheme is comprehensively investigated after the fault isolation, with delayed-auto-re-configuration (DARC) schemes being proposed. Combining the DARC scheme and the fault isolation strategy, a complete control and protection sequence is proposed. Effectiveness of the proposed schemes is evaluated on the RTDS simulation platform.
APA, Harvard, Vancouver, ISO, and other styles
29

Chongjarearn, Yutana. "Modelling of DFIG wind turbine with consideration for converter behaviour during supply fault conditions." Thesis, University of Newcastle upon Tyne, 2017. http://hdl.handle.net/10443/3666.

Full text
Abstract:
The Doubly-Fed Induction Generator (DFIG) is widely used for large grid-connected, variable-speed wind turbines. As the amount of installed wind power increases, it is increasingly important that turbine generators remain connected and support the grid transmission network during transient system disturbances: so-called fault ride-through (FRT), as specified by various grid codes. To study the FRT capability of the DFIG, an accurate model of the system is needed. This must be able to take into account the switching behaviour of the rotor circuit diodes and IGBTs if it is to simulate the converter and the DC-link capacitor current and voltage waveforms during supply fault conditions when vector control is lost, inverter IGBTs are switched off and the inverter appears as a simple 3-phase rectifier. In this thesis, a Simulink model for a vector controlled DFIG is developed to investigate drive fault through characteristics, allowing for the switching effects of all IGBTs and anti-parallel diodes. The model is used to predict machine and converter current and voltage waveforms during network fault conditions, represented by a 3-phase supply voltage dip, and thus assess the FRT performance of the DFIG in accordance with the transmission system grid codes. Four case studies during normal conditions and three fault scenarios during fault conditions are investigated and validated by the 7.5kW DFIG Test Rig. The simulation and experimental results are in very close agreement. The simulation shows that transient rotor currents can obviously damage the converter IGBT devices and DC-link capacitor if no protective action (using Crowbar and DC chopper) is taken. Moreover, the developed model can be used to investigate the transient behaviour of the DFIG drive system during supply fault conditions when the drive IGBTs are switched off and the rotor converter appears to be a simple diode bridge rectifier. Also, the developed model including both FRT devices (Crowbar and DC-brake chopper) will be employed to investigate the DFIGs FRT performance and design the minimum value of crowbar resistance.
APA, Harvard, Vancouver, ISO, and other styles
30

Taha, Othman Abdulhadi [Verfasser]. "Cascaded H-bridge multilevel converter topology for hybrid photovoltaic-wind turbine systems / Othman Abdulhadi Taha." Siegen : Universitätsbibliothek der Universität Siegen, 2017. http://d-nb.info/1136132309/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Zaragoza, Bertomeu Jordi. "Modulation strategies for the neutral-point-clamped converter and control of a wind turbine system." Doctoral thesis, Universitat Politècnica de Catalunya, 2011. http://hdl.handle.net/10803/130900.

Full text
Abstract:
Els convertidors multinivell són topologies de convertidors d’electrònica de potència que poden generar tres o més nivells de voltatge en cadascuna de les fases de sortida. Com a resultat, els voltatges i corrents generats per aquestes topologies presenten una distorsió harmònica baixa. Hi ha diferents configuracions de convertidors multinivell, les quals es basen en connectar dispositius de potència o convertidors en sèrie. El resultat d’aquestes connexions permet obtenir voltatges alts, tant en la part de corrent continu com en la de corrent altern del convertidor. A més, cada dispositiu sols ha de suportar una fracció del voltatge total del bus de corrent continu. Per aquestes raons, els convertidors multinivell són generalment utilitzats en aplicacions d’alta potència. El convertidor de tres nivells amb connexió a punt neutre (neutral-point-clamped) és el més utilitzat. La recerca d’aquesta tesis doctoral està focalitzada en aquesta topologia de convertidor, i el principal objectiu és l’aportació de noves tècniques de modulació. Aquestes tenen en compte diferents aspectes: la velocitat computacional dels algorismes, l’equilibrat de les tensions dels condensadors del bus de contínua, les pèrdues de commutació i les oscil·lacions de baixa freqüència en el punt neutre del convertidor. Totes les estratègies de modulació proposades en aquesta tesis són modulacions d’amplada de polses basades en portadora. En la primera modulació que es presenta, s’injecta un senyal comú (seqüència zero) a totes les moduladores, que es basa en els patrons de la modulació vectorial que utilitza tres vectors dels més propers al de referència (nearest-three-vector modulation). S’estudien i es comparen els resultats d’aquesta modulació amb la seva homòloga, basada en perspectiva vectorial. Una segona proposta és l’anomenada modulació d’amplada de polses de doble senyal (double-signal pulse-width modulation). Aquesta modulació és capaç d’eliminar completament les oscil·lacions de voltatge en el punt neutre del convertidor. No obstant això, es produeix un increment de les pèrdues de commutació en els dispositius de potència i, a més, no hi ha un equilibrat natural de les tensions en els condensadors del bus. Una última estratègia de modulació, anomenada modulació híbrida (hybrid pulse-width modulation), es basa en la combinació de la modulació sinusoïdal (sinusoidal pulse-width modulation) i la de doble senyal. Aquesta presenta una solució de compromís entre reduir les pèrdues de commutació, en detriment d’un augment de l’amplitud de les oscil·lacions de voltatge en el punt neutre. Una segona part d’aquesta tesis es centra en les aplicacions a generació eòlica, ja que els convertidors multinivell estan començant a ser utilitzats en aquest camp. Això es produeix fonamentalment per l’augment continu de les dimensions de les turbines eòliques. En aquesta part de la recerca s’ha considerat la configuració de dos convertidors multinivell connectats a un mateix bus de contínua (back-to-back), tot i que els convertidors han estat estudiats independentment. Inicialment s’ha estudiat el convertidor que va connectat a la xarxa elèctrica i s’ha aplicat l’estratègia de control coneguda com a control orientat a tensió (voltage-oriented control). S’han utilitzat controladors estàndard (proporcional-integral), als quals s’ha afegit un control difús que supervisa i modifica els valors de les constants dels controladors. Aquest supervisor difús millora la dinàmica de la tensió del bus de contínua davant canvis de càrrega quan el convertidor treballa com a rectificador. Per una altra part, s’ha estudiat el control d’una turbina eòlica basada en un generador d’imants permanents. En aquest cas, s’ha aplicat l’estratègia de control coneguda com a control orientat a camp (field-oriented control). S’han avaluat i comparat els avantatges i inconvenients de diferents formes de sintonitzar els controladors.
Multilevel converters are power electronic topologies that can generate three or more voltage levels in each output phase. As a result, the voltage and current waveforms generated have lower total harmonic distortion. Multilevel topologies are based on connecting power devices or converters in a series. Consequently, high voltages can be handled on the dc and ac sides of the converter, while each device stands only a fraction of the total dc-link voltage. For these reasons multilevel converters are generally applied to high-power applications. The three-level neutral-point-clamped converter is the most extensively used multilevel topology. This topology is the main focus of research in this dissertation. The main objective is to propose new modulation strategies that are able to meet a compromise solution while considering computational algorithm speed, voltage balance in the dc-link capacitors, switching losses and low frequency voltage oscillations at the neutral point. All the modulation strategies proposed here are based on carrier-based pulsewidth modulation. A new modulation strategy has been implemented using a proper zero-sequence signal injected into the modulation signals. The zero sequence is determined from a space-vector modulation standpoint, particularly the nearest-threevector modulation strategy. The proposed carrier-based technique is compared with its space-vector modulation counterpart. It shows some advantages, such as easier implementation and reduced switching events; however, it still produces oscillations in the neutral-point voltage for some operating conditions. A new modulation strategy able to completely remove such voltage oscillations is also presented. It is called double-signal pulse-width modulation. The main drawback of this strategy is that it increases the switching frequency of the power devices and has no natural capacitor voltage balance. Some balancing strategies are proposed in this dissertation for this specific modulation. Furthermore, a hybrid pulse-width modulation approach is presented which is able to combine sinusoidal pulse-width modulation with doublesignal pulse-width modulation; this represents a compromise solution between switching losses and neutral-point voltage oscillation amplitudes. The second part of this thesis is focused on wind generation applications. Multilevel converters are starting to be used in such a field nowadays, and are expected to be further applied in the near future as the sizes of wind turbines grow. Two back-toback-connected power converters are considered in this application, although they are analyzed independently. First of all, the control of the grid-connected converter is studied. A voltage-oriented control is used with standard proportional-integral controllers. The originality of the method is that a fuzzy supervisor is designed and included in the structure; the fuzzy supervisor is able to modify the proportionalintegral parameters online. It is shown how the control of the total dc-link voltage improves significantly under load changes when the converter is working as a rectifier. On the other hand, a control study is performed on the wind turbine side. The variable speed wind turbine is based on a permanent magnet synchronous generator. A field-oriented control strategy is applied. The controllers are evaluated and compared using different tuning strategies which highlight the advantages and drawbacks of each.
APA, Harvard, Vancouver, ISO, and other styles
32

Tsai, K. T. "An investigation into the fatigue behaviour of wood : Laminates for Wind Energy Converter blade design." Thesis, University of Bath, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.379572.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Da, Silva Joao Lucas. "Design and control of a multicell interleaved converter for a hybrid photovoltaic-wind generation system." Phd thesis, Toulouse, INPT, 2017. http://oatao.univ-toulouse.fr/19318/7/DASILVA_JoaoLucas.pdf.

Full text
Abstract:
The solution for the generating energy derived from non-polluting sources configures a worldwide problem, which is undetermined, complex, and gradual; and certainly, passes through the diversification of the energetic matrix. Diversification means not only having different sources converted into useful energy, like the electricity, but also decentralizing the energy generation in order to fit with higher adequacy the demand, which is decentralized too. Distributed Generation proposes this sort of development but in order to increase its penetration several technical barriers must be overpassed. One of them is related to the conversion systems, which must be more flexible, modular, efficient and compatible with the different energy sources, since they are very specific for a certain area. The present study drives its efforts towards this direction, i.e. having a system with several inputs for combining different renewable energy sources into a single and efficient power converter for the grid connection. It focuses on the design and control of an 11.7 kW hybrid renewable generation system, which contains two parallel circuits of photovoltaic panels and a wind turbine. A multicell converter divided in two stages accomplishes the convertion: Generation Side Converter (GSC) and Mains Side Converter (MSC). Two boost converters responsible for the photovoltaic generation and a rectifier and a third boost, for the wind constitue the GSC. It allows the conversion to the fixed output DC voltage, controlling individually and performing the maximum power point tracking in each input. On the other side, the single-phase 4- cell MSC accomplishes the connection to the grid through an LCL filter. This filter uses an Intercell Transformer (ICT) in the first inductor for reducing the individual ripple generated by the swicthing. The MSC controls the DC-link voltage and, by doing that, it allows the power flow from the generation elements to the network.
APA, Harvard, Vancouver, ISO, and other styles
34

Esmaili, Gholamreza. "Application of advanced power electronics in renewable energy sourcesand hybrid generating systems." The Ohio State University, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=osu1141850833.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Spahić, Ervin [Verfasser]. "Voltage Source Converter HVDC Connection of Offshore Wind Farms and the Application of Batteries / Ervin Spahic." Aachen : Shaker, 2009. http://d-nb.info/1161309888/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Sae-Kok, Warachart. "Converter fault diagnosis and post-fault operation of a doubly-fed induction generator for a wind turbine." Thesis, University of Strathclyde, 2008. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=21980.

Full text
Abstract:
Wind energy has become one of the most important alternative energy resources because of the global warming crisis. Wind turbines are often erected off-shore because of favourable wind conditions, requiring lower towers than on-shore. The doubly-fed induction generator is one of the most widely used generators with wind turbines. In such a wind turbine the power converters are less robust than the generator and other mechanical parts. If any switch failure occurs in the converters, the wind turbine may be seriously damaged and have to stop. Therefore, converter health monitoring and fault diagnosis are important to improve system reliability. Moreover, to avoid shutting down the wind turbine, converter fault diagnosis may permit a change in control strategy and/or reconfigure the power converters to permit post-fault operation. This research focuses on switch fault diagnosis and post-fault operation for the converters of the doubly-fed induction generator. The effects of an open-switch fault and a short-circuit switch fault are analysed. Several existing open-switch fault diagnosis methods are examined but are found to be unsuitable for the doubly-fed induction generator. The causes of false alarms with these methods are investigated. A proposed diagnosis method, with false alarm suppression, has the fault detection capability equivalent to the best of the existing methods, but improves system reliability. After any open-switch fault is detected, reconfiguration to a four-switch topology is activated to avoid shutting down the system. Short-circuit switch faults are also investigated. Possible methods to deal with this fault are discussed and demonstrated in simulation. Operating the doubly-fed induction generator as a squirrel cage generator with aerodynamic power control of turbine blades is suggested if this fault occurs in the machine-side converter, while constant dc voltage control is suitable for a short-circuit switch fault in the grid-side converter.
APA, Harvard, Vancouver, ISO, and other styles
37

Franco, Flávio Alves de Lima. "Estudo de controle e proteção de geradores duplamente alimentados em sistemas eólicos." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/3/3143/tde-07112017-081232/.

Full text
Abstract:
O aumento da demanda energética mundial e a necessidade de obtenção de energia por fontes renováveis abriram espaço para discussão sobre vantagens e desvantagens relacionadas às diversas tecnologias de geração existentes. Dados mostram um crescimento significativo do percentual da geração eólica no sistema energético mundial tornando factível o investimento em tecnologias que possam atender às diferenças de aplicação para cada região. Este trabalho apresenta inicialmente as principais características das arquiteturas construtivas dos geradores eólicos listando e apresentando seus principais equipamentos e funções, em seguida são apresentados métodos de controle e proteção aerodinâmica e as principais topologias aplicadas na geração eólica de energia. A discussão das vantagens e desvantagens de cada topologia apontou o gerador Doubly Fed Induction Generator (DFIG) aplicado em sistemas de velocidade variável como uma tecnologia que se destaca pelo seu alto nível de controle e pelo ganho relacionado ao conversor back-to-back de apenas 30% da capacidade de geração da máquina. No trabalho o controle do conversor back-to-back foi testado e validado por simulações e os ajustes dos controladores obtidos pelo método do modelo simétrico ótimo. Em seguida, são apresentados os dispositivos básicos de proteção correlacionados ao monitoramento de corrente, tensão e fluxo de potência e discutidas suas limitações na topologia com o gerador DFIG. No final do trabalho a proteção diferencial é apresentada e aplicada sobre o gerador DFIG e simulações de falta são realizadas em diferentes condições de funcionamento da máquina de modo a obter dados que possam apontar a melhor parametrização deste dispositivo de proteção.
The world energetic demand increase and the generation renewable necessity allowed the dialogue about the advantages and disadvantages of generations technologies existing. Many data shows an significant increase of wind generation inside the world energetic system allowing the investment in technologies to work at the characteristics existing in each place. This study shows the main constructive characteristics in the wind generation showing their main equipments and functions. After, the control and protection aerodynamic methods are shown together with the main topologies in the wind generation. The discussion about the advantages and disadvantages of this topologies showed the DFIG generator working in variable speeds systems like an efficient technology because your accurate control and the low cost of back-to-back frequency inverter. In this study the control of back-to-back converter was tested end validated and the drivers parameters was calculated with the method of the optimal symmetric model. then, are showed some basic protections devices linked with current, voltage and power flow monitoring and yours limitations are discussed in the DFIG topology. In the end the differential protection is showed and applied in the DFIG machine then fault simulations are make to obtain data to produce the best configuration parameters of differential protection.
APA, Harvard, Vancouver, ISO, and other styles
38

Örnkloo, Johannes. "Comparison between active and passive rectification for different types of permanent magnet synchronous machines." Thesis, Uppsala universitet, Elektricitetslära, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-370121.

Full text
Abstract:
When using an intermittent source of energy such as wind power together with a synchronous machine a frequency converter system is needed to decouple the generator from the grid, due to the fluctuations in wind speed resulting in fluctuating electrical frequency. The aim of this master's thesis is to investigate how different types of rectification methods affect permanent magnet synchronous machines of different saliency ratios. A literature study was carried out to review the research within the area and to acquire the necessary knowledge to carry out the work. Two simulation models were created that include a permanent magnet synchronous generator driven by a wind turbine and connected to the grid via a frequency converter, where one model utilizes active rectification and one utilizes passive rectification. The simulation models were verified by carrying out an experiment on a similar setup, which showed that the simulation results coincide well with the results of the experiment. The results of the simulation study were then used to compare the rectification systems as well as investigate the affect that rotor saliency has on the system. It was shown that the active rectification provided a higher efficiency than the passive rectification system, however the saliency of the rotor had little effect on the system
APA, Harvard, Vancouver, ISO, and other styles
39

Sotoodeh, Pedram. "A single-phase multi-level D-STATCOM inverter using modular multi-level converter (MMC) topology for renewble energy sources." Diss., Kansas State University, 2014. http://hdl.handle.net/2097/17184.

Full text
Abstract:
Doctor of Philosophy
Department of Electrical and Computer Engineering
Ruth Douglas Miller
This dissertation presents the design of a novel multi-level inverter with FACTS capability for small to mid-size (10–20kW) permanent-magnet wind installations using modular multi-level converter (MMC) topology. The aim of the work is to design a new type of inverter with D-STATCOM option to provide utilities with more control on active and reactive power transfer of distribution lines. The inverter is placed between the renewable energy source, specifically a wind turbine, and the distribution grid in order to fix the power factor of the grid at a target value, regardless of wind speed, by regulating active and reactive power required by the grid. The inverter is capable of controlling active and reactive power by controlling the phase angle and modulation index, respectively. The unique contribution of the proposed work is to combine the two concepts of inverter and D-STATCOM using a novel voltage source converter (VSC) multi-level topology in a single unit without additional cost. Simulations of the proposed inverter, with 5 and 11 levels, have been conducted in MATLAB/Simulink for two systems including 20 kW/kVAR and 250 W/VAR. To validate the simulation results, a scaled version (250 kW/kVAR) of the proposed inverter with 5 and 11 levels has been built and tested in the laboratory. Experimental results show that the reduced-scale 5- and 11-level inverter is able to fix PF of the grid as well as being compatible with IEEE standards. Furthermore, total cost of the prototype models, which is one of the major objectives of this research, is comparable with market prices.
APA, Harvard, Vancouver, ISO, and other styles
40

Cho, Yongnam. "Modeling methodology of converters for HVDC systems and LFAC systems: integration and transmission of renewable energy." Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/49064.

Full text
Abstract:
The major achievements of this work are based on two categories: (A) introduction of an advanced simulation technique in both time domain and frequency domain, and (B) realistic and reliable models for converters applicable to analysis of alternative transmission systems. The proposed modeling-methodology using a combination of model quadratization and quadratic integration (QMQI) is demonstrated as a more robust, stable, and accurate method than previous modeling methodologies for power system analyses. The quadratic-integration method is free of artificial numerical-oscillations exhibited by trapezoidal integration (which is the most popularly used method in power system analyses). Artificial numerical oscillations can be the direct reason for switching malfunction of switching systems. However, the quadratic-integration method has a natural characteristic to eliminate fictitious oscillations with great simulation accuracy. Also, model quadratization permits nonlinear equations to be solved without simplification or approximation, leading to realistic models of nonlinearities. Therefore, the QMQI method is suitable for simulations of network systems with nonlinear components and switching subsystems. Realistic and reliable converter models by the application of the QMQI method can be used for advanced designs and optimization studies for alternative transmission systems; they can also be used to perform a comprehensive evaluation of the technical performance and economics of alternative transmission systems. For example, the converters can be used for comprehensive methodology for determining the optimal topology, kV-levels, etc. of alternative transmission systems for wind farms, for given distances of wind farms from major power grid substations. In this case, a comprehensive evaluation may help make more-informed decisions for the type of transmission (HVAC, HVDC, and LFAC) for wind farms.
APA, Harvard, Vancouver, ISO, and other styles
41

Wood, Thomas Benedict. "Interaction of DC-DC converters and submarine power cables in offshore wind farm DC networks." Thesis, University of Edinburgh, 2014. http://hdl.handle.net/1842/11767.

Full text
Abstract:
Offshore wind power is attracting increasing levels of research and investment. The use of HVDC transmission and the development of DC grids are topics with similar high levels of interest that go hand in hand with the development of large scale, far from shore wind farms. Despite increased capital cost of some components, DC power transmission can have significant advantages over AC transmission, in particular in the offshore environment. These advantages are well established for large scale, long distance point to point transmission. This thesis assesses the suitability of a multi-terminal DC power collection network, with short cables and relatively small amounts of power, addresses a number of the technical challenges in realising such a network and shows methods for overall system cost reduction. Technical and modelling challenges result from the interaction between power electronic DC-DC converters and the cables in a DC transmission network. In particular, the propagation of the ripple current in bipole DC transmission cables constructed with a metallic sheath and armour is examined in detail. The finite element method is used to predict the response of the cable to the ripple current produced by the converters. These results are used along with wave propagation theory to demonstrate that cable design plays a crucial role in the behaviour of the DC system. The frequency dependent cable models are then integrated with time domain DC-DC converter models. The work in the thesis is, broadly, in two parts. First, it is demonstrated that care and accuracy are required in modelling the cables in the DC transmission system and appropriate models are implemented and validated. Second, these models are combined with DC-DC converter models and used to demonstrate the practicality of the DC grid, make design recommendations and assess its suitability when compared with alternative approaches (e.g. AC collection and/or transmission).
APA, Harvard, Vancouver, ISO, and other styles
42

Ayehunie, Nahome Alemayehu. "MultiPhase Permanent Magnet Synchronous Generators for Offshore Wind Enegy System : Control of six phase PMSG- six leg converter system." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for elkraftteknikk, 2011. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-15846.

Full text
Abstract:
The three phase permanent magnet synchronous generator with full scale converter arrangement has gained significant market share in win energy turbine topology. This is because of the advancement in production of superior magnetic properties and steady decline in price of the magnets. Permanent magnet synchronous generators are of compact in size and light in weight. They become attractive for offshore wind application. But offshore wind energy system has to be not only light weight and compact in size but also reliable operation. The majority of failures of wind turbines are the electrical systems. To increase the reliability of the ordinary three phase wind energy system, a six phase wind energy system is proposed: a six phase permanent magnet synchronous connected to six leg converter. To harness the maximum energy from the wind, the viable option is using variable speed wind turbine. Variable speed operation of drive is achieved by suitable control of generator-converter system.This project deals with the design, simulation and implementation vector control of six phase permanent magnet synchronous generator-converter system. Step by step approach is used to tackle the problem. First the dynamic modeling of six phase permanent magnet in different references frames is studied. Then the time average and switching model of a six leg converter is presented. The different modulation technique of six leg converter is studied. Last the design or tuning of control parameters for the speed and current controllers are done. Dc link voltage control design is also done.After having the theoretical base, the majority of the work is done in preparation of laboratory setup, understanding of FPGA platforms and fighting with sporadic practical problem.Finally, it is of great personal success to be able to model, and control in the laboratory a low speed Non Standard Six Phase PMSG having 33.27 degree separations between the phase groups.
APA, Harvard, Vancouver, ISO, and other styles
43

Kapidou, Alexandra. "Application for Wind Farm Integration Complying with the Grid Code by Designing an Outer Control Strategy for the Converter." Thesis, KTH, Skolan för elektro- och systemteknik (EES), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-187686.

Full text
Abstract:
The continuously increasing energy penetration from wind farms into the grid raises concerns regarding power quality and the stable operation of the power system. The Grid Code´s requirements give strict guidelines for a wind farm´s behaviour under faulty or abnormal operating conditions.The primary purpose of this project is the application of a STATCOM for wind farm integration complying with the Grid Code. Towards that, an outer control strategy for the converter is designed so as to regulate the voltage at the point of common coupling by providing reactive power compensation. Thus the safe operation of the grid will be ensured since the wind farm will follow the Grid Code´s standards.The existing Grid Code requires only a positive sequence current controller. This study attempts to investigate whether this is sufficient or not and to examine the possibility of extending the Grid Code requirements so as to incorporate a negative sequence current controller as well. The results support the latter suggestion. Also, the use of SiC devices was also considered in this project.
Den ständigt ökande penetrationen av vindenergi i elnätet väcker farhågor om elkvalitet och stabil drift av kraftsystemet. Nätkoden (Grid Code) ger strikta riktlinjer för en vindkraftsparks beteende i felfall och under onormala driftsförhållanden.Huvudsyftet med detta projekt är att använda en STATCOM för integration av vindkraftsparker så att nätkoden uppfylls. I detta projekt utformas en yttre reglerstrategi för omriktaren för att reglera spänningen vid anslutningspunkten för vindkraftsparken genom att tillhandahålla reaktiv effektkompensering. Därigenom uppnås en säker drift av nätet eftersom vindkraftparken kommer att följa nätkoden.Den befintliga nätkoden kräver endast styrning av plusföljdskomponenten av strömmen. Denna studie försöker undersöka om detta är tillräckligt samt undersöka möjligheten för att utvidga nätkoden genom att införa ett krav på styrning av negativ-sekvens ström. Resultaten stöder det sistnämnda förslaget. Även användningen av halvledarkomponenter av kiselkarbid-SiC studerades i detta projekt.
APA, Harvard, Vancouver, ISO, and other styles
44

Boulanger, Isabelle. "Lillgrund Wind Farm Modelling and Reactive Power Control." Thesis, KTH, Elektriska energisystem, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-119256.

Full text
Abstract:
The installation of wind power plant has significantly increased since several years due to the recent necessity of creating renewable and clean energy sources. Before the accomplishment of a wind power project many pre-studies are required in order to verify the possibility of integrating a wind power plant in the electrical network. The creation of models in different software and their simulation can bring the insurance of a secure operation that meets the numerous requirements imposed by the electrical system. Hence, this Master thesis work consists in the creation of a wind turbine model. This model represents the turbines installed at Lillgrund wind farm, the biggest wind power plant in Sweden. The objectives of this project are to first develop an accurate model of the wind turbines installed at Lillgrund wind farm and further to use it in different kinds of simulations. Those simulations test the wind turbine operating according to different control modes. Also, a power quality analysis is carried out studying in particular two power quality phenomena, namely, the response to voltage sags and the harmonic distortion. The model is created in the software PSCAD that enables the dynamic and static simulations of electromagnetic and electromechanical systems. The model of the wind turbine contains the electrical machine, the power electronics (converters), and the controls of the wind turbine. Especially, three different control modes, e.g., voltage control, reactive power control and power factor control, are implemented, tested and compared. The model is tested according to different cases of voltage sag and the study verifies the fault-ride through capability of the turbine. Moreover, a harmonics analysis is done. Eventually the work concludes about two power quality parameters.
APA, Harvard, Vancouver, ISO, and other styles
45

Kulka, Arkadiusz. "Sensorless Digital Control of Grid Connected Three Phase Converters for Renewable Sources." Doctoral thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for elkraftteknikk, 2008. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-5578.

Full text
Abstract:
Power electronic converters have become popular in the field of power transformation for renewable energy. Power electronics converters achieve high efficiency, and the price of their components is falling, thus making them even more beneficial for renewable energy applications. Those systems coupled to the grid need to withstand certain utility-defined circumstances which may occur during operation. Additionally the new net regulations for large generation plants specify that during specified severe grid disturbances the relatively delicate converters should stay connected supporting the system. For PV inverters the forthcoming standards may optionally add the possibility of reactive power compensation where for wind-power those standards are already in use. This thesis focuses on reliable, sensor-less control of the PWM converters coping with varying grid conditions and existing problems. The thesis presents a variety of digital control solutions for interfacing PWM converter with the grid, synchronization, sensorless operation and grid impedance detection. The introductory chapter gives the fundamental theory about three-phase converters and control.The following chapters deal with unbalanced condition and symmetric component decomposition, which is the tool to cope with unbalanced grid voltages or currents. A sensor-less operation method using dual frame virtual flux model is presented with good results. In addition sensor-less synchronization to the grid is shown. Moreover an algorithm based on virtual flux for grid inductance estimation is also successfully demonstrated. Knowing the grid inductance is important during weak grid operation, since it is needed in order to provide unity power factor to the point of common connection. At the end of the thesis, a control algorithm for voltage harmonic compensation during stand alone operation is presented. The presented algorithm gives the possibility to supply high quality power in isolated islands, where the load is unknown. Furthermore, this algorithm can be successfully used for UPS applications. The last chapter applies the voltage harmonic control to the Z-source converter having the possibility of achieving higher ac voltage than in conventional VSI, results are promising.
APA, Harvard, Vancouver, ISO, and other styles
46

Smailes, Michael Edward. "Hybrid HVDC transformer for multi-terminal networks." Thesis, University of Edinburgh, 2018. http://hdl.handle.net/1842/31173.

Full text
Abstract:
There is a trend for offshore wind farms to move further from the point of common coupling to access higher and more consistent wind speeds to reduce the levelised cost of energy. To accommodate these rising transmission distances, High Voltage Direct Current (HVDC) transmission has become increasingly popular. However, existing HVDC wind farm topologies and converter systems are ill suited to the demands of offshore operation. The HVDC and AC substations have been shown to contribute to more than 20% of the capital cost of the wind farm and provide a single point of failure. Therefore, many wind farms have experienced significant delays in construction and commissioning, or been brought off line until faults could be repaired. What is more, around 75% of the cost of the HVDC and AC substations can be attributed to structural and installation costs. Learning from earlier experiences, industry is now beginning to investigate the potential of a modular approach. In place of a single large converter, several converters are connected in series, reducing substation individual size and complexity. While such options somewhat reduce the capital costs, further reductions are possible through elimination of the offshore substations altogether. This thesis concerns the design and evaluation the Hybrid HVDC Transformer, a high power, high voltage, DC transformer. This forms part of the platform-less (i.e. without substations) offshore DC power collection and distribution concept first introduced by the Offshore Renewable Energy Catapult. By operating in the medium frequency range the proposed Hybrid HVDC Transformer can be located within each turbine’s nacelle or tower and remove the need for expensive offshore AC and DC substations. While solid state, non-isolating DC-DC transformers have been proposed in the literature, they are incapable of achieving the step up ratios required for the Hybrid HVDC transformer [1]– [3]. A magnetic transformer is therefore required, although medium frequency and non-sinusoidal operation does complicate the design somewhat. For example, inter-winding capacitances are more significant and core losses are increased due to the added harmonics injected by the primary and secondary converters [1], [2]. To mitigate the impact of these complications, an investigation into the optimal design was conducted, including all power converter topologies, core shapes and winding configurations. The modular multilevel converter in this case proved to be the most efficient and practical topology however, the number of voltage levels that could be generated on the primary converter was limited by the DC bus voltage. To avoid the use of pulse width modulation and hence large switching losses, a novel MMC control algorithm is proposed to reduce the magnitude of the converter generated harmonics while maintaining a high efficiency. The development and analysis of this High Definition Modular Multilevel Control algorithm forms the bulk of this thesis’ contribution. While the High Definition Modular Multilevel Control algorithm was developed initially for the Hybrid HVDC Transformer, analysis shows it has several other potential applications particularly in medium and low voltage ranges.
APA, Harvard, Vancouver, ISO, and other styles
47

Sujod, Muhamad Zahim [Verfasser], István [Akademischer Betreuer] Erlich, and Kai [Akademischer Betreuer] Strunz. "Advanced Converter Control Techniques for Improving the Performances of DFIG based Wind Turbines / Muhamad Zahim Sujod. Betreuer: István Erlich ; Kai Strunz." Duisburg, 2014. http://d-nb.info/1053227027/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Caballero, Diaz Luis. "Contributions to the design and operation of a multilevel-active-clamped Dc-Ac grid- connected power converter for wind energy conversion systems." Doctoral thesis, Universitat Politècnica de Catalunya, 2017. http://hdl.handle.net/10803/454979.

Full text
Abstract:
The demand of wind energy has considerably increased during the last decades. In order to fulfil this great energy demand, wind energy conversion systems (WECS) are designed to manage higher power ratings. Currently, the most attractive power converter topology in commercial WECS is the conventional two-level back-to-back voltage-source converter (2L-B2B). However, the 2L-B2B topology could have difficulties to achieve an acceptable performance with the available switching devices for the largest WECS, even though having the cost advantage. Instead, multilevel converters increase the power without increasing neither current nor blocking voltage of the power semiconductors, enabling a cost-effective design for the largest WECS using the available switching devices. Within the multilevel converters, the 3L-NPC topology offers high penetration in the market of large WECS. However, one of its major drawbacks is that the power loss is unevenly distributed among the switching devices. Therefore, the 3L-NPC output power capability is limited by the thermal performance of the most stressed switching device, which depends on the operating point. The 3L-ANPC topology was proposed in order to improve the power loss distribution among the power semiconductors. The 3L-ANPC provides a controllable path for the neutral current. Hence, the 3L-ANPC is able to offer certain freedom to distribute the power loss among the power semiconductors. As a consequence, and compared to the 3L-NPC, the thermal performance is more uniform and the output power capability increases. However, there is still room for improvement. In light of the previous discussion, the proposed thesis defines enhanced design guidelines for the dc-ac grid-connected 3L-ANPC power converter, focused on improving its reliability and electrical performance, and following the trend of the current state of the art to define a feasible solution for the next generation of WECS. The thesis contributions are based on defining an enhanced power device configuration and a novel commutation sequence, avoiding concentrating both significant conduction and switching losses on a single power semiconductor device. This allows then selecting the most appropriate device for each converter position, which leads to a better converter efficiency and to a more uniform power loss distribution and thermal performance. This also leads to a higher converter power rating, and it is expected to improve the converter reliability.
La demanda de energía eólica ha incrementado considerablemente durante las últimas décadas. Con el objetivo de satisfacer esta gran demanda, los sistemas de conversión de energía eólica (WECS) son diseñados para operar con mayores niveles de potencia. Actualmente, la topología de convertidor de potencia más atractiva en los WECS comerciales es el convertidor de dos niveles operando en fuente de tensión y configuración back to back (2L-B2B). Sin embargo, esta topología podría tener dificultades para ofrecer un comportamiento aceptable en los WECS de mayor potencia con los dispositivos actuales, incluso aunque su coste sea reducido. En cambio, los convertidores multinivel pueden incrementar la potencia sin necesidad de incrementar la corriente ni el voltaje de bloqueo de los dispositivos, permitiendo conseguir un diseño adecuado para los WECS de mayor potencia usando los dispositivos actuales. Dentro de los convertidores multinivel, la topología 3L-NPC tiene una gran aceptación en el mercado eólico, siendo una solución común en los WECS de mayor potencia. Sin embargo, su gran inconveniente es que la potencia pérdida es distribuida de una manera desequilibrada entre los dispositivos. De este modo, la potencia de salida se ve limitada por el comportamiento térmico del dispositivo más estresado a nivel térmico, el cual depende del punto de operación. De esta manera, la topología 3L-ANPC fue propuesta con el objetivo de mejorar la distribución de las pérdidas del convertidor entre los dispositivos. El convertidor 3L-ANPC proporciona un camino totalmente controlable para la conexión del punto neutro. Por lo tanto, el convertidor 3LANPC es capaz de ofrecer cierto grado de libertad para distribuir la potencia pérdida entre los dispositivos. Como consecuencia, y comparado con el convertidor 3L-NPC, el comportamiento térmico es mucho más equilibrado y la potencia de salida puede ser incrementada. Sin embargo, todavía hay margen de mejora para alcanzar mejores prestaciones en el comportamiento del convertidor 3L-ANPC. A raíz de la argumentación anterior, la tesis propuesta define nuevas guías de diseño para el convertidor 3L-ANPC cc-ca conectado a la red. Las guías de diseño están focalizadas en mejorar la fiabilidad y el comportamiento eléctrico del convertidor, respetando la tendencia del estado del arte actual para definir una solución factible para la próxima generación de WECS. Las contribuciones de la tesis están basadas en definir una configuración de dispositivos mejorada y una secuencia de conmutación novedosa, evitando concentrar grandes pérdidas de conducción y de conmutación en un mismo dispositivo. Las contribuciones permiten seleccionar el dispositivo más adecuado para cada posición del convertidor, consiguiendo una mejor eficiencia y una distribución de pérdidas y comportamiento térmico más equilibrado. Además, también permiten operar con potencias más elevadas, y mejorar la fiabilidad del convertidor.
APA, Harvard, Vancouver, ISO, and other styles
49

Engström, Staffan. "Wind Farms Influence on Stability in an area with High Concentration of Hydropower Plants." Thesis, Uppsala universitet, Institutionen för fysik och astronomi, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-158447.

Full text
Abstract:
The number of large-scale wind farms integrated to the power system in Sweden is increasing. Two generator concepts that are widely used are Doubly-Fed Induction Generators (DFIG) and Full Power Converters (FPC). The study is of a quantitative character and the aim of the Master thesis is to compare DFIG-models with FPC-models integrated in an area with high concentration of hydropower. Then it is possible to examine how the dynamics in the power system change depending on the selection of technology (DFIG or FPC) when connecting a wind farm. The power system is simulated during a summer night, i.e., a low load is connected. The Master thesis covers stability analysis of the power system by using rotor angle stability that are split into small-signal stability and transient stability (time-domain simulations) and finally voltage stability to see how the hydropower generators react when varying the power production in the wind farm. The Master thesis concludes that independently of wind turbine technique, integration of a wind farm has slight impact on the stability in the power system compared to a power system without a wind farm, even though the load is low. Further, an integration of a wind farms affects the reactive power production in neighbouring hydropower plants. Finally, when increasing the size of the wind farm the neighbouring hydropower station consume less reactive power which can induce problem with the voltage stability.
APA, Harvard, Vancouver, ISO, and other styles
50

Arrais, Junior Ernano. "Estrat?gia de conversor para interliga??o de sistemas de gera??o e?lica ? rede el?trica." Universidade Federal do Rio Grande do Norte, 2014. http://repositorio.ufrn.br:8080/jspui/handle/123456789/15504.

Full text
Abstract:
Made available in DSpace on 2014-12-17T14:56:19Z (GMT). No. of bitstreams: 1 ErnanoAJ_DISSERT.pdf: 1903927 bytes, checksum: 0bb4c95cc8f08d85b6af9c71ab44494b (MD5) Previous issue date: 2014-07-11
Conselho Nacional de Desenvolvimento Cient?fico e Tecnol?gico
Currently, there are several power converter topologies applied to wind power generation. The converters allow the use of wind turbines operating at variable speed, enabling better use of wind forces. The high performance of the converters is being increasingly demanded, mainly because of the increase in the power generation capacity by wind turbines, which gave rise to various converter topologies, such as parallel or multilevel converters. The use of converters allow effective control of the power injected into the grid, either partially, for the case using partial converter, or total control for the case of using full converter. The back-to-back converter is one of the most used topologies in the market today, due to its simple structure, with few components, contributing to robust and reliable performance. In this work, is presented the implementation of a wind cogeneration system using a permanent magnet synchronous generator (PMSG) associated with a back-to-back power converter is proposed, in order to inject active power in an electric power system. The control strategy of the active power delivered to the grid by cogeneration is based on the philosophy of indirect control
Existem diversas topologias de conversores de pot?ncia aplicadas a sistemas de gera??o de energia e?lica. Os conversores permitem a gera??o de energia com turbinas e?licas em condi??es de velocidade vari?vel do vento, possibilitando um aproveitamento de forma mais eficaz das for?as do vento. A utiliza??o dos conversores possibilita o controle efetivo da pot?ncia injetada na rede, seja de maneira parcial, no caso de utiliza??o de conversores parciais, ou controle total, no caso de utiliza??o de conversores completos. O alto desempenho dos conversores vem sendo cada vez mais necess?rio, principalmente quando se busca a eleva??o da capacidade de gera??o de pot?ncia por parte das turbinas e?licas, o que fez surgir diversas novas topologias de conversores, sejam conversores paralelos ou multin?veis. O conversor na configura??o back-to-back ? um dos mais utilizados no mercado atualmente, devido ? sua estrutura simples, com poucos componentes, contribuindo assim para um desempenho robusto e confi?vel. Neste trabalho, apresenta-se a implementa??o de um sistema de cogera??o e?lica utilizando um gerador s?ncrono a ?m? permanente (PMSG) associado a um conversor de pot?ncia na topologia back-to-back, de maneira a injetar pot?ncia ativa em um sistema el?trico de pot?ncia. A estrat?gia do controle da pot?ncia ativa fornecida pela cogera??o ? rede el?trica ? baseada na filosofia do controle indireto
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography