Academic literature on the topic 'Winter mid-latitude cyclones'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Winter mid-latitude cyclones.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Winter mid-latitude cyclones"

1

Raphael, Marilyn, and Gerald Mills. "The Role of Mid-Latitude Pacific Cyclones in the Winter Precipitation of California∗." Professional Geographer 48, no. 3 (August 1996): 251–62. http://dx.doi.org/10.1111/j.0033-0124.1996.00251.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Karagiannidis, A., T. Karacostas, P. Maheras, and T. Makrogiannis. "Trends and seasonality of extreme precipitation characteristics related to mid-latitude cyclones in Europe." Advances in Geosciences 20 (March 30, 2009): 39–43. http://dx.doi.org/10.5194/adgeo-20-39-2009.

Full text
Abstract:
Abstract. An attempt is made to study the extreme precipitation characteristics, which are related to the mid-latitude cyclonic systems. Daily pluviometric data, from several stations across the continental Europe and the British Islands, are used. The covered time-period is from 1958 to 2000. Only extreme precipitation events related to mid-latitude cyclonic systems are studied, since thermal thunderstorm episodes are being excluded. To accomplish that, summer months are excluded and a strict criterion for identifying the exact episodes is set, which also defines the episode itself and the extremity of it. A decreasing trend in the cases of extreme precipitation of the European continent was found. It starts in the mid 60's and continues until the mid 70's. After that and until the end of the examined period, no significant trend was found. Seasonality of extreme precipitation cases and episodes is also studied. October and November are the two months that present the higher frequencies of such cases and episodes. In general, autumn months indicate the higher percentages of extreme precipitation, with winter and spring months to follow.
APA, Harvard, Vancouver, ISO, and other styles
3

Zhang, Jiuzheng, Haiming Xu, Jing Ma, and Jiechun Deng. "Interannual Variability of Spring Extratropical Cyclones over the Yellow, Bohai, and East China Seas and Possible Causes." Atmosphere 10, no. 1 (January 21, 2019): 40. http://dx.doi.org/10.3390/atmos10010040.

Full text
Abstract:
Interannual variability of cyclones that are generated over the eastern Asian continent and passed over the Yellow, Bohai, and East China seas (YBE cyclones) in spring is analyzed using reanalysis datasets for the period of 1979–2017. Possible causes for the variability are also discussed. Results show that the number of YBE cyclones exhibits significant interannual variability with a period of 4–5 years. Developing cyclones are further classified into two types: rapidly developing cyclones and slowly developing cyclones. The number of rapidly developing cyclones is highly related to the underlying sea surface temperature (SST) anomalies (SSTA) and the atmospheric baroclinicity from Lake Baikal to the Japan Sea. The number of slowly developing cyclones, however, is mainly affected by the North Atlantic Oscillation (NAO) in the preceding winter (DJF); it works through the upper-level jet stream over Japan and the memory of ocean responses to the atmosphere. Positive NAO phase in winter is associated with the meridional tripole pattern of SSTA in the North Atlantic Ocean, which persists from winter to the following spring (MAM) due to the thermal inertia of the ocean. The SSTA in the critical mid-latitude Atlantic region in turn act to affect the overlying atmosphere via sensible and latent heat fluxes, leading to an increased frequency of slowly developing cyclones via exciting an anomalous eastward-propagating Rossby wave train. These results are confirmed by several numerical simulations using an atmospheric general circulation model.
APA, Harvard, Vancouver, ISO, and other styles
4

Eichler, Timothy Paul. "The impacts of a warming climate on winter mid-latitude cyclones in the NARCCAP model suite." Climate Dynamics 54, no. 9-10 (April 23, 2020): 4379–98. http://dx.doi.org/10.1007/s00382-020-05236-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hegarty, J., H. Mao, and R. Talbot. "Winter- and summertime continental influences on tropospheric O<sub>3</sub> and CO observed by TES over the western North Atlantic Ocean." Atmospheric Chemistry and Physics 10, no. 8 (April 21, 2010): 3723–41. http://dx.doi.org/10.5194/acp-10-3723-2010.

Full text
Abstract:
Abstract. The distributions of tropospheric ozone (O3) and carbon monoxide (CO), and the synoptic factors regulating these distributions over the western North Atlantic Ocean during winter and summer were investigated using profile retrievals from the Tropospheric Emission Spectrometer (TES) for 2004–2006. Seasonal composites of TES retrievals, reprocessed to remove the influence of the a priori on geographical and seasonal structure, exhibited strong seasonal differences. At the 681 hPa level during winter months of December, January and February (DJF) the composite O3 mixing ratios were uniformly low (~45 ppbv), but continental export was evident in a channel of enhanced CO (100–110 ppbv) flowing eastward from the US coast. In summer months June, July, and August (JJA) O3 mixing ratios were variable (45–65 ppbv) and generally higher due to increased photochemical production. The summer distribution also featured a channel of enhanced CO (95–105 ppbv) flowing northeastward around an anticyclone and exiting the continent over the Canadian Maritimes around 50° N. Offshore O3-CO slopes were generally 0.15–0.20 mol mol−1 in JJA, indicative of photochemical O3 production. Composites for 4 predominant synoptic patterns or map types in DJF suggested that export to the lower free troposphere (681 hPa level) was enhanced by the warm conveyor belt airstream of mid-latitude cyclones while stratospheric intrusions increased TES O3 levels at 316 hPa. A major finding in the DJF data was that offshore 681 hPa CO mixing ratios behind cold fronts could be enhanced up to >150 ppbv likely by lofting from the surface via shallow convection resulting from rapid destabilization of cold air flowing over much warmer ocean waters. In JJA composites for 3 map types showed that the general export pattern of the seasonal composites was associated with a synoptic pattern featuring the Bermuda High. However, weak cyclones and frontal troughs could enhance offshore 681 hPa CO mixing ratios to >110 ppbv with O3-CO slopes >0.50 mol mol−1 south of 45° N. Intense cyclones, which were not as common in the summer, enhanced export by lofting of boundary layer pollutants from over the US and also provided a possible mechanism for transporting pollutants from boreal fire outflow southward to the US east coast. Overall, for winter and summer the TES retrievals showed substantial evidence of air pollution export to the western North Atlantic Ocean with the most distinct differences in distribution patterns related to strong influences of mid-latitude cyclones in winter and the Bermuda High anticyclone in summer.
APA, Harvard, Vancouver, ISO, and other styles
6

Svensson, C., and D. A. Jones. "Dependence between sea surge, river flow and precipitation in south and west Britain." Hydrology and Earth System Sciences 8, no. 5 (October 31, 2004): 973–92. http://dx.doi.org/10.5194/hess-8-973-2004.

Full text
Abstract:
Abstract. Estuaries around Great Britain may be at heightened risk of flooding because of the simultaneous occurrence of extreme sea surge and river flow, both of which may be caused by mid-latitude cyclones. A measure especially suited for extremes was employed to estimate dependence between river flow and sea surge. To assist in the interpretation of why flow-surge dependence occurs in some areas and not in others, the dependence between precipitation and surge and between precipitation and river flow was also studied. Case studies of the meteorological situations leading to high surges and/or river flows were also carried out. The present study concerns catchments draining to the south and west coasts of Great Britain. Statistically significant dependence between river flow and daily maximum sea surge may be found at catchments spread along most of this coastline. However, higher dependence is generally found in catchments in hilly areas with a southerly to westerly aspect. Here, precipitation in south-westerly airflow, which is generally the quadrant of prevailing winds, will be enhanced orographically as the first higher ground is encountered. The sloping catchments may respond quickly to the abundant rainfall and the flow peak may arrive in the estuary on the same day as a large sea surge is produced by the winds and low atmospheric pressure associated with the cyclone. There are three regions where flow-surge dependence is strong: the western part of the English south coast, southern Wales and around the Solway Firth. To reduce the influence of tide-surge interaction on the dependence analysis, the dependence between river flow and daily maximum surge occurring at high tide was estimated. The general pattern of areas with higher dependence is similar to that using the daily maximum surge. The dependence between river flow and daily maximum sea surge is often strongest when surge and flow occur on the same day. The west coast from Wales and northwards has slightly stronger flow-surge dependence in summer than in winter, whereas dependence is stronger in winter than in summer for the southern part of the study area. Keywords: : Britain, dependence, sea surge, river flow, precipitation, mid-latitude cyclone, seasonality, time lag
APA, Harvard, Vancouver, ISO, and other styles
7

Yang, Y. Q., Q. Hou, C. H. Zhou, H. L. Liu, Y. Q. Wang, and T. Niu. "Sand/dust storms over Northeast Asia and associated large-scale circulations in spring 2006." Atmospheric Chemistry and Physics Discussions 7, no. 3 (June 29, 2007): 9259–81. http://dx.doi.org/10.5194/acpd-7-9259-2007.

Full text
Abstract:
Abstract. This paper presents a study on the meteorological conditions that accompany the sand/dust storms (SDS) of East Asia in spring 2006, based on the SDS data collected both by WMO during 2000–2006 and by 2456 Chinese surface stations, and on the meteorological reanalysis data from NCEP-NCAR . The evolution of 3-D structures of the general circulations prevailed in both winter and spring as well as their annual anomalies were investigated by comparing the years having most and least occurrences of SDS between 2000 and 2006. It is found that spring 2006 featured a noticeably increased occurrence of SDS, compared with previous years. The general circulations prevailed through both winter and spring, especially the 3-D structure of the polar circulation, show the significant anomalies compared to a normal year. This produced a range of corresponding weather phenomena, including circumpolar vortices at the upper troposphere, mid-level westerly jets, and lower zonal winds, which all favored the SDS production and transport in 2006. The study also reveals a fact that comparing with a normal year, the transitional period from the winter of 2005 to the spring of 2006 has witnessed a fast-developed high center at the upper troposphere of the northern hemisphere and the circumpolar vortex area, which pushes the area dominated by the circumpolar vortices further to mid-latitudes. The circumpolar vortices shifted southwards, and prevailed over an extensive area across the northeast hemisphere for a sustained period. The mid-high latitude areas that sit in the south of the circumpolar vortices in Asia have experienced significantly abnormal westerly jets at the mid-level of troposphere. Zonal winds prevailed at the mid and lower levels of troposphere. Sea level pressure registered an abnormal high at 4–10 hPa, compared with a normal year. The above-mentioned 3-D structures of general circulation have created thermal and dynamic conditions that favor the repeated genesis and momentous development of the Mongolian cyclones, which in turn contributes to the frequent occurrences and long distance transport of SDS.
APA, Harvard, Vancouver, ISO, and other styles
8

Hofmann, C., A. Kerkweg, H. Wernli, and P. Jöckel. "The 1-way on-line coupled atmospheric chemistry model system MECO(n) – Part 3: Meteorological evaluation of the on-line coupled system." Geoscientific Model Development 5, no. 1 (January 19, 2012): 129–47. http://dx.doi.org/10.5194/gmd-5-129-2012.

Full text
Abstract:
Abstract. Three detailed meteorological case studies are conducted with the global and regional atmospheric chemistry model system ECHAM5/MESSy(→COSMO/MESSy)n, shortly named MECO(n). The aim of this article is to assess the general performance of the on-line coupling of the regional model COSMO to the global model ECHAM5. The cases are characterised by intense weather systems in Central Europe: a cold front passage in March 2010, a convective frontal event in July 2007, and the high impact winter storm "Kyrill" in January 2007. Simulations are performed with the new on-line-coupled model system and compared to classical, off-line COSMO hindcast simulations driven by ECMWF analyses. Precipitation observations from rain gauges and ECMWF analysis fields are used as reference, and both qualitative and quantitative measures are used to characterise the quality of the various simulations. It is shown that, not surprisingly, simulations with a shorter lead time generally produce more accurate simulations. Irrespective of lead time, the accuracy of the on-line and off-line COSMO simulations are comparable for the three cases. This result indicates that the new global and regional model system MECO(n) is able to simulate key mid-latitude weather systems, including cyclones, fronts, and convective precipitation, as accurately as present-day state-of-the-art regional weather prediction models in standard off-line configuration. Therefore, MECO(n) will be applied to simulate atmospheric chemistry exploring the model's full capabilities during meteorologically challenging conditions.
APA, Harvard, Vancouver, ISO, and other styles
9

Hofmann, C., A. Kerkweg, H. Wernli, and P. Jöckel. "The 1-way on-line coupled atmospheric chemistry model system MECO(n) – Part 3: Meteorological evaluation of the on-line coupled system." Geoscientific Model Development Discussions 4, no. 3 (July 18, 2011): 1533–67. http://dx.doi.org/10.5194/gmdd-4-1533-2011.

Full text
Abstract:
Abstract. Three detailed meteorological case studies are conducted with the global and regional atmospheric chemistry model system ECHAM5/MESSy(→COSMO/MESSy)n, shortly named MECO(n), in order to assess the general performance of the on-line coupling of the regional model COSMO to the global model ECHAM5. The cases are characterised by intense weather systems in Central Europe: an intense cold frontal passage in March 2010, a convective frontal event in July 2007, and the high impact winter storm "Kyrill" in January 2007. Simulations are performed with the new on-line-coupled model system and compared to classical, off-line COSMO hindcast simulations driven by ECMWF analyses. Precipitation observations from rain gauges and ECMWF analysis fields are used as reference, and both qualitative and quantitative measures are used to characterise the quality of the various simulations. It is shown that, not surprisingly, simulations with a shorter lead time generally produce more accurate simulations. Irrespective of lead time, the accuracy of the on-line and off-line COSMO simulations are comparable for the three cases. This result indicates that the new global and regional model system MECO(n) is able to simulate key mid-latitude weather systems, including cyclones, fronts, and convective precipitation, as accurately as present-day state-of-the-art regional weather prediction models in standard off-line configuration. Therefore, MECO(n) will be applied in the near future to simulate atmospheric chemistry exploring the model's full capabilities during meteorologically challenging conditions.
APA, Harvard, Vancouver, ISO, and other styles
10

Steinbrecht, W., B. Haßler, C. Brühl, M. Dameris, M. A. Giorgetta, V. Grewe, E. Manzini, et al. "Interannual variation patterns of total ozone and lower stratospheric temperature in observations and model simulations." Atmospheric Chemistry and Physics 6, no. 2 (February 6, 2006): 349–74. http://dx.doi.org/10.5194/acp-6-349-2006.

Full text
Abstract:
Abstract. We report results from a multiple linear regression analysis of long-term total ozone observations (1979 to 2000, by TOMS/SBUV), of temperature reanalyses (1958 to 2000, NCEP), and of two chemistry-climate model simulations (1960 to 1999, by ECHAM4.L39(DLR)/CHEM (=E39/C), and MAECHAM4-CHEM). The model runs are transient experiments, where observed sea surface temperatures, increasing source gas concentrations (CO2, CFCs, CH4, N2O, NOx), 11-year solar cycle, volcanic aerosols and the quasi-biennial oscillation (QBO) are all accounted for. MAECHAM4-CHEM covers the atmosphere from the surface up to 0.01 hPa (≈80 km). For a proper representation of middle atmosphere (MA) dynamics, it includes a parametrization for momentum deposition by dissipating gravity wave spectra. E39/C, on the other hand, has its top layer centered at 10 hPa (≈30 km). It is targeted on processes near the tropopause, and has more levels in this region. Despite some problems, both models generally reproduce the observed amplitudes and much of the observed low-latitude patterns of the various modes of interannual variability in total ozone and lower stratospheric temperature. In most aspects MAECHAM4-CHEM performs slightly better than E39/C. MAECHAM4-CHEM overestimates the long-term decline of total ozone, whereas underestimates the decline over Antarctica and at northern mid-latitudes. The true long-term decline in winter and spring above the Arctic may be underestimated by a lack of TOMS/SBUV observations in winter, particularly in the cold 1990s. Main contributions to the observed interannual variations of total ozone and lower stratospheric temperature at 50 hPa come from a linear trend (up to -10 DU/decade at high northern latitudes, up to -40 DU/decade at high southern latitudes, and around -0.7 K/decade over much of the globe), from the intensity of the polar vortices (more than 40 DU, or 8 K peak to peak), the QBO (up to 20 DU, or 2 K peak to peak), and from tropospheric weather (up to 20 DU, or 2 K peak to peak). Smaller variations are related to the 11-year solar cycle (generally less than 15 DU, or 1 K), or to ENSO (up to 10 DU, or 1 K). These observed variations are replicated well in the simulations. Volcanic eruptions have resulted in sporadic changes (up to -30 DU, or +3 K). At low latitudes, patterns are zonally symmetric. At higher latitudes, however, strong, zonally non-symmetric signals are found close to the Aleutian Islands or south of Australia. Such asymmetric features appear in the model runs as well, but often at different longitudes than in the observations. The results point to a key role of the zonally asymmetric Aleutian (or Australian) stratospheric anti-cyclones for interannual variations at high-latitudes, and for coupling between polar vortex strength, QBO, 11-year solar cycle and ENSO.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Winter mid-latitude cyclones"

1

Matsuda, Miho. "A case study of the distribution of high wind speeds in the Greater Victoria area using wind data from the School-Based Weather Station Network." Thesis, 2014. http://hdl.handle.net/1828/5341.

Full text
Abstract:
This thesis presents the distribution of strong wind and wind pressure in the Greater Victoria area associated with winter mid-latitude cyclones based on climate data from the School-Based Weather Station Network during 6 selected days in the winters of 2006, 2007 and 2008. The objectives of this study are i) to test whether synoptic conditions favourable to severe mid-latitude cyclonic storms that are well described in the literature were associated with the selected storms, ii) to determine the time patterns of high wind speed and its direction and maximum gusts, iii) to test necessity of considering the spatial variation in air density and its controls in general assessments of the spatial variation in wind pressure and wind damage potential in the local area, iv) to identify potential areas susceptible to wind damage. Observations taken every second were from Davis Vantage Pro2 TM Plus weather stations located on the southern edge of school building roofs. Thirty-minute means and gust wind speeds were used. All six storms went north of Victoria. The synoptic conditions associated with the selected mid-latitude cyclones agreed with the ones described in literature. Strongest winds at most stations were generally from the southwest, and multiple wind speed peaks were found. The daily iii  maximum gust wind speeds were found before and/or after the highest mean wind speed peak. The spatial variation in air density and its controls were found to be negligible. Although there are a number of interacting causes of the distribution, strongest winds were at stations with smooth surrounding surfaces, close to the southern shoreline, on exposed slopes and/or near relief constrictions. The area with greatest wind speeds and damage potential was found from the east of downtown extending to Lansdowne Middle School. This study provides new knowledge of winds in the Greater Victoria area and contributes to people’s better response to wind storms, land use planning and forecasting severe windstorms.
Graduate
0368
mmatsuda@uvic.ca
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Winter mid-latitude cyclones"

1

Cardone, Vincent J., and Andrew T. Cox. "Modeling Very Extreme Sea States (VESS) in Real and Synthetic Design Level Storms." In ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2011. http://dx.doi.org/10.1115/omae2011-49731.

Full text
Abstract:
This paper addresses two questions critical for the successful real world application of the Cooperative Research on Extreme Seas and their Impact (CresT) Joint Industry Project (JIP) design methodology in harsh operating environments: (1) how accurately may very extreme sea states (VESS) be specified by modern numerical spectral wave models? About 20 storms in which VESS (defined as with significant wave height (HS) > 14 m) have been measured by various in-situ and satellite-mounted altimeters are hindcast and it is shown that when the meteorological forcing is accurately specified, a proven 3rd generation (3G) wave model provides skillful and unbiased specification of peak HS and by implication of the associated spectral properties. The second question addressed is: how do current 3G models behave when applied to even more extreme meteorological forcing than observed in the real storms studied? The same hindcast methodology is, therefore, applied to a population of synthetic hurricanes whose combinations of intensity and scale are predicted by deductive modeling studies of Gulf of Mexico hurricanes carried out following Hurricane Katrina (2004). The model results suggests that for a tropical cyclone to generate say peak HS > 20 m would require the peak wind intensity of a major hurricane (Category 3 or greater) combined with a larger size and faster translation speed than may be maintained by a tropical cyclone in tropical or subtropical settings. Large scale cyclonic and relatively rapidly translating storms with major hurricane force peak wind speeds indeed exist as a class of mid-latitude extratropical cyclones, dubbed “winter hurricanes”. Hundreds of such storms have been detected in global satellite altimeter data in virtually all major ocean basins. The peak sea states in the most extreme examples are also found to be simulated quite skillfully with the hindcast technology applied. The hindcast results are explored to infer the upper limit to the naturally occurring dynamic range of sea states in tropical and winter hurricanes.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography