Journal articles on the topic 'Winglets'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Winglets.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Pratiwi, Henny. "THE EFFECTS OF ANGLE OF ATTACK, REYNOLD NUMBERS AND WINGLET STRUCTURE ON THE PERFORMANCE OF CESSNA 172 SKYHAWK." Angkasa: Jurnal Ilmiah Bidang Teknologi 10, no. 1 (2018): 61. http://dx.doi.org/10.28989/angkasa.v10i1.206.
Full textde Mattos, Bento Silva, Paulo Jiniche Komatsu, and Jesuíno Takachi Tomita. "Optimal wingtip device design for transport airplane." Aircraft Engineering and Aerospace Technology 90, no. 5 (2018): 743–63. http://dx.doi.org/10.1108/aeat-07-2015-0183.
Full textShyu, Jin-Cherng, and Jhao-Siang Jheng. "Heat Transfer Enhancement of Plate-Fin Heat Sinks with Different Types of Winglet Vortex Generators." Energies 13, no. 19 (2020): 5219. http://dx.doi.org/10.3390/en13195219.
Full textGuerrero, Joel, Marco Sanguineti, and Kevin Wittkowski. "CFD Study of the Impact of Variable Cant Angle Winglets on Total Drag Reduction." Aerospace 5, no. 4 (2018): 126. http://dx.doi.org/10.3390/aerospace5040126.
Full textGuerrero, J. E., M. Sanguineti, and K. Wittkowski. "Variable cant angle winglets for improvement of aircraft flight performance." Meccanica 55, no. 10 (2020): 1917–47. http://dx.doi.org/10.1007/s11012-020-01230-1.
Full textYang, Yang, Siddharth Koushik Mohanakrishnan, David S.-K. Ting, and Steve Ray. "DELTA WINGLETS FOR ENHANCING SOLAR ENERGY: TURBULENT STRAIN RATE-HEAT CONVECTION RELATIONSHIP." Journal of Green Building 16, no. 2 (2021): 97–114. http://dx.doi.org/10.3992/jgb.16.2.97.
Full textSuwannapan, Supattarachai, Panuwat Hoonpong, Pongjet Promvonge, Sirisawat Juengjaroennirachon, and Monsak Pimsarn. "Experimental Study on Flow Friction and Heat Transfer in a Square-Duct Heat Exchanger with Winglet Turbulators." Advanced Materials Research 931-932 (May 2014): 1183–87. http://dx.doi.org/10.4028/www.scientific.net/amr.931-932.1183.
Full textWu, Wanyang, and Jingjun Zhong. "Experimental investigation of the influence on compressor cascade characteristics at high subsonic speed with pressure surface tip winglets." Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 235, no. 6 (2021): 1257–71. http://dx.doi.org/10.1177/0957650921990198.
Full textBera, Kamal K., and Naresh K. Chandiramani. "Aeroelastic flutter control of a bridge using rotating mass dampers and winglets." Journal of Vibration and Control 26, no. 23-24 (2020): 2185–92. http://dx.doi.org/10.1177/1077546320915341.
Full textСемків, Тарас Олегович, and Дмитро Миколайович Зінченко. "Adaptive winglets." MECHANICS OF GYROSCOPIC SYSTEMS, no. 35 (May 15, 2018): 75–81. http://dx.doi.org/10.20535/0203-3771352018143891.
Full textKhalafallah, Mohamed G., Abdelnaby M. Ahmed, and Mohamed K. Emam. "The effect of using winglets to enhance the performance of swept blades of a horizontal axis wind turbine." Advances in Mechanical Engineering 11, no. 9 (2019): 168781401987831. http://dx.doi.org/10.1177/1687814019878312.
Full textYan, Bowen, Ke Li, Shaopeng Li, Guowei Qian, and Yi Hui. "Short-Term Response of a Bridge-Winglet Sectional Model under Active Flutter Control." International Journal of Structural Stability and Dynamics 20, no. 08 (2020): 2050084. http://dx.doi.org/10.1142/s0219455420500844.
Full textKrebs, A. Travis, and B. Dr Götz Bramesfeld. "Using an optimisation process for sailplane winglet design." Aeronautical Journal 120, no. 1233 (2016): 1726–45. http://dx.doi.org/10.1017/aer.2016.83.
Full textGatto, A., P. Bourdin, and M. I. Friswell. "Experimental Investigation into the Control and Load Alleviation Capabilities of Articulated Winglets." International Journal of Aerospace Engineering 2012 (2012): 1–15. http://dx.doi.org/10.1155/2012/789501.
Full textTongyote, Pattarapan, Pongjet Promvonge, Nattawoot Depaiwa, and Withada Jedsadaratanachai. "Thermal performance in a tubular heat exchanger with deltawinglets." MATEC Web of Conferences 192 (2018): 02062. http://dx.doi.org/10.1051/matecconf/201819202062.
Full textDimino, Ignazio, Giovanni Andreutti, Frédéric Moens, Federico Fonte, Rosario Pecora, and Antonio Concilio. "Integrated Design of a Morphing Winglet for Active Load Control and Alleviation of Turboprop Regional Aircraft." Applied Sciences 11, no. 5 (2021): 2439. http://dx.doi.org/10.3390/app11052439.
Full textO’Brien, James E., and Manohar S. Sohal. "Heat Transfer Enhancement for Finned-Tube Heat Exchangers With Winglets." Journal of Heat Transfer 127, no. 2 (2005): 171–78. http://dx.doi.org/10.1115/1.1842786.
Full textParra Peñuela, Héctor, William Gómez Rivera, and Hernán Cerón. "Aerodynamic evaluation with cfd of tip devices in blade for wind turbine." BISTUA REVISTA DE LA FACULTAD DE CIENCIAS BASICAS 17, no. 3 (2019): 70. http://dx.doi.org/10.24054/01204211.v3.n3.2019.3567.
Full textKhosravi, Shahriar, and David W. Zingg. "Aerostructural Perspective on Winglets." Journal of Aircraft 54, no. 3 (2017): 1121–38. http://dx.doi.org/10.2514/1.c033914.
Full textEppler, R. "Induced drag and winglets." Aerospace Science and Technology 1, no. 1 (1997): 3–15. http://dx.doi.org/10.1016/s1270-9638(97)90019-5.
Full textAhmed, Noor A., and K. J. Netto. "Computer Aided Design and Manufacture of a Novel Vertical Axis Wind Turbine Rotor with Winglet." Applied Mechanics and Materials 607 (July 2014): 581–87. http://dx.doi.org/10.4028/www.scientific.net/amm.607.581.
Full textG., Prasad, Ramesh M., and Rajasekar K. "Numerical Investigation on Effect of Multiple Winglets for Wind Turbine Applications." International Journal of Engineering & Technology 7, no. 4.5 (2018): 450. http://dx.doi.org/10.14419/ijet.v7i4.5.20204.
Full textPhan, Duc-Huynh. "Passive Winglet Control of Flutter and Buffeting Responses of Suspension Bridges." International Journal of Structural Stability and Dynamics 18, no. 05 (2018): 1850072. http://dx.doi.org/10.1142/s0219455418500724.
Full textSclavounos, Paul D., and Yifeng Huang. "Rudder Winglets on Sailing Yachts." Marine Technology and SNAME News 34, no. 03 (1997): 211–32. http://dx.doi.org/10.5957/mt1.1997.34.3.211.
Full textTiggelbeck, St, N. K. Mitra, and M. Fiebig. "Comparison of Wing-Type Vortex Generators for Heat Transfer Enhancement in Channel Flows." Journal of Heat Transfer 116, no. 4 (1994): 880–85. http://dx.doi.org/10.1115/1.2911462.
Full textDimino, Ignazio, Federico Gallorini, Massimiliano Palmieri, and Giulio Pispola. "Electromechanical Actuation for Morphing Winglets." Actuators 8, no. 2 (2019): 42. http://dx.doi.org/10.3390/act8020042.
Full textQuraishi, Mohd Mohiuddin, Mohd Abdul Razakh, and Shivasri Chithaluri. "Design and CFD Analysis of Parametric Winglets." SIJ Transactions on Advances in Space Research & Earth Exploration 4, no. 2 (2016): 7–14. http://dx.doi.org/10.9756/sijasree/v4i2/04010020101.
Full textRaja, Bino Prince D., G. Ramanan, and Diju G. Samuel. "Computational Analysis of Blended Winglet Model Performance by Varying Cant Angle." Journal of Computational and Theoretical Nanoscience 16, no. 2 (2019): 467–71. http://dx.doi.org/10.1166/jctn.2019.7752.
Full textZhu and Gao. "A Numerical Investigation of a Winglet-Propeller using an LES Model." Journal of Marine Science and Engineering 7, no. 10 (2019): 333. http://dx.doi.org/10.3390/jmse7100333.
Full textDe Breuker, R., M. Abdalla, and Z. Gürdal. "Design of morphing winglets with the inclusion of nonlinear aeroelastic effects." Aeronautical Journal 115, no. 1174 (2011): 713–28. http://dx.doi.org/10.1017/s0001924000006461.
Full textYen, S. C., and Frank K. T. Lin. "Exit Flow Field and Performance of Axial Flow Fans." Journal of Fluids Engineering 128, no. 2 (2005): 332–40. http://dx.doi.org/10.1115/1.2169809.
Full textMarks, Paul. "‘Morphing’ winglets to boost aircraft efficiency." New Scientist 201, no. 2692 (2009): 22–23. http://dx.doi.org/10.1016/s0262-4079(09)60208-6.
Full textGall, Peter D., and Hubert C. Smith. "Aerodynamic characteristics of biplanes with winglets." Journal of Aircraft 24, no. 8 (1987): 518–22. http://dx.doi.org/10.2514/3.45470.
Full textKuhlman, John M., and Paul Liaw. "Winglets on low-aspect-ratio wings." Journal of Aircraft 25, no. 10 (1988): 932–41. http://dx.doi.org/10.2514/3.45682.
Full textGavrilović, Nikola N., Boško P. Rašuo, George S. Dulikravich, and Vladimir B. Parezanović. "Commercial aircraft performance improvement using winglets." FME Transaction 43, no. 1 (2015): 1–8. http://dx.doi.org/10.5937/fmet1501001g.
Full textSiliang, Du, Zhao Qijun, and Tang Zhengfei. "Numerical Simulation of the Effect of Different Number Leading Edge Winglets on the Fan-Wing Aerodynamic Characteristics." International Journal of Aerospace Engineering 2020 (February 11, 2020): 1–15. http://dx.doi.org/10.1155/2020/8941453.
Full textMat Taib, C. F., Abdul Aziz Jaafar, and Salmiah Kasolang. "Numerical Study of Winglet Cant Angle Effect on Wing Performance at Low Reynolds Number." Applied Mechanics and Materials 393 (September 2013): 366–71. http://dx.doi.org/10.4028/www.scientific.net/amm.393.366.
Full textMin, Jingchun, and Bingqiang Zhang. "Convective mass transfer enhancement in a membrane channel by delta winglets and their comparison with rectangular winglets." Chinese Journal of Chemical Engineering 23, no. 11 (2015): 1755–62. http://dx.doi.org/10.1016/j.cjche.2015.09.006.
Full textMaughmer, Mark D. "Design of Winglets for High-Performance Sailplanes." Journal of Aircraft 40, no. 6 (2003): 1099–106. http://dx.doi.org/10.2514/2.7220.
Full textRamakrishnan, B., K. Durai Karthikeyan, M. Faizur Rahman Nasir, V. Achyuth Yadav, S. Syam Narayanan, and R. Asad Ahamed. "EXPERIMENTAL STUDY OF SINGLE AND MULTI-WINGLETS." Advances and Applications in Fluid Mechanics 19, no. 2 (2016): 247–55. http://dx.doi.org/10.17654/fm019020247.
Full textGuha, T. K., W. S. Oates, and R. Kumar. "Characterization of piezoelectric macrofiber composite actuated winglets." Smart Materials and Structures 24, no. 6 (2015): 065043. http://dx.doi.org/10.1088/0964-1726/24/6/065043.
Full textBourdin, P., A. Gatto, and M. I. Friswell. "Aircraft Control via Variable Cant-Angle Winglets." Journal of Aircraft 45, no. 2 (2008): 414–23. http://dx.doi.org/10.2514/1.27720.
Full textWong, W. S., A. Le Moigne, and N. Qin. "Parallel adjoint-based optimisation of a blended wing body aircraft with shock control bumps." Aeronautical Journal 111, no. 1117 (2007): 165–74. http://dx.doi.org/10.1017/s0001924000004425.
Full textCiminello, Monica, Angelo De Fenza, Ignazio Dimino, and Rosario Pecora. "Skin-Spar Failure Detection of a Composite Winglet Using FBG Sensors." Archive of Mechanical Engineering 64, no. 3 (2017): 287–300. http://dx.doi.org/10.1515/meceng-2017-0017.
Full textWang, Yu. "Numerical study of hydrodynamics and thermal characteristics of heat exchangers with delta winglets." Thermal Science 24, no. 1 Part A (2020): 325–38. http://dx.doi.org/10.2298/tsci180330254w.
Full textAbd, Dalya Adnan, and Anmar Hamed Ali. "Aerodynamic Characteristics Comparison between Spiroid and Blended Winglets." Journal of Engineering 26, no. 4 (2020): 33–46. http://dx.doi.org/10.31026/j.eng.2020.04.03.
Full textAsai, Keisuke. "Theoretical considerations in the aerodynamic effectiveness of winglets." Journal of Aircraft 22, no. 7 (1985): 635–37. http://dx.doi.org/10.2514/3.45177.
Full textSeo, Yong Cheol, and Sang Woo Lee. "Aerodynamic losses for squealer tip with different winglets." Journal of Mechanical Science and Technology 33, no. 2 (2019): 639–47. http://dx.doi.org/10.1007/s12206-019-0119-2.
Full textMostafa, Suhail, Shyam Bose, Archana Nair, et al. "A parametric investigation of non-circular spiroid winglets." EPJ Web of Conferences 67 (2014): 02077. http://dx.doi.org/10.1051/epjconf/20146702077.
Full textGuerrero, Joel E., Dario Maestro, and Alessandro Bottaro. "Biomimetic spiroid winglets for lift and drag control." Comptes Rendus Mécanique 340, no. 1-2 (2012): 67–80. http://dx.doi.org/10.1016/j.crme.2011.11.007.
Full text