Journal articles on the topic 'Wingtip Vortices'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 38 journal articles for your research on the topic 'Wingtip Vortices.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Zhang, M., Y. K. Wang, and S. Fu. "Generation Mechanism and Reduction Method of Induced Drag Produced by Interacting Wingtip Vortex System." Journal of Mechanics 34, no. 2 (September 14, 2017): 231–41. http://dx.doi.org/10.1017/jmech.2017.76.
Full textMarshall, R. E., and T. J. Myers. "Wingtip generated wake vortices as radar target." IEEE Aerospace and Electronic Systems Magazine 11, no. 12 (1996): 27–30. http://dx.doi.org/10.1109/62.544796.
Full textLiu, Y. C., and F. B. Hsiao. "Aerodynamic Investigations of Low-Aspect-Ratio Thin Plate Wings at Low Reynolds Numbers." Journal of Mechanics 28, no. 1 (March 2012): 77–89. http://dx.doi.org/10.1017/jmech.2012.8.
Full textKasmai, N., D. Thompson, E. Luke, M. Jankun-Kelly, and R. Machiraju. "Feature-based adaptive mesh refinement for wingtip vortices." International Journal for Numerical Methods in Fluids 66, no. 10 (March 23, 2010): 1274–94. http://dx.doi.org/10.1002/fld.2312.
Full textZaccara, Mirko, Gerardo Paolillo, Carlo Salvatore Greco, Tommaso Astarita, and Gennaro Cardone. "Flow control of wingtip vortices through synthetic jets." Experimental Thermal and Fluid Science 130 (January 2022): 110489. http://dx.doi.org/10.1016/j.expthermflusci.2021.110489.
Full textLiu, Zhi Rong, Jun Wei Wang, and Rui Zhu. "Fluid Experimental Research on Dual-Vortex Interaction Instability." Advanced Materials Research 459 (January 2012): 195–98. http://dx.doi.org/10.4028/www.scientific.net/amr.459.195.
Full textBarber, T., and P. Kurts. "Downstream evolution of wingtip vortices produced from an inverted wing." Aeronautical Journal 119, no. 1216 (June 2015): 747–63. http://dx.doi.org/10.1017/s0001924000010800.
Full textHenningsson, P., F. T. Muijres, and A. Hedenström. "Time-resolved vortex wake of a common swift flying over a range of flight speeds." Journal of The Royal Society Interface 8, no. 59 (December 3, 2010): 807–16. http://dx.doi.org/10.1098/rsif.2010.0533.
Full textCarlson, Bailey, Al Habib Ullah, and Jordi Estevadeordal. "Experimental Investigation of Vortex-Tube Streamwise-Vorticity Characteristics and Interaction Effects with a Finite-Aspect-Ratio Wing." Fluids 5, no. 3 (July 24, 2020): 122. http://dx.doi.org/10.3390/fluids5030122.
Full textInasawa, Ayumu, Fumihide Mori, and Masahito Asai. "Detailed Observations of Interactions of Wingtip Vortices in Close-Formation Flight." Journal of Aircraft 49, no. 1 (January 2012): 206–13. http://dx.doi.org/10.2514/1.c031480.
Full textDufhaus, Sebastian, Sarina Brautmeier, Anna Uhl, Ralf Hörnschemeyer, and Eike Stumpf. "Modal analysis of wingtip vortices by means of Proper Orthogonal Decomposition." PAMM 17, no. 1 (December 2017): 693–94. http://dx.doi.org/10.1002/pamm.201710315.
Full textGerz, T., and T. Ehret. "Wingtip vortices and exhaust jets during the jet regime of aircraft wakes." Aerospace Science and Technology 1, no. 7 (October 1997): 463–74. http://dx.doi.org/10.1016/s1270-9638(97)90008-0.
Full textMi, Bai-gang, and Hao Zhan. "Numerical Simulation of the Static and Dynamic Aerodynamics of a UAV under Wake Flows." Journal of Advanced Transportation 2019 (April 1, 2019): 1–12. http://dx.doi.org/10.1155/2019/6326794.
Full textPanagiotou, Pericles, George Ioannidis, Ioannis Tzivinikos, and Kyros Yakinthos. "Experimental Investigation of the Wake and the Wingtip Vortices of a UAV Model." Aerospace 4, no. 4 (November 1, 2017): 53. http://dx.doi.org/10.3390/aerospace4040053.
Full textOgawa, Shigeru, and Yusuke Kimura. "Performance Improvement by Control of Wingtip Vortices for Vertical Axis Type Wind Turbine." Open Journal of Fluid Dynamics 08, no. 03 (2018): 331–42. http://dx.doi.org/10.4236/ojfd.2018.83021.
Full textBarber, Tracie. "Visualisation of wingtip vortices produced by a wing near a stationary ground plane." International Journal of Aerodynamics 1, no. 1 (2010): 18. http://dx.doi.org/10.1504/ijad.2010.031699.
Full textCraft, T. J., A. V. Gerasimov, B. E. Launder, and C. M. E. Robinson. "A computational study of the near-field generation and decay of wingtip vortices." International Journal of Heat and Fluid Flow 27, no. 4 (August 2006): 684–95. http://dx.doi.org/10.1016/j.ijheatfluidflow.2006.02.024.
Full textKleinHeerenbrink, Marco, L. Christoffer Johansson, and Anders Hedenström. "Multi-cored vortices support function of slotted wing tips of birds in gliding and flapping flight." Journal of The Royal Society Interface 14, no. 130 (May 2017): 20170099. http://dx.doi.org/10.1098/rsif.2017.0099.
Full textFeys, J., and S. A. Maslowe. "Elliptical instability of the Moore–Saffman model for a trailing wingtip vortex." Journal of Fluid Mechanics 803 (August 30, 2016): 556–90. http://dx.doi.org/10.1017/jfm.2016.512.
Full textGarcía-Ortiz, J. Hermenegildo, A. Domínguez-Vázquez, J. J. Serrano-Aguilera, L. Parras, and C. del Pino. "A complementary numerical and experimental study of the influence of Reynolds number on theoretical models for wingtip vortices." Computers & Fluids 180 (February 2019): 176–89. http://dx.doi.org/10.1016/j.compfluid.2018.12.009.
Full textPARKER, K., K. D. VON ELLENRIEDER, and J. SORIA. "Morphology of the forced oscillatory flow past a finite-span wing at low Reynolds number." Journal of Fluid Mechanics 571 (January 4, 2007): 327–57. http://dx.doi.org/10.1017/s0022112006003491.
Full textEdstrand, Adam M., Peter J. Schmid, Kunihiko Taira, and Louis N. Cattafesta. "A parallel stability analysis of a trailing vortex wake." Journal of Fluid Mechanics 837 (January 5, 2018): 858–95. http://dx.doi.org/10.1017/jfm.2017.866.
Full textWolf, M., V. M. Ortega-Jimenez, and R. Dudley. "Structure of the vortex wake in hovering Anna's hummingbirds ( Calypte anna )." Proceedings of the Royal Society B: Biological Sciences 280, no. 1773 (December 22, 2013): 20132391. http://dx.doi.org/10.1098/rspb.2013.2391.
Full textJohansson, L. Christoffer, Sophia Engel, Emily Baird, Marie Dacke, Florian T. Muijres, and Anders Hedenström. "Elytra boost lift, but reduce aerodynamic efficiency in flying beetles." Journal of The Royal Society Interface 9, no. 75 (May 16, 2012): 2745–48. http://dx.doi.org/10.1098/rsif.2012.0053.
Full textSy, Miguel Sumait, Binoe Eugenio Abuan, and Louis Angelo Macapili Danao. "Aerodynamic Investigation of a Horizontal Axis Wind Turbine with Split Winglet Using Computational Fluid Dynamics." Energies 13, no. 18 (September 22, 2020): 4983. http://dx.doi.org/10.3390/en13184983.
Full textCheng, Ze-Peng, Yang Xiang, and Hong Liu. "Experimental investigation on the structures and induced drag of wingtip vortices for different wingtip configurations." Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, August 5, 2020, 095441002094791. http://dx.doi.org/10.1177/0954410020947911.
Full textMishra, Nishant, Anand Sagar Gupta, Jishnav Dawar, Alok Kumar, and Santanu Mitra. "Numerical and Experimental Study on Performance Enhancement of Darrieus Vertical Axis Wind Turbine With Wingtip Devices." Journal of Energy Resources Technology 140, no. 12 (July 2, 2018). http://dx.doi.org/10.1115/1.4040506.
Full text"Experiment on Wingtip Vortices using a Half Deltawing at the Tips." International Journal of Recent Technology and Engineering 8, no. 2S8 (September 17, 2019): 1633–38. http://dx.doi.org/10.35940/ijrte.b1119.0882s819.
Full textLoewenthal, Ethan, and Ashok Gopalarathnam. "Low-Order Modeling of Wingtip Vortices in a Vortex Lattice Method." AIAA Journal, September 25, 2021, 1–13. http://dx.doi.org/10.2514/1.j060654.
Full text"Experimental Research on Wingtip Vortices using a Half Deltawing at the Tips." International Journal of Recent Technology and Engineering 8, no. 2S11 (November 2, 2019): 2267–72. http://dx.doi.org/10.35940/ijrte.b1250.0982s1119.
Full textBeves, Christopher C., and Tracie J. Barber. "The Wingtip Vortex of a Dimpled Wing With an Endplate." Journal of Fluids Engineering 139, no. 2 (November 3, 2016). http://dx.doi.org/10.1115/1.4034525.
Full textSerrano-Aguilera, J. J., J. Hermenegildo García-Ortiz, A. Gallardo-Claros, L. Parras, and C. del Pino. "Experimental characterization of wingtip vortices in the near field using smoke flow visualizations." Experiments in Fluids 57, no. 8 (August 2016). http://dx.doi.org/10.1007/s00348-016-2222-9.
Full textQin, Suyang, Zifeng Weng, Zhuoqi Li, Yang Xiang, and Hong Liu. "On the controlled evolution for wingtip vortices of a flapping wing model at bird scale." Aerospace Science and Technology, December 2020, 106460. http://dx.doi.org/10.1016/j.ast.2020.106460.
Full textSibilski, K. "Dynamics of Micro-Air-Vehicle with Flapping Wings." Acta Polytechnica 44, no. 2 (January 2, 2004). http://dx.doi.org/10.14311/526.
Full textKarasu, İlyas, Mustafa Özden, and Mustafa Serdar Genç. "Performance Assessment of Transition Models for Three-Dimensional Flow Over NACA4412 Wings at Low Reynolds Numbers." Journal of Fluids Engineering 140, no. 12 (June 13, 2018). http://dx.doi.org/10.1115/1.4040228.
Full textLu, A., and T. Lee. "Effect of Ground Boundary Condition on Near-Field Wingtip Vortex Flow and Lift-Induced Drag." Journal of Fluids Engineering 143, no. 3 (November 18, 2020). http://dx.doi.org/10.1115/1.4048875.
Full textLee, T. "Impact of Gurney Flaplike Strips on the Aerodynamic and Vortex Flow Characteristic of a Reverse Delta Wing." Journal of Fluids Engineering 138, no. 6 (February 18, 2016). http://dx.doi.org/10.1115/1.4032301.
Full textMoskalenko, V. O., A. V. Tsoy, and A. A. Nedogarok. "The study of aerodynamic characteristics of the wing with tips of different shapes." Engineering Journal: Science and Innovation, no. 10 (94) (October 2019). http://dx.doi.org/10.18698/2308-6033-2019-10-1921.
Full text