Academic literature on the topic 'Wing spar'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Wing spar.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Wing spar"
ENNOS, A. ROLAND. "The Importance of Torsion in the Design of Insect Wings." Journal of Experimental Biology 140, no. 1 (November 1, 1988): 137–60. http://dx.doi.org/10.1242/jeb.140.1.137.
Full textKong, Chang Duk, Hyun Bum Park, Jae Huy Yoon, and Kuk Jin Kang. "Conceptual Design on Carbon-Epoxy Composite Wing of a Small Scale WIG Vehicle." Key Engineering Materials 334-335 (March 2007): 353–56. http://dx.doi.org/10.4028/www.scientific.net/kem.334-335.353.
Full textZhou, Hong Xia, and Bin Liu. "Characteristics Analysis and Optimization of Flying-Wing Vehicle Structure." Advanced Materials Research 1077 (December 2014): 177–84. http://dx.doi.org/10.4028/www.scientific.net/amr.1077.177.
Full textStamatelos, Dimitriοs, and George Labeas. "Towards the Design of a Multispar Composite Wing." Computation 8, no. 2 (April 9, 2020): 24. http://dx.doi.org/10.3390/computation8020024.
Full textPetrasinovic, Nikola, Danilo Petrasinovic, Bosko Rasuo, and Dragan Milkovic. "Aircraft duraluminum wing spar fatigue testing." FME Transaction 45, no. 4 (2017): 531–36. http://dx.doi.org/10.5937/fmet1704531p.
Full textAjaj, R. M., M. I. Friswell, W. G. Dettmer, G. Allegri, and A. T. Isikveren. "Performance and control optimisations using the adaptive torsion wing." Aeronautical Journal 116, no. 1184 (October 2012): 1061–77. http://dx.doi.org/10.1017/s000192400000748x.
Full textDvorak, Milan, Miroslav Kabrt, and Milan Růžička. "The Use of Fiber Bragg Grating Sensors during the Static Load Test of a Composite Wing Structure." Applied Mechanics and Materials 486 (December 2013): 102–5. http://dx.doi.org/10.4028/www.scientific.net/amm.486.102.
Full textWang, Yuhui, Peng Shao, Qingxian Wu, and Mou Chen. "Reliability analysis for a hypersonic aircraft’s wing spar." Aircraft Engineering and Aerospace Technology 91, no. 4 (April 1, 2019): 549–57. http://dx.doi.org/10.1108/aeat-11-2017-0242.
Full textPavan, G., and N. Kishore. "Static and Fatigue Analysis on a Wing Spar Joint for a Light Jet Aircraft Structure Using 2024 T351 Material." Applied Mechanics and Materials 895 (November 2019): 244–52. http://dx.doi.org/10.4028/www.scientific.net/amm.895.244.
Full textEdwards, Tim, and Jeremy Thompson. "Spar Corner Radius Integrity for the A400M Wing." Applied Mechanics and Materials 3-4 (August 2006): 197–204. http://dx.doi.org/10.4028/www.scientific.net/amm.3-4.197.
Full textDissertations / Theses on the topic "Wing spar"
Lazarin, Juan Reuben. "Optimum Design of Composite Wing Spar Subjected to Fatigue Loadings." DigitalCommons@CalPoly, 2017. https://digitalcommons.calpoly.edu/theses/1816.
Full textKite, Adam Howard. "Nondestructive evaluation of a carbon fiber wing spar using air-coupled ultrasound." [Ames, Iowa : Iowa State University], 2007.
Find full textHála, Aleš. "Návrh změny kostrukčního řešení hlavních závěsů křídla letounu Z 242." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2020. http://www.nusl.cz/ntk/nusl-417468.
Full textThompson, Eric J. "Design of a multi-piece removable mandrel mold tool to fabricate and control inner mold surface contour of a composite wing spar." Morgantown, W. Va. : [West Virginia University Libraries], 2010. http://hdl.handle.net/10450/11141.
Full textTitle from document title page. Document formatted into pages; contains viii, 69 p. : col. ill. Includes abstract. Includes bibliographical references (p. 69).
Cejpek, Jakub. "Analysis of Aeronautical Composite Structures under Static Loading." Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2018. http://www.nusl.cz/ntk/nusl-385288.
Full textMestrinho, João Rafael da Conceição. "Design of a variable-span morphing wing." Master's thesis, Universidade da Beira Interior, 2009. http://hdl.handle.net/10400.6/2048.
Full textProskovics, Roberts. "Dynamic response of spar-type offshore floating wind turbines." Thesis, University of Strathclyde, 2015. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=26017.
Full textSolberg, Thomas. "Dynamic Response Analysis of a Spar Type Floating Wind Turbine." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for marin teknikk, 2011. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-16215.
Full textLee, Sungho Ph D. Massachusetts Institute of Technology. "Dynamic response analysis of spar buoy floating wind turbine systems." Thesis, Massachusetts Institute of Technology, 2008. http://hdl.handle.net/1721.1/46545.
Full textIncludes bibliographical references (leaves 83-84).
The importance of alternative energy development has been dramatically increased by the dwindling supplies of oil and gas, and our growing efforts to protect our environment. A variety of meaningful steps have been taken in order to come up with cleaner, healthier and more affordable energy alternatives. Wind energy is one of the most reliable energy alternatives for countries that have sufficiently large wind sources. Due to the presence of steady and strong winds, and the distance from coastline residential, the offshore wind farm has become highly attractive as an ideal energy crisis solution. Floating wind turbine systems are being considered as a key solution to make the offshore wind farm feasible from an economic viewpoint, and viable as an energy resource. This paper presents the design of a synthetic mooring system for spar buoy floating wind turbines functioning in shallow water depths. Nacelle acceleration, static and dynamic tensions on catenaries, the maximum tension acting on the anchors are considered as design performances, and a stochastic analysis method has been used to evaluate those quantities based on sea state spectral density functions. The performance at a 100-year hurricane condition is being defined as a limiting case, and a linear wave theory has been the most fundamental theory applied for the present analysis.
by Sungho Lee.
S.M.
Sanches, Tiago Nunes. "Longitudinal flight control with a variable span morphing wing." Master's thesis, Universidade da Beira Interior, 2012. http://hdl.handle.net/10400.6/2006.
Full textO presente trabalho consiste na projeção, programação e teste de um controlador de voo longitudinal destinado a uma aeronave não-tripulada equipada com um sistema de variação dissimétrica da envergadura das asas (conhecido como VSMW, asa dissimétrica ou asa telescópica). Este trabalho tem como principal objetivo desenvolver um controlador capaz de assegurar a estabilidade longitudinal da aeronave em voo nivelado a velocidade de cruzeiro, contudo, este foi também projetado para providenciar essa mesma estabilidade noutras fases de voo tais como a aterragem ou a descolagem. O algoritmo de estabilização baseia-se nas mais sofisticadas técnicas de controlo de voo atualmente disponíveis, mais concretamente LQR e Batz-Kleinman, para estabilizar a aeronave na atitude pretendida aquando da ocorrência de quaisquer pequenas perturbações atmosféricas que afetem a aeronave durante o voo. A aeronave a que se destina trata-se de um protótipo designado de Olharapo equipado com uma asa telescópica que permite ajustar a envergadura total das asas de acordo com a velocidade de voo. No entanto, o conceito modular da estrutura do programa permite que o controlador possa ser utilizado para diferentes configurações da mesma aeronave, ou até mesmo com uma aeronave totalmente diferente. Tanto o desenvolvimento como as simulações e testes do algoritmo foram efetuados com recurso ao software MATLAB® , tendo as necessárias derivadas de estabilidade e controlo iniciais sido providenciadas pelo software XFLR5® . As equações de voo foram devidamente adaptadas para permitirem uma compatibilização com o sistema da asa telescópica e a sua integração nos métodos de controlo LQR e Batz-Kleinman. As qualidades de voo da aeronave foram devidamente definidas e impostas ao controlador para garantir a afinação da matriz de ponderação para valores ótimos. Por fim, o algoritmo foi sujeito a três tipos de testes e simulações: Simulação Clássica por meio de Imposição de Perturbações Atmosféricas, Teste de Resposta a uma Variação Sinusoidal do Ângulo de Arfagem, e Teste de Reposta a uma Variação Aleatória do Ângulo de Arfagem.
Books on the topic "Wing spar"
Matthew, Accarrino, and Leahy Kate, eds. SPQR: Modern Italian food + wine. Berkeley: Ten Speed Press, 2012.
Find full textMehler, Felix Eckhart. The structural testing and modification of a full-scale ornithopter's wing spars. [Toronto]: Dept. of Aerospace Science and engineering, University of Toronto, 1997.
Find full textMehler, Felix Eckhart. The structural testing and modification of a full-scale ornithopter's wing spars. Ottawa: National Library of Canada = Bibliothèque nationale du Canada, 1999.
Find full textMilholen, William E. Computational analysis of semi-span model test techniques. Hampton, Virginia: National Aeronautics and Space Administration, Langley Research Center, 1996.
Find full textArchibald, Russell. Span of wings: Memoirs of a working life in aircraft design encompassing a span from biplanes to Concorde-Bristol fashion. Shrewsbury: Airlife, 1992.
Find full textRinoie, Kenichi. Experimental studies of vortex flaps and vortex plates. Part 1. 0.53m span 60 deg delta wing. Tokyo: National Aerospace Laboratory, 1992.
Find full textBorri, Claudio, and Claudio Mannini, eds. Aeroelastic Phenomena and Pedestrian-Structure Dynamic Interaction on Non-Conventional Bridges and Footbridges. Florence: Firenze University Press, 2010. http://dx.doi.org/10.36253/978-88-6453-202-8.
Full textMillott, T. A. Vibration reduction in helicopter rotors using an actively controlled partial span trailing edge flap located on the blade. Moffett Field, Calif: Ames Research Center, 1994.
Find full textGoodger, E. M. Transport fuels technology: From well to wheels, wings, and water. Norwich: Landfall Press, 2000.
Find full textBook chapters on the topic "Wing spar"
Wanhill, Russell, Simon Barter, and Loris Molent. "Aermacchi MB-326H Wing Spar (1990): Exponential FCG Analysis." In SpringerBriefs in Applied Sciences and Technology, 43–48. Dordrecht: Springer Netherlands, 2019. http://dx.doi.org/10.1007/978-94-024-1675-6_4.
Full textMain, Ben, Keith Muller, Michael Konak, Michael Jones, Sudeep Sudhakar, and Simon Barter. "Evaluation of a PC-9/A Wing Main Spar with Misdrills Using Enhanced Teardown at Resonance." In ICAF 2019 – Structural Integrity in the Age of Additive Manufacturing, 874–88. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-21503-3_70.
Full textIrez, A. B., E. Bayraktar, and I. Miskioglu. "Devulcanized Rubber Based Composite Design Reinforced with Nano Silica, Graphene Nano Platelets (GnPs) and Epoxy for “Aircraft Wing Spar” to Withstand Bending Moment." In Mechanics of Composite, Hybrid and Multifunctional Materials, Volume 5, 9–22. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-95510-0_2.
Full textGe, Yaojun, and Hiroshi Tanaka. "Long-Span Bridge Aerodynamics." In Advanced Structural Wind Engineering, 85–120. Tokyo: Springer Japan, 2013. http://dx.doi.org/10.1007/978-4-431-54337-4_4.
Full textGao, Binbin, Rongjie Kang, and Yan Chen. "Deployable Mechanism Design for Span Morphing Wing Aircraft." In Lecture Notes in Electrical Engineering, 801–13. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-2875-5_66.
Full textBarbanti, G., E. Marino, and C. Borri. "Mooring System Optimization for a Spar-Buoy Wind Turbine in Rough Wind and Sea Conditions." In Lecture Notes in Civil Engineering, 87–98. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12815-9_7.
Full textGuerrero, Joel E. "Wake Signature of Finite-Span Flapping Rigid Wings." In High Performance Computing in Science and Engineering '10, 407–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-15748-6_31.
Full textZhang, Zhi-chun, Hong-wei Liu, and Guo-wen Huang. "Wind Turbine Spare Parts Management Based on Kanban System." In Proceedings of 20th International Conference on Industrial Engineering and Engineering Management, 1121–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-40063-6_110.
Full textPatil, Ajay H., and D. Karmakar. "Hydrodynamic Performance of Spar-Type Wind Turbine Platform Combined with Wave Energy Converter." In Lecture Notes in Civil Engineering, 115–23. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-8293-6_9.
Full textRani, Neelam, Ajay Pratap, and Ashok K. Ahuja. "Wind Pressure Distribution on Multi-span Semi-circular Canopy Roofs." In Lecture Notes in Civil Engineering, 831–40. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-80312-4_71.
Full textConference papers on the topic "Wing spar"
Ajaj, Rafic M., Erick Saavedra Flores, and M. Friswell. "Variable Wing Span Using the Compliant Spar Concept." In 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2013. http://dx.doi.org/10.2514/6.2013-1451.
Full textLease, Kevin, Daniel Swenson, and Claire Stroede. "Fatigue Analysis of an Aircraft Wing Spar." In General, Corporate & Regional Aviation Meeting & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1999. http://dx.doi.org/10.4271/1999-01-1561.
Full textWissa, Aimy, Joseph Calogero, James E. Hubbard, and Mary Frecker. "Stability Analysis of the Wing Leading Edge Spar of a Passively Morphing Ornithopter." In ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/smasis2014-7528.
Full textSilva, Carlos, Bruno Rocha, and Afzal Suleman. "A Metamodelling Optimization Approach to a Wing Spar Design." In 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
16th AIAA/ASME/AHS Adaptive Structures Conference
10t. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2008. http://dx.doi.org/10.2514/6.2008-1887.
Anton, Steven, and Daniel Inman. "Electromechanical Modeling of a Multifunctional Energy Harvesting Wing Spar." In 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2011. http://dx.doi.org/10.2514/6.2011-2004.
Full textCalogero, Joseph, Mary Frecker, Zohaib Hasnain, and James E. Hubbard. "A Dynamic Spar Numerical Model for Passive Shape Change." In ASME 2015 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/smasis2015-8837.
Full textStacey, Benjamin J., and Peter Thomas. "Initial Analysis of a Novel Biomimetic Span-Wise Morphing Wing Concept." In ASME 2019 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/smasis2019-5567.
Full textAraujo, Pablo M. N., Thiago R. Costa, and Eduardo C. Silva. "DESIGN AND MANUFACTURING PROCESS OF A UAV COMPOSITE WING SPAR." In Brazilian Conference on Composite Materials. Pontifícia Universidade Católica do Rio de Janeiro, 2018. http://dx.doi.org/10.21452/bccm4.2018.09.06.
Full textBlondeau, Julie, and Darryll Pines. "Wind Tunnel Testing of a Morphing Aspect Ratio Wing Using an Pneumatic Telescoping Spar." In 2nd AIAA "Unmanned Unlimited" Conf. and Workshop & Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2003. http://dx.doi.org/10.2514/6.2003-6659.
Full textMoore, James, and Stephen Cutright. "Structural Analysis and Performance-Based Validation of a Composite Wing Spar." In AIAA Scitech 2019 Forum. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2019. http://dx.doi.org/10.2514/6.2019-0548.
Full textReports on the topic "Wing spar"
Moshier, Monty A. Ram Load Simulation of Wing Skin-Spar Joints: New Rate-dependent Cohesive Model. Fort Belvoir, VA: Defense Technical Information Center, January 2006. http://dx.doi.org/10.21236/ada448143.
Full textSharp, Nathan, Rebecca Cutting, and Drew Sommer. Thermal Instability in the Manufacturing of Wind Turbine Blade Spar Caps. Office of Scientific and Technical Information (OSTI), June 2020. http://dx.doi.org/10.2172/1633432.
Full textRarback, Harvey. Old Wine in New Bottles-The SPEAR Control System Upgrade. Office of Scientific and Technical Information (OSTI), October 1999. http://dx.doi.org/10.2172/15086.
Full textER-20037 LLNL eternal pathfinder wing spar design study report. Office of Scientific and Technical Information (OSTI), March 1994. http://dx.doi.org/10.2172/10142966.
Full textDepartment of Energy Awards $43 Million to Spur Offshore Wind Energy, Wind Program Newsletter, September 2011 Edition (Brochure). Office of Scientific and Technical Information (OSTI), September 2011. http://dx.doi.org/10.2172/1027675.
Full text