Academic literature on the topic 'Wind power prediction'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Wind power prediction.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Wind power prediction"
Wu, Xinhua, Nan Chen, Qianyun Du, Shuangshuang Mao, and Xiaoming Ju. "Short-term wind power prediction model based on ARMA-GRU-QPSO and error correction." Journal of Physics: Conference Series 2427, no. 1 (2023): 012028. http://dx.doi.org/10.1088/1742-6596/2427/1/012028.
Full textBao-Wei Zhang, Bao-Wei Zhang, Hong-Bo Cui Bao-Wei Zhang, and Jiu-Xiang Song Hong-Bo Cui. "Wind Power Prediction Based on Difference Method." 電腦學刊 33, no. 4 (2022): 195–204. http://dx.doi.org/10.53106/199115992022083304016.
Full textHu, Hongda, Zhiyong Hu, Kaiwen Zhong, et al. "Long-term offshore wind power prediction using spatiotemporal kriging: A case study in China’s Guangdong Province." Energy Exploration & Exploitation 38, no. 3 (2019): 703–22. http://dx.doi.org/10.1177/0144598719889368.
Full textGuo, Wei, Li Xu, Danyang Zhao, Dianqiang Zhou, Tian Wang, and Xujing Tang. "A Wind Power Combination Forecasting Method Based on GASF Image Representation and UniFormer." Journal of Marine Science and Engineering 12, no. 7 (2024): 1173. http://dx.doi.org/10.3390/jmse12071173.
Full textLiu, Yi, Jun He, Yu Wang, Zong Liu, Lixun He, and Yanyang Wang. "Short-Term Wind Power Prediction Based on CEEMDAN-SE and Bidirectional LSTM Neural Network with Markov Chain." Energies 16, no. 14 (2023): 5476. http://dx.doi.org/10.3390/en16145476.
Full textLiu, Yuanlong, Yuanbiao Zhang, and Ziyue Chen. "Wind Power Prediction Investigation." Research Journal of Applied Sciences, Engineering and Technology 5, no. 5 (2013): 1762–68. http://dx.doi.org/10.19026/rjaset.5.4935.
Full textLiu, Hai Ke, Jiang Xia Feng, Shen Quan Yang, and Tao Jia. "Wind Power Prediction Model Based on ARMA and Improved BP-ANN." Advanced Materials Research 1008-1009 (August 2014): 183–87. http://dx.doi.org/10.4028/www.scientific.net/amr.1008-1009.183.
Full textLi, Wei, Hong Tu Zhang, and Ting Ting An. "Study on Short-Term Wind Power Prediction Model Based on ARMA Theory." Applied Mechanics and Materials 448-453 (October 2013): 1875–78. http://dx.doi.org/10.4028/www.scientific.net/amm.448-453.1875.
Full textSolovev, Bogdan, and Giorgi Gamisonia. "WIND POWER PREDICTION METHODS FOR SHELF WIND POWER PLANTS." Electrical and data processing facilities and systems 18, no. 3-4 (2022): 108–20. http://dx.doi.org/10.17122/1999-5458-2022-18-3-4-108-120.
Full textRamadevi, Bhukya, Venkata Ramana Kasi, and Kishore Bingi. "Hybrid LSTM-Based Fractional-Order Neural Network for Jeju Island’s Wind Farm Power Forecasting." Fractal and Fractional 8, no. 3 (2024): 149. http://dx.doi.org/10.3390/fractalfract8030149.
Full textDissertations / Theses on the topic "Wind power prediction"
Vlasova, Julija. "Spatio-temporal analysis of wind power prediction errors." Master's thesis, Lithuanian Academic Libraries Network (LABT), 2007. http://vddb.library.lt/obj/LT-eLABa-0001:E.02~2007~D_20070816_142259-79654.
Full textCutler, Nicholas Jeffrey Electrical Engineering & Telecommunications Faculty of Engineering UNSW. "Characterising the uncertainty in potential large rapid changes in wind power generation." Publisher:University of New South Wales. Electrical Engineering & Telecommunications, 2009. http://handle.unsw.edu.au/1959.4/43570.
Full textClemow, Philip R. "Smoothing wind farm output power through co-ordinated control and short term wind speed prediction." Thesis, Imperial College London, 2012. http://hdl.handle.net/10044/1/9504.
Full textSakthi, Gireesh. "WIND POWER PREDICTION MODEL BASED ON PUBLICLY AVAILABLE DATA: SENSITIVITY ANALYSIS ON ROUGHNESS AND PRODUCTION TREND." Thesis, Uppsala universitet, Institutionen för geovetenskaper, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-400462.
Full textWerngren, Simon. "Comparison of different machine learning models for wind turbine power predictions." Thesis, Uppsala universitet, Avdelningen för systemteknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-362332.
Full textHeinermann, Justin Philipp [Verfasser], Oliver [Akademischer Betreuer] Kramer, and Jörg [Akademischer Betreuer] Lässig. "Wind Power Prediction with Machine Learning Ensembles / Justin Philipp Heinermann ; Oliver Kramer, Jörg Lässig." Oldenburg : BIS der Universität Oldenburg, 2016. http://d-nb.info/1122481861/34.
Full textHeinermann, Justin Philipp Verfasser], Oliver [Akademischer Betreuer] [Kramer, and Jörg [Akademischer Betreuer] Lässig. "Wind Power Prediction with Machine Learning Ensembles / Justin Philipp Heinermann ; Oliver Kramer, Jörg Lässig." Oldenburg : BIS der Universität Oldenburg, 2016. http://d-nb.info/1122481861/34.
Full textÅkerberg, Ludvig. "Using Unsupervised Machine Learning for Outlier Detection in Data to Improve Wind Power Production Prediction." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-200336.
Full textPfeifer, Mark B. "A hybrid approach to forecasting wind power using Artificial Neural Networks and Numeric Weather Prediction." Thesis, Wichita State University, 2011. http://hdl.handle.net/10057/5031.
Full textSugathan, Aromal, and Sean Gregory. "Analysis of AEP prediction against production data of commercial wind turbines in Sweden." Thesis, Högskolan i Halmstad, Akademin för företagande, innovation och hållbarhet, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-44527.
Full textBooks on the topic "Wind power prediction"
G, Sigari, Costi T, Michigan State University. Division of Engineering Research., and United States. National Aeronautics and Space Administration., eds. Effect of accuracy of wind power prediction on power system operator: Final report. College of Engineering, Michigan State University, 1985.
Find full textNational Renewable Energy Laboratory (U.S.) and IEEE Energy Conversion Congress and Exposition (2012 : Raleigh, N.C.), eds. Wind power plant prediction by using neural networks: Preprint. National Renewable Energy Laboratory, 2012.
Find full textP, Shepherd Kevin, and Langley Research Center, eds. Wind turbine acoustics. National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Division, 1990.
Find full textEffect of accuracy of wind power prediction on power system operator: Final report. College of Engineering, Michigan State University, 1985.
Find full textLange, Matthias, and Ulrich Focken. Physical Approach to Short-Term Wind Power Prediction. Springer London, Limited, 2006.
Find full textLange, Matthias, and Ulrich Focken. Physical Approach to Short-Term Wind Power Prediction. Springer, 2009.
Find full textLange, Matthias, and Ulrich Focken. Physical Approach to Short-Term Wind Power Prediction. Springer Berlin / Heidelberg, 2010.
Find full textPhysical Approach to Short-Term Wind Power Prediction. Springer-Verlag, 2006. http://dx.doi.org/10.1007/3-540-31106-8.
Full textZastrau, David. Estimation of Uncertainty of Wind Energy Predictions: With Application to Weather Routing and Wind Power Generation. Lang GmbH, Internationaler Verlag der Wissenschaften, Peter, 2017.
Find full textBook chapters on the topic "Wind power prediction"
Ernst, Bernhard. "Wind Power Prediction." In Wind Power in Power Systems. John Wiley & Sons, Ltd, 2012. http://dx.doi.org/10.1002/9781119941842.ch33.
Full textLi, Kai, Kaiming Shi, Ruiming Ma, Shengpeng Sang, Shitong Cao, and Yuliang Gou. "Wind Power Correction Prediction Considering Similar Wind Power Climbing Events." In Lecture Notes in Electrical Engineering. Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-7146-2_68.
Full textTreiber, Nils André, Justin Heinermann, and Oliver Kramer. "Wind Power Prediction with Machine Learning." In Computational Sustainability. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31858-5_2.
Full textDvorský, Jiří, Stanislav Mišák, Lukáš Prokop, and Tadeusz Sikora. "On Wind Power Station Production Prediction." In Networked Digital Technologies. Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14306-9_65.
Full textŞen, Zekâi. "Innovative Wind Energy Models and Prediction Methodologies." In Handbook of Wind Power Systems. Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-41080-2_4.
Full textGuo, Chengke, Qijun Wang, Bo Peng, and Ning Mei. "A Review of Wind Power Cluster Forecasting Techniques." In Lecture Notes in Electrical Engineering. Springer Nature Singapore, 2025. https://doi.org/10.1007/978-981-96-4856-6_20.
Full textAmbach, Daniel, and Carsten Croonenbroeck. "Obtaining Superior Wind Power Predictions from a Periodic and Heteroscedastic Wind Power Prediction Tool." In Springer Proceedings in Mathematics & Statistics. Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-13881-7_25.
Full textLydia, M., S. Suresh Kumar, A. Immanuel Selvakumar, and G. Edwin Prem Kumar. "Wind Farm Power Prediction Based on Wind Speed and Power Curve Models." In Lecture Notes in Electrical Engineering. Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4852-4_2.
Full textKolumbán, Sándor, Stella Kapodistria, and Nazanin Nooraee. "Short Term Wind Turbine Power Output Prediction." In Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering. Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-31234-2_7.
Full textWu, Wenjie, Heping Jin, Gan Wang, et al. "Research on Wind Power Peak Prediction Method." In Lecture Notes in Electrical Engineering. Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-1068-3_66.
Full textConference papers on the topic "Wind power prediction"
Ghazaei, Elman, Omid Feizi, Amir A. Ghavifekr, Mina Salim, and Armin Hassanzadeh. "Wind Farm Power Prediction with Transformer Encoder." In 2024 9th International Conference on Technology and Energy Management (ICTEM). IEEE, 2024. http://dx.doi.org/10.1109/ictem60690.2024.10631900.
Full textArati, Devi C., Parvathy S. Menon, Jithin Velayudhan, Prabaharan Poornachandran, Arun K. Raj, and Sikha O. K. "Enhancing Wind Power Prediction through Machine Learning." In 2024 4th International Conference on Artificial Intelligence and Signal Processing (AISP). IEEE, 2024. https://doi.org/10.1109/aisp61711.2024.10870705.
Full textHu, Mengying, Xiang Gao, Jiandong Duan, Yifei He, Junpeng Ji, and Lei Yang. "Wind Power Prediction Based on SSA-SVM." In 2025 9th International Conference on Green Energy and Applications (ICGEA). IEEE, 2025. https://doi.org/10.1109/icgea64602.2025.11009957.
Full textYe, Hongzhi. "Wind speed prediction based on improved Informer." In 2024 4th International Conference on Intelligent Power and Systems (ICIPS). IEEE, 2024. https://doi.org/10.1109/icips64173.2024.10900083.
Full textZhao, Qianhao, Jiazheng Zhang, and Yudong Meng. "Research on Power Prediction of Offshore Wind Power Based on BiSTM." In 2024 6th International Conference on Energy Systems and Electrical Power (ICESEP). IEEE, 2024. http://dx.doi.org/10.1109/icesep62218.2024.10651659.
Full textRen, Zhe, Chengshuai Huang, and Meng Li. "Research on Wind Power Prediction." In 2019 IEEE 3rd Conference on Energy Internet and Energy System Integration (EI2). IEEE, 2019. http://dx.doi.org/10.1109/ei247390.2019.9061851.
Full textKramer, Oliver, and Jill Baumann. "Wind Power Prediction with ETSformer." In ESANN 2023 - European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. Ciaco - i6doc.com, 2023. http://dx.doi.org/10.14428/esann/2023.es2023-173.
Full textZhang, Peng, Chunyan Li, and Qian Zhang. "Wind power accommodation considering the prediction error of wind power." In 2016 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS). IEEE, 2016. http://dx.doi.org/10.1109/pmaps.2016.7764079.
Full textRenani, E. T., M. F. M. Elias, and N. Abd Rahim. "Wind power prediction using enhanced parametric wind power curve modeling." In 4th IET Clean Energy and Technology Conference (CEAT 2016). Institution of Engineering and Technology, 2016. http://dx.doi.org/10.1049/cp.2016.1359.
Full textChoudhary, A. K., K. G. Upadhyay, and M. M. Tripathi. "Soft computing applications in wind speed and power prediction for wind energy." In 2012 IEEE Fifth Power India Conference. IEEE, 2012. http://dx.doi.org/10.1109/poweri.2012.6479588.
Full textReports on the topic "Wind power prediction"
Pilla, Ernani, Sean Casto, Julia Willmott, et al. Bird and Bat Collision Risks & Wind Energy Facilities. Inter-American Development Bank, 2012. http://dx.doi.org/10.18235/0006988.
Full textSadegh, Mojtaba, Seyd Seydi, John Abatzoglou, Amir AghaKouchak, Mir Matin, and Kaveh Madani. January 2025 Los Angeles Wildfires: Once-in-a-Generation Events Now Happen Frequently. United Nations University Institute for Water, Environment and Health (UNU INWEH), 2025. https://doi.org/10.53328/inr25mos003.
Full textMartin Wilde, Principal Investigator. The use of real-time off-site observations as a methodology for increasing forecast skill in prediction of large wind power ramps one or more hours ahead of their impact on a wind plant. Office of Scientific and Technical Information (OSTI), 2012. http://dx.doi.org/10.2172/1062998.
Full text