Academic literature on the topic 'Wind turbine efficiency'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Wind turbine efficiency.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Wind turbine efficiency"
Doerffer, Piotr, Krzysztof Doerffer, Tomasz Ochrymiuk, and Janusz Telega. "Variable Size Twin-Rotor Wind Turbine." Energies 12, no. 13 (July 2, 2019): 2543. http://dx.doi.org/10.3390/en12132543.
Full textYershina, A. K. "A METHOD FOR INCREASING THE EFFICIENCY OF A WIND TURBINE." Eurasian Physical Technical Journal 17, no. 2 (December 24, 2020): 73–77. http://dx.doi.org/10.31489/2020no2/73-77.
Full textJamal, Jamal, A. M. Shiddiq Yunus, and Lewi Lewi. "Pengaruh Kelengkungan Sudu Terhadap Kinerja Turbin Angin Savonius." INTEK: Jurnal Penelitian 6, no. 2 (November 12, 2019): 139. http://dx.doi.org/10.31963/intek.v6i2.1578.
Full textKhudri Johari, Muhd, Muhammad Azim A Jalil, and Mohammad Faizal Mohd Shariff. "Comparison of horizontal axis wind turbine (HAWT) and vertical axis wind turbine (VAWT)." International Journal of Engineering & Technology 7, no. 4.13 (October 9, 2018): 74. http://dx.doi.org/10.14419/ijet.v7i4.13.21333.
Full textJamal, Jamal. "Pengaruh Jumlah Sudu Terhadap Kinerja Turbin Savonius." INTEK: Jurnal Penelitian 6, no. 1 (May 25, 2019): 64. http://dx.doi.org/10.31963/intek.v6i1.1127.
Full textKurniawati, Diniar Mungil. "Investigasi Performa Turbin Angin Crossflow Dengan Simulasi Numerik 2D." JTT (Jurnal Teknologi Terpadu) 8, no. 1 (April 27, 2020): 7–12. http://dx.doi.org/10.32487/jtt.v8i1.762.
Full textValiev, M., R. Stepanov, V. Pakhov, M. Salakhov, V. Zherekhov, and G. N. Barakos. "Analytical and experimental study of the integral aerodynamic characteristics of low-speed wind turbines." Aeronautical Journal 118, no. 1209 (November 2014): 1229–44. http://dx.doi.org/10.1017/s0001924000009957.
Full textHe, Yi Ming, and Xian Yi Qian. "Design of Wind Power Turbine's Main Components and Computation of its Output Power." Applied Mechanics and Materials 195-196 (August 2012): 23–28. http://dx.doi.org/10.4028/www.scientific.net/amm.195-196.23.
Full textde, Risi, Marco Milanese, Gianpiero Colangelo, and Domenico Laforgia. "High efficiency nanofluid cooling system for wind turbines." Thermal Science 18, no. 2 (2014): 543–54. http://dx.doi.org/10.2298/tsci130316116d.
Full textKosasih, Bu Yung, and S. A. Jafari. "High-Efficiency Shrouded Micro Wind Turbine for Urban-Built Environment." Applied Mechanics and Materials 493 (January 2014): 294–99. http://dx.doi.org/10.4028/www.scientific.net/amm.493.294.
Full textDissertations / Theses on the topic "Wind turbine efficiency"
Li, Jiale. "IMPROVE ENERGY PRODUCTION BY USING HIGH EFFICIENCY SMART WIND TURBINE BLADE." Case Western Reserve University School of Graduate Studies / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=case1522420577009512.
Full textShaheen, Mohammed Mahmoud Zaki Mohammed. "Design and Assessment of Vertical Axis Wind Turbine Farms." University of Cincinnati / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1439306478.
Full textYilmaz, Eftun. "Benchmarking of Optimization Modules for Two Wind Farm Design Software Tools." Thesis, Högskolan på Gotland, Institutionen för kultur, energi och miljö, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:hgo:diva-1946.
Full textKachhia, Bhaveshkumar Mahendrabhai. "Design and tribological issues in wind turbine bearings." Thesis, Lyon, INSA, 2015. http://www.theses.fr/2015ISAL0076.
Full textLarge slewing ring bearings used in wind turbine are one of the important load transmitting elements of these rotating machines. These bearings operate through complex load and frequency cycles and experience severe tribological challenges. The cost of replacement of these bearings is very high and also leads to significant amount of down-time. It is therefore important to understand some of the major design and tribological issues in these bearings. Four-point contact slewing ring bearing type has been considered as a baseline for this study to demonstrate contact truncation and cage failure issues for pitch bearings. An alternate two-point contact bearing is proposed to eliminate contact truncation and reduce the cage force build-up. The design and analysis methods demonstrated in this study can be easily extended to yaw bearings as well as other large bearings used in the industry
Wo, Chung. "PERFORMANCE ASSESSMENT OF THE CASE WESTERN RESERVE UNIVERSITYWIND TURBINE AND CHARACTERIZATION OF WIND AVAILABILITY." Case Western Reserve University School of Graduate Studies / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=case1383338732.
Full textMoragues, Pons Jeremias. "Practical Experiments on the Efficiency of the Remote Presence : Remote Inspection in an Offshore Wind Turbine." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for teknisk kybernetikk, 2012. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-16780.
Full textHamilton, Christopher. "Digital control algorithms : low power wind turbine energy maximizer for charging lead acid batteries." Honors in the Major Thesis, University of Central Florida, 2009. http://digital.library.ucf.edu/cdm/ref/collection/ETH/id/1280.
Full textBachelors
Engineering and Computer Science
Electrical Engineering and Computer Science
Agbali, Francis Akumabi. "DESIGN AND TESTING OF A WIND ENERGY HARNESSING SYSTEM FOR FORCED CONVECTIVE DRYING OF GRAIN IN LOW WIND SPEED, WARM AND HUMID CLIMATES." UKnowledge, 2019. https://uknowledge.uky.edu/bae_etds/66.
Full textCarneiro, Francisco Olimpio Moura. "Levantamento de Curvas de EficiÃncia de Aerogeradores de 3m de DiÃmetro Utilizando Modelos de TurbulÃncia Rans de Uma e Duas EquaÃÃes com ComparaÃÃo Experimental." Universidade Federal do CearÃ, 2011. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=5847.
Full textRealizou-se o levantamento de curvas de eficiÃncia utilizando odelos numÃricos RANS de uma e duas equaÃÃes para um erogerador com 3m de diÃmetro, utilizando pÃs projetadas para operar em diferentes condiÃÃes de λ com perfis NACA 0012, 4412 e 6412. A parametrizaÃÃo da geometria da malha para a dimensÃo do rotor, juntamente com a parametrizaÃÃo do refinamento frente à capacidade dos modelos RANS obteve a independÃncia da malha à soluÃÃo. Posteriormente a anÃlise numÃrica realizou a comparaÃÃo do melhor resultado â pà projetada λ=6 com o perfil NACA 6412 â com dados experimentais. O aparato experimental foi capaz de coletar dados de rotaÃÃo e torque do rotor simultaneamente com a mediÃÃo da velocidade do vento, no qual foi obtido um valor mÃximo de eficiÃncia de aproximadamente 25% e uma faixa de operaÃÃo limitada a λ=6. Conclui-se que os modelos fornecem boa precisÃo em predizer a faixa operacional de λ, no entanto os valores de Cp foram subestimados. O modelo k-ω SST apresentou o melhor resultados dentre todos.
A survey was conducted, consisting of efficiency curves applying RANS turbulence numerical models of one and two equations for a wind turbine with a diameter of 3m, using blades designed to operate under different λ with NACA 0012, 4412 and 6412 profiles. The parameterization of the mesh geometry to the size of the rotor, together with the parameterization of the refinement level compared to the ability of RANS models reached independence from the grid to the solution. Later, a numerical analysis was performed to compare the best result â a blade designed to operate under λ = 6 with the NACA 6412 profile - against experimental data. The experimental apparatus was able to collect data rotation and torque of the rotor simultaneously with the measurement of wind velocity, which obtained a maximum efficiency of approximately 25% and an operating range limited to λ = 6. It can be concluded that the models provide good accuracy in predicting the operating range of λ, however the values of Cp were underestimated. The k-ω SST model showed the best results among all.
Jinbo, Maro. "Contribuições ao projeto de sistemas eólicos de efeito magnus com rastreamento da máxima potência." Universidade Federal de Santa Maria, 2016. http://repositorio.ufsm.br/handle/1/12032.
Full textO presente trabalho trata de um sistema eólico não convencional, cuja turbina eólica possui cilindros girantes no lugar das pás tradicionais. Estes cilindros podem ser acionados por um motor brushless CC (sem escovas). O princípio físico de funcionamento desta turbina baseia-se no que se denomina de “Efeito Magnus”. Apresenta-se a modelagem matemática da turbina Magnus e com base nesta modelagem realizam-se simulações no software PSIM®. Programa-se e testa-se algoritmos de rastreamento da máxima potência líquida MPPT (Maximum Power Point Tracking), do tipo HCC (Hill Climbing Control) no controle do motor brushless CC de acionamento dos cilindros e, consequentemente, da potência gerada pela turbina Magnus. Protótipos de sistema eólico de efeito Magnus (turbina, gerador PMSG, conversores CA/CC, CC/CC) foram construídos para realizar experimentos em túnel de vento, possibilitando comparações dos resultados experimentais com os resultados simulados. Busca-se otimizar a extração da energia dos ventos, através de concepções e soluções inovadoras na construção da turbina, servo acionamento CC brushless para os cilindros girantes, implementação de algoritmos MPPT no controle da rotação dos cilindros e do conversor estático. Três concepções da turbina Magnus são apresentadas e três protótipos construídos. Ensaios de cilindros girantes avulsos com variações nos diâmetros e nas espirais sobrepostas são realizados em túnel de vento com colméias e medem-se as forças de sustentação e de arrasto. O “Protótipo 3” de 3 m de diâmetro com dois cilindros lisos de 150 mm de diâmetro apresentou os melhores resultados experimentais, mas ainda a potência mecânica gerada não proporcionou uma potência líquida efetiva.
Books on the topic "Wind turbine efficiency"
Fant, Charles. Wind turbine and photovoltaic generating efficiency in Africa. UNU-WIDER, 2016. http://dx.doi.org/10.35188/unu-wider/2016/169-7.
Full textWind Turbines: Types, Design and Efficiency. Nova Science Publishers, Incorporated, 2013.
Find full textAndersen, Lars. Efficient Modelling of Wind Turbine Foundations. INTECH Open Access Publisher, 2011.
Find full textRez, Peter. Electrical Power Generation: Renewables—Solar and Wind. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198802297.003.0007.
Full textBook chapters on the topic "Wind turbine efficiency"
Benmedjahed, M., N. Ghellai, Z. Bouzid, and A. Chiali. "Temporal Assessment of Wind Energy Resource in “Adrar” (South of Algeria); Calculation and Modeling of Wind Turbine Noise." In 2nd International Congress on Energy Efficiency and Energy Related Materials (ENEFM2014), 33–42. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16901-9_5.
Full textAramendia, Iñigo, Unai Fernandez-Gamiz, Jose Antonio Ramos-Hernanz, Javier Sancho, Jose Manuel Lopez-Guede, and Ekaitz Zulueta. "Flow Control Devices for Wind Turbines." In Energy Harvesting and Energy Efficiency, 629–55. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-49875-1_21.
Full textVoormeeren, S. N., and D. J. Rixen. "Efficient Updating of Static Modes in the Craig-Bampton Reduction Basis." In Topics in Experimental Dynamics Substructuring and Wind Turbine Dynamics, Volume 2, 299–317. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-2422-2_27.
Full textFernández-Fidalgo, Javier, Xesús Nogueira, Luis Ramírez, and Ignasi Colominas. "An a Posteriori Very Efficient Hybrid Method for Compressible Flows." In Recent Advances in CFD for Wind and Tidal Offshore Turbines, 137–48. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-11887-7_13.
Full textPodgurenko, Volodymyr, Yulii Kutsan, Oleg Getmanets, and Volodymyr Terekhov. "Simulation of Efficiency Enhancement of Electric Power Generation by Wind Turbines in Wind Cadaster Various Zones." In Studies in Systems, Decision and Control, 63–80. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-69189-9_4.
Full textSingla, Manish Kumar, Jyoti Gupta, Parag Nijhawan, Souvik Ganguli, and S. Suman Rajest. "Development of an Efficient, Cheap, and Flexible IoT-Based Wind Turbine Emulator." In Business Intelligence for Enterprise Internet of Things, 225–31. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-44407-5_14.
Full textWestbomke, Martin, Jan-Hendrik Piel, Michael H. Breitner, Peter Nyhius, and Malte Stonis. "An Optimization Model to Develop Efficient Dismantling Networks for Wind Turbines." In Operations Research Proceedings, 239–44. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-89920-6_33.
Full textOelker, Stephan, Marco Lewandowski, Abderrahim Ait Alla, and Klaus-Dieter Thoben. "Preactive Maintenance—A Modernized Approach for Efficient Operation of Offshore Wind Turbines." In Dynamics in Logistics, 323–31. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-23512-7_31.
Full textGoiti, Imanol López. "Fuzzy Logic in Wind Energy." In Renewable and Alternative Energy, 519–44. IGI Global, 2017. http://dx.doi.org/10.4018/978-1-5225-1671-2.ch015.
Full textGoiti, Imanol López. "Fuzzy Logic in Wind Energy." In Advances in Environmental Engineering and Green Technologies, 165–90. IGI Global, 2015. http://dx.doi.org/10.4018/978-1-4666-6631-3.ch007.
Full textConference papers on the topic "Wind turbine efficiency"
Buckney, Neil, Steven Green, Alberto Pirrera, and Paul Weaver. "Wind Turbine Blade Structural Efficiency." In 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
20th AIAA/ASME/AHS Adaptive Structures Conference
14th AIAA. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2012. http://dx.doi.org/10.2514/6.2012-1502.
Chioncel, Cristian Paul, Ovidiu Gelu Tirian, Marian Dordescu, and Elisabeta Spunei. "Optimization of wind turbine operation in variable wind speed conditions." In 2020 7th International Conference on Energy Efficiency and Agricultural Engineering (EE&AE). IEEE, 2020. http://dx.doi.org/10.1109/eeae49144.2020.9279103.
Full textBuckney, Neil, Alberto Pirrera, Paul Weaver, and D. Todd Griffith. "Structural Efficiency Analysis of the Sandia 100 m Wind Turbine Blade." In 32nd ASME Wind Energy Symposium. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2014. http://dx.doi.org/10.2514/6.2014-0360.
Full textIvanovic, Zeljko, Branko Dokic, Branko Blanusa, and Mladen Knezic. "Boost converter efficiency optimization in wind turbine." In 2010 14th International Power Electronics and Motion Control Conference (EPE/PEMC 2010). IEEE, 2010. http://dx.doi.org/10.1109/epepemc.2010.5606839.
Full textZeynali Khameneh, Nooshin, and Mehran Tadjfar. "Improvement of Wind Turbine Efficiency by Using Synthetic Jets." In ASME 2016 Fluids Engineering Division Summer Meeting collocated with the ASME 2016 Heat Transfer Summer Conference and the ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/fedsm2016-7959.
Full textJohansen, Jeppe, Mac Gaunaa, and Niels Sørensen. "Increased Aerodynamic Efficiency of Wind Turbine Rotors Using Winglets." In 26th AIAA Applied Aerodynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2008. http://dx.doi.org/10.2514/6.2008-6728.
Full textMălăel, I., I. O. Bucur, and D. Preda. "Drag based vertical axis wind turbine numerical efficiency evaluation." In APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES: 11th International Conference for Promoting the Application of Mathematics in Technical and Natural Sciences - AMiTaNS’19. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5130852.
Full textLiu, Jian, Hui Wang, and Xiu Ji. "Energy efficiency evaluation of wind turbine based on AHP." In 2017 Chinese Automation Congress (CAC). IEEE, 2017. http://dx.doi.org/10.1109/cac.2017.8243578.
Full textHallock, Kyle, Tyler Rasch, Guoqiang Ju, and Fernando Alonso-Marroquin. "Efficiency of the DOMUS 750 vertical-axis wind turbine." In OFF-GRID TECHNOLOGY WORKSHOP. Author(s), 2017. http://dx.doi.org/10.1063/1.4985556.
Full textCirciumaru, Gabriela, Rares-Andrei Chihaia, Dragos Ovezea, Ionel Chirits, Sergiu Nicolaie, Lucia-Andreea El-Leathey, and Adrian Nedelcu. "Experimental Study on the Performance of Small-Scale Wind Turbine Rotors." In 2020 7th International Conference on Energy Efficiency and Agricultural Engineering (EE&AE). IEEE, 2020. http://dx.doi.org/10.1109/eeae49144.2020.9279066.
Full textReports on the topic "Wind turbine efficiency"
Datskos, Panos G., Georgios Polyzos, Art Clemons, Paul Bolton, and Aaron Hollander. Materials and Additive Manufacturing for Energy Efficiency in Wind Turbine and Aircraft Industries. Office of Scientific and Technical Information (OSTI), May 2016. http://dx.doi.org/10.2172/1254096.
Full textDarren Hammell and Mark Holveck. Reliable, Efficient and Cost-Effective Electric Power Converter for Small Wind Turbines Based on AC-link Technology. Office of Scientific and Technical Information (OSTI), August 2006. http://dx.doi.org/10.2172/889356.
Full text