Academic literature on the topic 'Wind modelling'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Wind modelling.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Wind modelling"
Leenman, Timo, and Frank Phillipson. "Optimal Placing of Wind Turbines: Modelling the Uncertainty." Journal of Clean Energy Technologies 3, no. 2 (2015): 91–105. http://dx.doi.org/10.7763/jocet.2015.v3.175.
Full textDone, James M., Ming Ge, Greg J. Holland, Ioana Dima-West, Samuel Phibbs, Geoffrey R. Saville, and Yuqing Wang. "Modelling global tropical cyclone wind footprints." Natural Hazards and Earth System Sciences 20, no. 2 (February 25, 2020): 567–80. http://dx.doi.org/10.5194/nhess-20-567-2020.
Full textBooth, Richard A., and Cathie J. Clarke. "Modelling the delivery of dust from discs to ionized winds." Monthly Notices of the Royal Astronomical Society 502, no. 2 (January 14, 2021): 1569–78. http://dx.doi.org/10.1093/mnras/stab090.
Full textBarthelmie, R. J., and J. P. Palutikof. "Coastal wind speed modelling for wind energy applications." Journal of Wind Engineering and Industrial Aerodynamics 62, no. 2-3 (September 1996): 213–36. http://dx.doi.org/10.1016/s0167-6105(96)00079-7.
Full textVerheij, F. J., J. W. Cleijne, and J. A. Leene. "Gust modelling for wind loading." Journal of Wind Engineering and Industrial Aerodynamics 42, no. 1-3 (October 1992): 947–58. http://dx.doi.org/10.1016/0167-6105(92)90101-f.
Full textGeorge, Shilpa, and Shajilal A.S. "Wind Turbine – Types and Modelling." International Journal of Engineering Trends and Technology 38, no. 8 (August 25, 2016): 417–19. http://dx.doi.org/10.14445/22315381/ijett-v38p276.
Full textHurley, P. J., P. C. Manins, and J. A. Noonan. "Modelling wind fields in MAQS." Environmental Software 11, no. 1-3 (January 1996): 35–44. http://dx.doi.org/10.1016/s0266-9838(96)00028-7.
Full textLiljegren, S., S. Höfner, B. Freytag, and S. Bladh. "Atmospheres and wind properties of non-spherical AGB stars." Astronomy & Astrophysics 619 (November 2018): A47. http://dx.doi.org/10.1051/0004-6361/201833203.
Full textRoscher, B., A. Werkmeister, G. Jacobs, and R. Schelenz. "Modelling of Wind Turbine Loads nearby a Wind Farm." Journal of Physics: Conference Series 854 (May 2017): 012038. http://dx.doi.org/10.1088/1742-6596/854/1/012038.
Full textDallas, Scott, Adam Stock, and Edward Hart. "Control-oriented modelling of wind direction variability." Wind Energy Science 9, no. 4 (April 10, 2024): 841–67. http://dx.doi.org/10.5194/wes-9-841-2024.
Full textDissertations / Theses on the topic "Wind modelling"
Payer, Tilman. "Modelling extreme wind speeds." Diss., lmu, 2007. http://nbn-resolving.de/urn:nbn:de:bvb:19-67547.
Full textConan, Boris. "Wind resource accessment in complex terrain by wind tunnel modelling." Phd thesis, Université d'Orléans, 2012. http://tel.archives-ouvertes.fr/tel-00843645.
Full textAlisar, Ibrahim. "Stochastic Modelling Of Wind Energy Generation." Master's thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12614930/index.pdf.
Full textPoushpas, Saman. "Wind farm simulation modelling and control." Thesis, University of Strathclyde, 2016. http://digitool.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=27911.
Full textHaglund, El Gaidi Sebastian. "Partially Parabolic Wind Turbine Flow Modelling." Thesis, KTH, Mekanik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-226309.
Full textLupton, Richard. "Frequency-domain modelling of floating wind turbines." Thesis, University of Cambridge, 2015. https://www.repository.cam.ac.uk/handle/1810/252880.
Full textMaldonado, Jose Miguel. "MODELLING WIND FLOW THROUGHCANOPIES SYSTEMS USING OPENFOAM." Thesis, Högskolan i Gävle, Avdelningen för bygg- energi- och miljöteknik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-15461.
Full textzafar, syed hammad. "Modelling and control of large wind turbine." Thesis, Karlstads universitet, Avdelningen för fysik och elektroteknik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-30703.
Full textChane, Kon Laurent. "Wind erosion modelling of stockpiles and embankments." Thesis, Imperial College London, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.408520.
Full textRenström, Joakim. "Modelling of ice throws from wind turbines." Thesis, Uppsala universitet, Luft-, vatten och landskapslära, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-251292.
Full textNär vindkraftssektorn expanderar till områden med ett kallare klimat, kommer problemet med nedisade vindkraftverk och iskast att öka. Moderna vindkraftverk kan ha en typisk effekt på 3.3 MW och en rotordiameter på över 120 meter, vilket resulterar i att de ivägkastade isbitarna skulle kunna få en initialhastighet på 90 m/s. Det skulle även resultera i att isbitarna kastas iväg en lång sträcka från kraftverket, vilket i kombination med den höga initialhastigheten skulle kunna bli en stor säkerhetsrisk för de personer som vistas i områdena närmast runt vindkraftverken. En ballisisk iskastmodel utvecklades för att beräkna hur långt från vinkraftverket isbitarna kan kastas. Arbetet delades upp i två delar, en känslighetsanalys och en verklig fallstudie. I känslighetsanalysen undersöktes åtta viktiga parametrars inflytande på iskastet. Resultatet från den visar på att ändringar i parametrarna isbitens massa och form samt seperations positionen på bladet och bladets vinkel hade störst inverkan på kastlängden. En maximal kastlängd nedströms vindkraftverket på 239 meter erhölls för U=20m/s, θ=45° och r=55m. När lyftkraften inkluderades ökade kastlängden nedströms till 350 meter, dock är osäkerheten i isbitarnas form stor, vilket gör dessa resultat osäkra. I den verkliga fallstudien simulerades iskast genom att iskastmodellen kördes med modellerad meteorologisk data från en vindkraftspark i norra Svergie. Vinkraftsparken innehöll 60 turbiner och sannolikheten för att en isbit ska landa i en ruta på 1*1m beräknades runt varje turbin. För att kunna beräkna sannolikheten användes en Monte Carlo analys där ett stort antal isbitar skickades iväg. Resultatet visade på att korrelationen var stor mellan sannolikheten för att en isbit ska landa i en ruta på 1 m² och vindriktningen. Eftersom vindkraftsparken var belägen i ett område med en komplex terräng varierade formen och intensiteten på sannolikhetsområdena mellan olika delar av parken. Speciellt i parkens södra del är sannolikhetsområdet för vindkraftsverken mer utbrett i nordostlig riktning på grund av att sydvästliga vindar är vanligast då iskast förekommer.
Books on the topic "Wind modelling"
Torres, Diego F., ed. Modelling Pulsar Wind Nebulae. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-63031-1.
Full textSørensen, Poul. Frequency domain modelling of wind turbine structures. Roskilde: Risø National Laboratory, 1994.
Find full textShao, Yaping. Physics and modelling of wind erosion. Dordrecht: Kluwer Academic, 2000.
Find full textShao, Yaping, ed. Physics and Modelling of Wind Erosion. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-8895-7.
Full textOlimpo, Anaya-Lara, ed. Wind energy generation: Modelling and control. Hoboken, NJ: John Wiley & Sons, 2009.
Find full textDouglas, Alan Leslie. Wind profiles for plume rise modelling. Salford: University of Salford, 1988.
Find full textHall, Philip. Numerical modelling of wind-induced lake circulation. Birmingham: University of Birmingham, 1987.
Find full textLundsager, Per. Dynamic modelling of wind turbine drive trains and wind/diesel systems. Roskilde, Denmark: Riso National Laboratory, 1986.
Find full textHannah, Paul. Application of wind modelling techniques in complex terrain. Norwich: University of East Anglia, 1993.
Find full textBook chapters on the topic "Wind modelling"
Wessel, Arne, Joachim Peinke, and Bernhard Lange. "Modelling Turbulence Intensities Inside Wind Farms." In Wind Energy, 253–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-33866-6_47.
Full textWelte, Thomas Michael, Iver Bakken Sperstad, Elin Espeland Halvorsen-Weare, Øyvind Netland, Lars Magne Nonås, and Magnus Stålhane. "Operation and Maintenance Modelling." In Offshore Wind Energy Technology, 269–303. Chichester, UK: John Wiley & Sons, Ltd, 2018. http://dx.doi.org/10.1002/9781119097808.ch7.
Full textSládek, Ivo, Karel Kozel, and Zbyňek Jaňour. "On the Atmospheric Flow Modelling over Complex Relief." In Wind Energy, 55–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-33866-6_10.
Full textAubrun, Sandrine. "Modelling Wind Turbine Wakes with a Porosity Concept." In Wind Energy, 265–69. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-33866-6_49.
Full textMilano, Federico. "Wind Power Devices." In Power System Modelling and Scripting, 435–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13669-6_20.
Full textWagner, Claus. "Turbulence Modelling and Numerical Flow Simulation of Turbulent Flows." In Wind Energy, 65–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-33866-6_12.
Full textCleve, Jochen, and Martin Greiner. "Stochastic Small-Scale Modelling of Turbulent Wind Time Series." In Wind Energy, 123–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-33866-6_22.
Full textKothes, Roland. "Radio Properties of Pulsar Wind Nebulae." In Modelling Pulsar Wind Nebulae, 1–27. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-63031-1_1.
Full textDel Zanna, Luca, and Barbara Olmi. "Multidimensional Relativistic MHD Simulations of Pulsar Wind Nebulae: Dynamics and Emission." In Modelling Pulsar Wind Nebulae, 215–46. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-63031-1_10.
Full textSironi, Lorenzo, and Benoît Cerutti. "Particle Acceleration in Pulsar Wind Nebulae: PIC Modelling." In Modelling Pulsar Wind Nebulae, 247–77. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-63031-1_11.
Full textConference papers on the topic "Wind modelling"
Zank, G. P., H. L. Pauls, and L. L. Williams. "Modelling the outer heliosphere." In Proceedings of the eigth international solar wind conference: Solar wind eight. AIP, 1996. http://dx.doi.org/10.1063/1.51352.
Full textRosmin, N., S. J. Watson, and M. Tompson. "Speed Control at Low Wind Speeds for a Variable Speed Fixed Pitch Wind Turbine." In Modelling, Identification, and Control. Calgary,AB,Canada: ACTAPRESS, 2010. http://dx.doi.org/10.2316/p.2010.675-119.
Full textSarkar, Arnab, and Amit Kumar Singh. "Wind Climate Modelling for Estimation of Along Wind Load." In Eighth Asia-Pacific Conference on Wind Engineering. Singapore: Research Publishing Services, 2013. http://dx.doi.org/10.3850/978-981-07-8012-8_301.
Full textVolokitin, Aleksander, Vladimir Krasnoselskikh, Catherine Krafft, and Evgenii Kuznetsov. "Modelling of the beam-plasma interaction in a strongly inhomogeneous plasma." In SOLAR WIND 13: Proceedings of the Thirteenth International Solar Wind Conference. AIP Publishing LLC, 2013. http://dx.doi.org/10.1063/1.4810994.
Full textGonzalez-Salcedo, Alvaro, Maria Aparicio-Sanchez, Xabier Munduate, Rafael Palacios, J. M. R. Graham, Oscar Pires, and Beatriz Mendez. "A Computationally-Efficient Panel Code for Unsteady Airfoil Modelling Including Dynamic Stall." In 35th Wind Energy Symposium. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2017. http://dx.doi.org/10.2514/6.2017-2000.
Full textStorey, Rupert, Stuart E. Norris, and John Cater. "Modelling Extreme Wind Events in a Wind Farm using Large Eddy Simulation." In 32nd ASME Wind Energy Symposium. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2014. http://dx.doi.org/10.2514/6.2014-0711.
Full textLima, J., and K. Tsinganos. "Modelling the heliolatitudinal gradient of the solar wind parameters with exact hydrodynamic solutions." In Proceedings of the eigth international solar wind conference: Solar wind eight. AIP, 1996. http://dx.doi.org/10.1063/1.51434.
Full textMendez, Beatriz, Arturo Muñoz, Oscar Pires, and Xabier Munduate. "Characterization of the carborundum used in rough airfoil surface tests and modelling with CFD." In 35th Wind Energy Symposium. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2017. http://dx.doi.org/10.2514/6.2017-0916.
Full textZank, G. P., H. L. Pauls, L. L. Williams, and D. T. Hall. "Multi-dimensional modelling of the solar wind—LISM interaction including neutrals: a Boltzmann approach." In Proceedings of the eigth international solar wind conference: Solar wind eight. AIP, 1996. http://dx.doi.org/10.1063/1.51453.
Full textMarmutova, Svetlana, and Timo Vekara. "Estimation of Radar Cross Section of a Savonius Wind Turbine." In Modelling and Simulation. Calgary,AB,Canada: ACTAPRESS, 2013. http://dx.doi.org/10.2316/p.2013.802-070.
Full textReports on the topic "Wind modelling"
Bernow, S., B. Biewald, J. Hall, and D. Singh. Modelling renewable electric resources: A case study of wind. Office of Scientific and Technical Information (OSTI), July 1994. http://dx.doi.org/10.2172/125372.
Full textMa, Yimin, Gary Dietachmayer, Peter Steinle, Wenming Lu, Lawrence Rikus, and Dean Sgarbossa. Diagnose Wind Gusts from High Resolution NWP Modelling over Mountainous Regions. Edited by Keith Day. Bureau of Meteorology, April 2018. http://dx.doi.org/10.22499/4.0029.
Full textHaslett, John, and Adrian E. Raftery. Reply to the Discussion of Space-Time Modelling with Long-Memory Dependence: Assessing Ireland's Wind Resource. Fort Belvoir, VA: Defense Technical Information Center, October 1988. http://dx.doi.org/10.21236/ada201678.
Full textBrasseur, Sophie, Geert Aarts, and Jessica Schop. Measurement of effects of pile driving in the Borssele wind farm zone on the seals in the Dutch Delta area- version II : Changes in dive behaviour, haul-out and stranding of harbour and grey seals, including sound modelling. Den Helder: Wageningen Marine Research, 2022. http://dx.doi.org/10.18174/578120.
Full textDaldrup, Valerie, Iliyana Madina, Caron Pomp, Suntje Schmidt, and Julia Stadermann. Whitepaper WTT Impact Canvas: Entwicklung und Pilotierung eines Canvas zur Darstellung der Wirkung von Transfermaßnahmen. Technische Hochschule Wildau, 2022. http://dx.doi.org/10.15771/innohub_6.
Full textJalkanen, Jukka-Pekka, Erik Fridell, Jaakko Kukkonen, Jana Moldanova, Leonidas Ntziachristos, Achilleas Grigoriadis, Maria Moustaka, et al. Environmental impacts of exhaust gas cleaning systems in the Baltic Sea, North Sea, and the Mediterranean Sea area. Finnish Meteorological Institute, 2024. http://dx.doi.org/10.35614/isbn.9789523361898.
Full text