Dissertations / Theses on the topic 'Wind Turbine Airfoil'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 32 dissertations / theses for your research on the topic 'Wind Turbine Airfoil.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Sæta, Eivind. "Design of Airfoil for downwind wind turbine Rotor." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for energi- og prosessteknikk, 2009. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-12883.
Full textEndo, Makoto. "Wind Turbine Airfoil Optimization by Particle Swarm Method." Case Western Reserve University School of Graduate Studies / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=case1285774101.
Full textErrasquin, Leonardo. "Airfoil Self-Noise Prediction Using Neural Networks for Wind Turbines." Thesis, Virginia Tech, 2009. http://hdl.handle.net/10919/35193.
Full textMaster of Science
Ahmed, Irfan [Verfasser]. "Development of Form-Adaptive Airfoil Profiles for Wind Turbine Application / Irfan Ahmed." Kassel : Kassel University Press, 2017. http://d-nb.info/1143155335/34.
Full textDuran, Serhat. "Computer-aided Design Of Horizontal-axis Wind Turbine Blades." Master's thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/12605790/index.pdf.
Full textpower required from a turbine, number of blades, design wind velocity and blade profile type (airfoil type). The program can be used by anyone who may not be intimately concerned with the concepts of blade design procedure and the results taken from the program can be used for further studies.
Vesel, Richard Jr. "Optimization of a wind turbine rotor with variable airfoil shape via a genetic algorithm." Connect to resource, 2009. http://hdl.handle.net/1811/44504.
Full textVesel, Richard W. Jr. "Aero-Structural Optimization of a 5 MW Wind Turbine Rotor." The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1331134966.
Full textLambie, Benjamin [Verfasser], Cameron [Akademischer Betreuer] Tropea, and Oliver [Akademischer Betreuer] Paschereit. "Aeroelastic Investigation of a Wind Turbine Airfoil with Self-Adaptive Camber / Benjamin Lambie. Betreuer: Cameron Tropea ; Oliver Paschereit." Darmstadt : Universitäts- und Landesbibliothek Darmstadt, 2011. http://d-nb.info/1106256468/34.
Full textZhao, Jiaming. "Experimental Study of Effects of Leading-Edge Structures on the Dynamic Stall of a Vertical Axis Wind Turbine Airfoil." Thesis, North Dakota State University, 2020. https://hdl.handle.net/10365/32053.
Full textSagol, Ece. "Site Specific Design Optimization Of A Horizontal Axis Wind Turbine Based On Minimum Cost Of Energy." Master's thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/12611604/index.pdf.
Full textCencelli, Nicolette Arnalda, Bakstrom T. W. Von, and T. S. A. Denton. "Aerodynamic optimisation of a small-scale wind turbine blade for low windspeed conditions." Thesis, Stellenbosch : Stellenbosch University, 2006. http://hdl.handle.net/10019.1/353.
Full textENGLISH ABSTRACT: Wind conditions in South Africa determine the need for a small-scale wind turbine to produce useable power at windspeeds below 7m/s. In this project, a range of windspeeds, within which optimal performance o the wind turbine is expected, was selected. The optimal performance was assessed in terms of the Coefficient of Power(Cp), which rates the turbines blade's ability to extract energy form the avalible wind stream. The optimisation methods employed allowed a means of tackling the multi-variable problem such that the aerodynamic characteristics of the blade were ideal throughout the wind speed range. The design problem was broken down into a two-dimensional optimisaion of the airfoils used at the radial stations, and a three-dimensional optimisation of the geometric features of the wind rotor. by means of blending various standard airfoil profiles, a new profile was created at each radial station. XFOIL was used for the two-dimensional analysis of these airfoils. Three-dimensional optimisn involved representation of the rotor as a simplified model and use of the Blade Element Momentum(BEM) method for analysis. an existimg turbine blade, on which the design specifications were modelled, was further used for comparative purposes throughout the project. The resulting blade design offers substantial improvements on the reference design. The application of optimisation methods has successfully aided the creation of a wind turbine blade with consistent peak performance over a range of design prints.
Sponsored by the Centre for Renewable and Sustainable Energy Studies, Stellenbosch University
Jami, Valentina. "Development of Computer Program for Wind Resource Assessment, Rotor Design and Rotor Performance." Wright State University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=wright1513703072278665.
Full textJunior, Joseph Youssif Saab. "Trailing-edge noise: development and application of a noise prediction tool for the assessment and design of wind turbine airfoils." Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/3/3150/tde-14032017-140101/.
Full textEste trabalho descreve a pesquisa de elementos iniciais, o projeto, a implantação e a aplicação de uma ferramenta de predição de ruído de bordo de fuga, no desenvolvimento de aerofólios mais silenciosos para turbinas eólicas de grande porte. O objetivo imediato da ferramenta é permitir a comparação de desempenho acústico relativo entre aerofólios no início do ciclo de projeto de novas pás e rotores de turbinas eólicas. O objetivo mais amplo é possibilitar o projeto de turbinas eólicas mais silenciosas, mas de desempenho aerodinâmico preservado, pela indústria da Energia Eólica. A consecução desses objetivos demandou o desenvolvimento de uma ferramenta que reunisse, simultaneamente, resolução comparativa, eficiência computacional e interface amigável, devido à natureza iterativa do projeto preliminar de um novo rotor. A ferramenta foi integrada a um ambiente avançado de projeto e análise de turbinas eólicas, de código aberto, que pode ser livremente baixado na Web. Durante a pesquisa foi realizada uma ampla revisão dos modelos existentes para predição de ruído de bordo de fuga, com a seleção do modelo semi-empírico BPM, que foi modificado para lidar com geometrias genéricas. A precisão intrínseca do modelo original foi avaliada, assim como sua sensibilidade ao parâmetro de escala de turbulência transversal, com restrições sendo impostas a esse parâmetro em decorrência da análise. Esse critério permitiu a comparação de resultados de cálculo provenientes de método CFD-RANS e de método híbrido (XFLR5) de solução da camada limite turbulenta, com a escolha do último. Após a seleção de todos os elementos do método e especificação do código, uma parceria foi estabelecida entre a Poli-USP e a TU-Berlin, que permitiu a adição de um novo módulo de ruído de bordo de fuga, denominado \"PNoise\", ao ambiente de projeto e análise integrado de turbinas eólicas \"QBlade\". Após a adição, as rotinas de cálculo foram criteriosamente verificadas e, em seguida, aplicadas ao desenvolvimento de aerofólios mais silenciosos, com bons resultados acústicos e aerodinâmicos relativos a uma geometria de referência. Esse desenvolvimento ilustrou a capacidade da ferramenta de cumprir a missão para a qual foi inicialmente projetada, qual seja, permitir à Indústria desenvolver pás mais silenciosas que irão colaborar com o avanço da energia eólica através da limitação do seu impacto ambiental.
Cantoni, Lorenzo. "Load Control Aerodynamics in Offshore Wind Turbines." Thesis, KTH, Kraft- och värmeteknologi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-291417.
Full textPå grund av ökningen av rotorstorleken hos horisontella vindturbiner (HAWT) under de senaste 25 åren, en design som har uppstod för att uppnå högre effekt, måste alla vindkraftkomponenter och blad stå emot högre strukturella belastningar. Detta uppskalningsproblem kan lösas genom att använda metoder som kan minska aerodynamiska belastningar som rotorn måste tåla, antingen med passiva eller aktiva styrlösningar. Dessa kontrollanordningar och tekniker kan minska utmattningsbelastningen på bladen med upp till 40 % och därför behövs mindre underhåll, vilket resulterar i viktiga besparingar för vindkraftsägaren. Detta projekt består av en studie av lastkontrolltekniker för havsbaserade vindkraftverk ur en aerodynamisk och aeroelastisk synvinkel, i syfte att bedöma en kostnadseffektiv, robust och pålitlig lösning som kan fungera underhållsfri i tuffa miljöer. Den första delen av denna studie involverar 2D- och 3D-aerodynamiska och aeroelastiska simuleringar för att validera beräkningsmodellen med experimentella data och för att analysera interaktionen mellan fluiden och strukturen. Den andra delen av denna studie är en bedömning av de ojämna aerodynamiska belastningarna som produceras av ett vindkast över bladen och för att verifiera hur en bakkantklaff skulle påverka de aerodynamiska styrparametrarna för det valda vindturbinbladet.
Dickel, Jacob Allen. "Design Optimization of a Non-Axisymmetric Endwall Contour for a High-Lift Low Pressure Turbine Blade." Wright State University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=wright1534980581177159.
Full textFaria, Geovanne Silva. "Simulação computacional de escoamentos bidimensionais sobre turbinas eólicas de eixo vertical." Universidade Federal de Goiás, 2018. http://repositorio.bc.ufg.br/tede/handle/tede/8933.
Full textApproved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2018-10-01T14:53:53Z (GMT) No. of bitstreams: 2 Dissertação - Geovanne Silva Faria - 2018.pdf: 4034833 bytes, checksum: 3e0011bf7d9acbf63ef8baf1b0409686 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Made available in DSpace on 2018-10-01T14:53:53Z (GMT). No. of bitstreams: 2 Dissertação - Geovanne Silva Faria - 2018.pdf: 4034833 bytes, checksum: 3e0011bf7d9acbf63ef8baf1b0409686 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2018-08-31
The Brazilian energy matrix is highly focused on hydroelectric plants, that have been affected by lack of rain and long drought periods. It’s necessary to invest on alternative kinds of energy. The wind energy is an option, since Brazil presents winds with suitable velocity for energy generation, less than 5% of the Brazilian energy power grid is composed by wind turbines. The present work aims to contribute to the alternative energy generation industry, having as objective the study and analysis of flow condition over airfoils of vertical axis wind turbines. The simulation of flow over airfoils were performed using the Pseudo-Spectral Fourier method together with the Immersed Boundary method for discretization of the spatial domain, and the Runge-Kutta method of fourth order for discretization of the time domain. Both instantaneous and mean values were recorded for the lift (Cl) and drag coefficient (Cd), as well as the fields of vorticity, pressure and velocity for the flow over the airfoils with distinctive characteristics of form and angle of attack. It is concluded that with this first experiment, by refining the mesh, the values for Cl and Cd get close to the references. Posteriorly, it was imposed the movement of rotation of one vertical axis wind turbine, and simulated the flow over this turbine blades, when it was recorded both the instantaneous and mean values of the lift, drag and power coefficient, as well as the fields of vorticity, pressure and velocity for different values of velocities of turbine rotation for the airfoils NACA 0008 and NACA 4308. It was possible to conclude by analyzing the values of power coefficient (Cp), Cl and Cd obtained through simulation with the turbines that the airfoil NACA 0008 can be utilized for energy generation, since the airfoil NACA 4308 cannot be utilized in the adopted speed ranges.
A matriz energética Brasileira é altamente focada em usinas hidrelétricas, que vêm sendo afetadas pela falta de chuvas e longos períodos de estiagem. É necessário o investimento em fontes energéticas alternativas. Uma das opções é a energia eólica, pois o Brasil apresenta ventos com velocidades adequadas para geração de energia e, mesmo assim, menos de 5% da matriz energética brasileira é constituída de turbinas eólicas. O presente trabalho visa contribuir com a indústria de geração de energias alternativas tendo por objetivo o estudo e análise de escoamentos sobre aerofólios de turbinas eólicas verticais. As simulações de escoamentos sobre aerofólios foram realizadas com o método Pseudoespectral de Fourier em conjunto com o método da Fronteira Imersa para discretização do domínio espacial, e o método de Runge-Kutta de quarta ordem para discretização do domínio do tempo. Foram registrados os valores instantâneos e médios dos coeficientes de sustentação (Cl) e arrasto (Cd), bem como os campos de vorticidade, pressão e velocidades para escoamento sobre aerofólios com distintas características de forma e ângulos de ataque. Conclui-se com esse primeiro experimento, que ao se refinar a malha, os valores de Cl e Cd se aproximam das referências. Posteriormente, foi imposto o movimento de rotação de uma turbina eólica de eixo vertical, e simulado o escoamento sobre as pás dessa turbina, onde foram registrados os valores instantâneos e médios dos coeficientes de sustentação, arrasto e potência, bem como os campos de vorticidade, pressão e velocidades para diferentes valores de velocidade de rotação da turbina para os aerofólios NACA 0008 e NACA 4308. Foi possível concluir ao analisar os valores de coeficiente de potência (Cp), Cl e Cd, que o aerofólio NACA 0008 pode ser utilizado para geração de energia elétrica, já o aerofólio NACA 4308 não deve ser utilizado para a faixa de velocidades adotadas.
Thuné, Sebastian, and Torstein Soland. "Investigation Of Different Airfoils on Outer Sections of Large Rotor Blades." Thesis, Mälardalens högskola, Akademin för innovation, design och teknik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-15293.
Full textFleck, Gustavo Dias. "Numerical analysis of the solidity effects over the aerodynamic performance of a small wind turbine." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2017. http://hdl.handle.net/10183/173195.
Full textThis thesis presents a methodology of two-dimensional airfoil simulation focusing on its application on the design and optimization of blades and rotors of small horizontal axis wind turbines, and its application in a set of numerical simulations involving high rotor solidity and low-Re effects. This methodology includes grid generation, selection of numerical methods and validation, reflecting the most successful practices in airfoil simulation, and was applied in the simulation of the NACA 0012, S809 and SD7062 airfoils. The ANSYS Fluent commercial code was used in all simulations. Results for the isolated NACA 0012 and S809 airfoils at high Reynolds numbers show that the Transition SST (γ-Reθ) turbulence model produces results closer to experimental data than those yielded by the SST k-ω model for CL and CD, having also produced CP plots that show good agreement to the same experimental data. Plots of CL, CD, CF and CP for the SD7062 airfoil are presented, for simulations at 20 different operating conditions. The CF and CP distributions evidence the negative impact of the laminar separation bubble in the range of Reynolds numbers evaluated. Results show that, for Re between 25,000 and 125,000, drag increases with decreasing Re. A blade design generated using the SWRDC optimization code, based on genetic algorithms, is presented. Three sections of the resulting blade shape were selected and were tested in a set of 45 simulations, under an array of operating conditions defined by solidity, angle of attack and TSR. Results show that the laminar separation bubble moves towards the leading edge with increasing solidity, angle of attack and TSR. Furthermore, CP plots show an increase in pressure on both surfaces when the airfoil is subject to solidity effects, although these effects show an increase in the lift-to-drag ratio at the conditions evaluated.
Gonzalez, Salcedo Alvaro. "Development of a potential panel code for unsteady modelling of 2D airfoils in practical applications of large wind turbines." Thesis, Imperial College London, 2018. http://hdl.handle.net/10044/1/61470.
Full textKim, Youjin [Verfasser], Taeseong [Akademischer Betreuer] Kim, and Antonio [Gutachter] Delgado. "Computational airfoil optimization for the improvement of the performance of horizontal axis wind turbines (HAWT) with a 3D model / Youjin Kim ; Gutachter: Antonio Delgado ; Betreuer: Taeseong Kim." Erlangen : Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2020. http://d-nb.info/1213533341/34.
Full textGharali, Kobra. "Pitching airfoil study and freestream effects for wind turbine applications." Thesis, 2013. http://hdl.handle.net/10012/7833.
Full textLi, Chi Shing. "Computational Acoustic Beamforming of Noise Source on Wind Turbine Airfoil." Thesis, 2014. http://hdl.handle.net/10012/8425.
Full textLambie, Benjamin. "Aeroelastic Investigation of a Wind Turbine Airfoil with Self-Adaptive Camber." Phd thesis, 2011. https://tuprints.ulb.tu-darmstadt.de/2769/1/Diss_Lambie.pdf.
Full textChang, Chun-Wei, and 張鈞瑋. "The Study to increase power of Wind Turbine Blade Airfoil with Microtab." Thesis, 2010. http://ndltd.ncl.edu.tw/handle/86591471978156299268.
Full text國立臺灣大學
工程科學及海洋工程學研究所
98
This article uses Fluent’s Computational Fluid Dynamics software to simulate the comparison of lift and drag coefficient between airfoil with microtab and airfoil prototype. Two commonly used airfoil of wind turbine blade, S809 and Naca63-415, are analyzed in this study;the variables of microtab are location and length, which respectively are simulated under three different conditions. In addition, the changes of two different Reynolds numbers also are analyzed in the simulation. After simulating the lift and drag coefficient under each condition, the formula of airfoil maximum acquired power is then applied to compare the effect on the power variation of airfoil prototype with microtab. Moreover, comparison between the efficiency of increased power is implemented to further understand under which condition microtab can effectively increase power.
Wang, Xin. "Convective heat transfer and experimental icing aerodynamics of wind turbine blades." 2008. http://hdl.handle.net/1993/3082.
Full textOctober 2008
Miguel, João Carlos Tavares. "Airfoil Improvement on Horizontal Axis Wind Turbine Suitable for Local Construction in Underdeveloped Countries." Master's thesis, 2019. http://hdl.handle.net/10400.6/8870.
Full textO objectivo da presente investigação é estudar a influência que uma modificação na geometria do rotor de uma turbina eólica inflige na sua eficiência. O rotor estudado, de madeira e com um diâmetro de 1,20 m, pertence a um grupo de pequenas turbinas eólicas que são construídas apenas com recurso a ferramentas manuais seguindo as indicações do Hugh Piggott. Este processo de construcção, devido à sua imprecisão, resulta numa geometria que dá origem a um bordo de ataque aguçado. Sendo que o bordo de ataque é um aspecto importante para o desempenho do mesmo, o objectivo desta dissertação passou por suavizar o bordo de ataque do perfil alar a “fugir” para o intradorso, de maneira a ampliar a curva ????- ?? do rotor. Para tal, recorreu-se a métodos numéricos para avaliar o desempenho de tal modificação, numa perspectiva que esta técnica possa ser aplicada no rotor usando ferramentas manuais, como por exemplo uma lixa. Num estudo prévio, o mesmo rotor que é estudado nesta dissertação foi alvo de um estudo numérico e experimental para as seguintes velocidades de vento: 3.0; 3.7; 4.4; 5.5; 7.2 e 7.7 m/s. No mesmo estudo o rotor foi alvo de uma digitalização na qual, cada pá do rotor foi examinada em 6 secções diferentes e que resultou em 6 perfis alares diferentes com a respectiva corda e o ângulo de incidência, sendo de realçar que as três pás apresentam diferenças geométricas entre si. Tendo estas características, usou-se o software QBlade para o desenho e análise dos novos perfis alares modificados a partir dos originais perfis alares do Piggott. O software permite o desenho de rotores e para a simulação do desempenho de turbinas eólicas de eixo horizontal, o software emprega a Blade Element Momentum Theory. O desempenho real do rotor original e do novo rotor foi estimado a partir da média de três rotores ideais, cada um constituído por três pás idênticas 1, 2 e 3. Os novos perfis alares das pás 1 e 3 revelaram melhor desempenho da sua eficiência aerodinâmica (????/????) quando comparados aos perfis oriundos da construção manual do Hugh Piggott, enquanto que os novos perfis da pá 2 não ilustraram qualquer melhoria significativa quando comparados aos perfis originais. Os resultados das simulações adimensionais do QBlade, mostraram que o rotor médio com os novos perfis apresenta melhor coeficiente de potência (????) para altos valores de ?? (razão entre a velocidade tangencial da ponta da pá e a velocidade do vento) quando comparado ao rotor médio com os perfis do Piggott. Quando submetidos a uma velocidade rotacional constante de 500 RPM, o novo rotor retira notavelmente mais energia do escoamento a baixas velocidades de vento. Numa abordagem hipotética da construcção de uma turbina optimizada composta pelos melhores perfis modificados, as simulações do rotor optimizado ilustraram um significativo melhor desempenho a altos valores de ?? como ???? máximos mais elevados do que os do rotor médio com os perfis modificados.
Orlando, Stephen Michael. "Laser Doppler Anemometry and Acoustic Measurements of an S822 Airfoil at Low Reynolds Numbers." Thesis, 2011. http://hdl.handle.net/10012/5864.
Full textGerakopulos, Ryan. "Investing Flow over an Airfoil at Low Reynolds Numbers Using Novel Time-Resolved Surface Pressure Measurements." Thesis, 2011. http://hdl.handle.net/10012/5832.
Full textΔουβή, Ελένη. "Πειραματική και υπολογιστική διερεύνηση αεροδυναμικής συμπεριφοράς πτερύγων σε διφασική ροή αέρα – νερού και εφαρμογή σε πτερύγια ανεμοκινητήρων." Thesis, 2013. http://hdl.handle.net/10889/7870.
Full textThe aim of the present doctoral thesis is the experimental and computational study of the aerodynamic behavior of wings in two-phase flow and the application on wind turbine blades. First of all, experimental and computational study of one-phase flow over airfoils, wings and wind turbine blade and afterwards study of two-phase flow over the same bodies is conducted. The comparison of the results between dry and wet conditions is necessary in order to show the effects of two-phase flow at the aerodynamic performance. Wind tunnel tests were conducted to show the aerodynamic behavior of airfoils and wings in one-phase and two-phase flows. To simulate two-phase flow, the wind tunnel of the Fluid Mechanics Laboratory has to be configured with adding commercial rain simulated nozzles. For the experiments NACA 0012 airfoils and wings which come along the wind turbine are utilized and airfoil and wings S809 are constructed. The experiments of one-phase flow and two-phase flow are conducted for the same air velocity. For the two-phase flow four different Liquid Water Contents are examined. For the computational analysis the commercial CFD code ANSYS Fluent is used. In first place, simulations of one-phase flow over the NACA 0012 airfoil are done with three different turbulence models. The NACA0012 airfoil is chosen because it has been studied in depth and has a precise data base to compare the results of the simulation with. The lift coefficients are computed with accuracy in contrast to the drag coefficient. The overprediction of drag is expected since the actual airfoil has laminar flow over the forward half. The turbulence models cannot calculate the transition point from laminar to turbulent and consider that the boundary layer is turbulent throughout its length. Therefore, it is necessary to compare the computational results with experimental data of a fully turbulent boundary layer. In order to get more accurate results, the computational domain could be split into two different domains to run mixed laminar and turbulent flow. The contours of pressure and velocity over the airfoil are presented, as well as stagnation, maximum velocity, detachment and reattachment points of the boundary layer are computed. Streamlines and velocity vectors over the airfoil are also presented. Similar simulations are conducted for the S809 airfoil. In order to study the tree-dimensional effects of the flow, simulations over the S809 wing are made. Lift and drag coefficients, stagnation, maximum velocity, detachment and reattachment points of the boundary layer are computed. Moreover, contours of turbulent intensity on the upper surface of the wing and velocity, z-velocity, turbulence intensity and helicity behind the wing are presented. Simulations over the Phase IV blade of NREL are also conducted. The axial velocity behind the rotor, the static pressure and the turbulence intensity contribution on the blade’s surface and the static pressure contours at several blade cross-sections are studied. First of all, the computational study of the two-phase flow over a NACA 0012 airfoil and Liquid Water Content LWC=30 g/m3 is conducted, because there are published experimental data for comparison, in order to validate the CFD developed model. After that, simulations of two-phase flow over the S809 airfoil, S809 wing and Phase IV blade are made. In addition, computational study of the effects of different Liquid Water Content on the aerodynamic performance of NACA 0012 and S809 airfoil at low Reynolds number is made. The results from two-phase flow are compared with the corresponding results from one-phase flow in order to show the effects of two-phase flow at the aerodynamic performance. The influence of two-phase flow on the power coefficient of a wind turbine is also investigated. The results show that the aerodynamic performance degrades when encountering rain, especially lift is degreased and drag is increased. The aerodynamic degradation is caused by the water film formation on the airfoil’s surface and the cratering effects from the raindrops impact. The presence of uneven water film on the airfoil surface roughens the airfoil surface and increases the airfoil thickness. The cratering effects from the water droplets impact on the water film layer increase also the airfoil thickness. Moreover, the droplets splash-back when they impact the airfoil and as a result droplets with smaller diameter and velocity are formed. The acceleration of the splashed-back droplets by the air flowfield acts as a momentum sink, deenergizing the boundary layer and leaving it more susceptible to separation. The aim of the study of the aerodynamic behavior of blades in two-phase flow is the construction of wind turbines with greater efficiency and the production of energy from wind with low cost.
Bader, Shujaut. "Improving the Efficiency of Wind Farm Turbines using External Airfoils." 2017. https://scholarworks.umass.edu/masters_theses_2/549.
Full textNemirini, Tshamano. "Improving the performance of horizontal axial wind turbines using Bioinspired." Diss., 2021. http://hdl.handle.net/10500/27838.
Full textElectrical and Mining Engineering
M. Tech. (Engineering)
Chang, Chieh-Shih, and 張婕詩. "A comparison of different approaches on the aeroacoustic noise radiated from airfoils for wind turbine blades." Thesis, 2009. http://ndltd.ncl.edu.tw/handle/88173275815678367901.
Full text國立臺灣大學
工程科學及海洋工程學研究所
97
The purpose of the research is to investigate the noises induced by flow over the wind blades. The noise analysis is conducted by the Broadband Noise Source Model and FW-H (Ffowcs Williams and Hawkings) Formula which are based on theory of Lighthill’s acoustic analogy. How the wind velocity, angle of attack as well as the inflow turbulent intensity influence the induced aerodynamic noise is discussed. First of all, the dynamic coefficients and flow field of three airfoils NACA64(3)-618、S809 and S822 were verified, and then the accurate information of turbulence was provided as the source to evaluate the sound energy distribution. Three types of noise models that provided different characteristics of the noise distribution were adopted in this wrok. Firstly Reynolds-averaged Navier-Stokes Equation with the k-e turbulent model was used to predict the turbulent flow field. When the inflow turbulent intensity was increased to 5% and 10%, it causes great changes to the flow field and obviously it is also one of the major facts to the flow induced noise. For aerodynamic noise analysis, Proundman’s BNS model was performed to get the acoustic energy density distribution over the entire calculating domain. Further, Curle’s Formula was adopted to predict the surface acoustic power along the solid boundary. In order to understand the details of flow induced noise one step further, the Large Eddy Simulation approach for the unsteady flow combined with the FW-H equation was used to predict the unsteady sound pressure signal. Then by Fourier Transformation the spectrum of the noise can be calculated and consequently the frequency distribution and the power output are achieved. It might be useful in reducing the flow induced aerodynamic noise. However, LES requires a very fine grid resolution to capture the large scale eddy. At this stage, our current computer resources are extremely difficult to satisfy the computational efforts. Therefore, only the small wind blades were taken as the analysis object in this study. This experience may be useful in large wind blade analysis in the near future.