To see the other types of publications on this topic, follow the link: Wireless sensor networks. Artificial intelligence.

Dissertations / Theses on the topic 'Wireless sensor networks. Artificial intelligence'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Wireless sensor networks. Artificial intelligence.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Qela, Blerim. "Adaptive Systems for Smart Buildings Utilizing Wireless Sensor Networks and Artificial Intelligence." Thesis, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/20553.

Full text
Abstract:
In this thesis, research efforts are dedicated towards the development of practical adaptable techniques to be used in Smart Homes and Buildings, with the aim to improve energy management and conservation, while enhancing the learning capabilities of Programmable Communicating Thermostats (PCT) – “transforming” them into smart adaptable devices, i.e., “Smart Thermostats”. An Adaptable Hybrid Intelligent System utilizing Wireless Sensor Network (WSN) and Artificial Intelligence (AI) techniques is presented, based on which, a novel Adaptive Learning System (ALS) model utilizing WSN, a rule-based system and Adaptive Resonance Theory (ART) concepts is proposed. The main goal of the ALS is to adapt to the occupant’s pattern and/or schedule changes by providing comfort, while not ignoring the energy conservation aspect. The proposed ALS analytical model is a technique which enables PCTs to learn and adapt to user input pattern changes and/or other parameters of interest. A new algorithm for finding the global maximum in a predefined interval within a two dimensional space is proposed. The proposed algorithm is a synergy of reward/punish concepts from the reinforcement learning (RL) and agent-based technique, for use in small-scale embedded systems with limited memory and/or processing power, such as the wireless sensor/actuator nodes. An application is implemented to observe the algorithm at work and to demonstrate its main features. It was observed that the “RL and Agent-based Search”, versus the “RL only” technique, yielded better performance results with respect to the number of iterations and function evaluations needed to find the global maximum. Furthermore, a “House Simulator” is developed as a tool to simulate house heating/cooling systems and to assist in the practical implementation of the ALS model under different scenarios. The main building blocks of the simulator are the “House Simulator”, the “Smart Thermostat”, and a placeholder for the “Adaptive Learning Models”. As a result, a novel adaptive learning algorithm, “Observe, Learn and Adapt” (OLA) is proposed and demonstrated, reflecting the main features of the ALS model. Its evaluation is achieved with the aid of the “House Simulator”. OLA, with the use of sensors and the application of the ALS model learning technique, captures the essence of an actual PCT reflecting a smart and adaptable device. The experimental performance results indicate adaptability and potential energy savings of the single in comparison to the zone controlled scenarios with the OLA capabilities being enabled.
APA, Harvard, Vancouver, ISO, and other styles
2

Townsend, Larry. "Wireless Sensor Network Clustering with Machine Learning." Diss., NSUWorks, 2018. https://nsuworks.nova.edu/gscis_etd/1042.

Full text
Abstract:
Wireless sensor networks (WSNs) are useful in situations where a low-cost network needs to be set up quickly and no fixed network infrastructure exists. Typical applications are for military exercises and emergency rescue operations. Due to the nature of a wireless network, there is no fixed routing or intrusion detection and these tasks must be done by the individual network nodes. The nodes of a WSN are mobile devices and rely on battery power to function. Due the limited power resources available to the devices and the tasks each node must perform, methods to decrease the overall power consumption of WSN nodes are an active research area. This research investigated using genetic algorithms and graph algorithms to determine a clustering arrangement of wireless nodes that would reduce WSN power consumption and thereby prolong the lifetime of the network. The WSN nodes were partitioned into clusters and a node elected from each cluster to act as a cluster head. The cluster head managed routing tasks for the cluster, thereby reducing the overall WSN power usage. The clustering configuration was determined via genetic algorithm and graph algorithms. The fitness function for the genetic algorithm was based on the energy used by the nodes. It was found that the genetic algorithm was able to cluster the nodes in a near-optimal configuration for energy efficiency. Chromosome repair was also developed and implemented. Two different repair methods were found to be successful in producing near-optimal solutions and reducing the time to reach the solution versus a standard genetic algorithm. It was also found the repair methods were able to implement gateway nodes and energy balance to further reduce network energy consumption.
APA, Harvard, Vancouver, ISO, and other styles
3

Taylor, Christopher J. "Simultaneous Localization and Tracking in Wireless Ad-hoc Sensor Networks." [Cambridge, Mass.] : MIT Computer Sciece and Artificial Intelligence Laboratory, 2005. http://hdl.handle.net/1721.1/30549.

Full text
Abstract:
In this thesis we present LaSLAT, a sensor network algorithm thatsimultaneously localizes sensors, calibrates sensing hardware, andtracks unconstrained moving targets using only range measurementsbetween the sensors and the target. LaSLAT is based on a Bayesian filter, which updates a probabilitydistribution over the quantities of interest as measurementsarrive. The algorithm is distributable, and requires only a constantamount of space with respect to the number of measurementsincorporated. LaSLAT is easy to adapt to new types of hardware and newphysical environments due to its use of intuitive probabilitydistributions: one adaptation demonstrated in this thesis uses amixture measurement model to detect and compensate for bad acousticrange measurements due to echoes.We also present results from a centralized Java implementation ofLaSLAT on both two- and three-dimensional sensor networks in whichranges are obtained using the Cricket ranging system. LaSLAT is ableto localize sensors to within several centimeters of their groundtruth positions while recovering a range measurement bias for eachsensor and the complete trajectory of the mobile.
APA, Harvard, Vancouver, ISO, and other styles
4

Delgado, Román María del Carmen. "Organisation-based co-ordination of wireless sensor networks." Doctoral thesis, Universitat Autònoma de Barcelona, 2014. http://hdl.handle.net/10803/285080.

Full text
Abstract:
Esta tesis presenta el Coalition Oriented Sensing Algorithm (COSA) como un mecanismo de auto-organización para redes de sensores inalámbricos (WSN). El objetivo del algoritmo es extender la vida útil de la red, al mismo tiempo que la funcionalidad básica de la misma – la monitorización fiel del entorno– también es garantizada. La evaluación del funcionamiento del algoritmo se apoya en una plataforma de simulación novedosa, RepastSNS. La implementación de COSA y la preparación de la plataforma para el desarrollo de los experimentos dan lugar a una estructura software reutilizable. Esta estructura favorece la implementación de futuras ampliaciones del algoritmo, así como su exportación a otros entornos. El uso de las WSNs se ha popularizado en los últimos años. Sus particulares características han favorecido la aplicación de las mismas a múltiples áreas. No obstante, la gestión energética de las WSNs sigue siendo objeto de estudio para los investigadores, que tratan de aliviar las fuertes restricciones que estas presentan en cuanto a disponibilidad de energía se refiere. En esta línea, se han propuesto diversas técnicas para conservación de la energía. La restricción energética es especialmente acusada cuando las WSNs se despliegan en entornos que no permiten la conexión de los nodos a la red ni la recarga de sus baterías. Este es el tipo de entorno considerado para la evaluación de COSA. El caso de uso estudiado considera una WSN desplegada a lo largo de un río navegable con el objetivo de monitorizar el estado del agua y detectar la presencia de polución en ella. La definición de COSA se inspira en el paradigma de los Sistemas Multiagente (MAS) mediante la identificación de los nodos de la WSN con agentes del MAS. COSA define un algoritmo para formación de coaliciones basado en diálogos por parejas de agentes (nodos). El algoritmo está completamente embebido en el comportamiento del agente. Los agentes que implementan COSA se comunican con sus vecinos para intercambiar información sobre su percepción del entorno y su estado. Como resultado de esta comunicación local, los agentes eligen su rol en la organización y establecen relaciones leader-follower. La definición de este tipo de relaciones se basa en dos funciones relacionales y un protocolo de negociación que establece las normas de coordinación. Los agentes se juntan en grupos para compensar la calidad de los datos recogidos y el consumo de energía asociado. Esta habilidad permite adaptar el consumo energético de la red a cambios en el entorno, al mismo tiempo que se satisfacen los objetivos de muestreo en cuanto a calidad de la información enviada al sink se refiere. Los resultados experimentales obtenidos apoyan las hipótesis preliminares en cuanto al comportamiento de COSA. A partir de estos resultados también se pone de manifiesto la relación existente entre la coordinación local y las ganancias obtenidas por el uso de COSA.<br>This thesis introduces the Coalition Oriented Sensing Algorithm (COSA) as a self-organisation mechanism for Wireless Sensor Networks (WSNs). This algorithm aims at extending the network lifetime at the same time that the primary goal of the network –faithfully monitoring the environment– is also guaranteed. The evaluation of the algorithm performance is based on a novel simulator, RepastSNS. The implementation of COSA and the development of its experimental setup define a reusable software structure to work over this simulation environment. It also favours the performance of future enhancements of the algorithm as well as its exportation. The use of WSNs has become widespread in the last years. The special characteristics of these networks have favoured their application to many different areas. One of the major concerns about WSNs refers to their energy management, as they are typically constraint in energy availability. This problem has gained the attention of researchers that try to improve this aspect of the WSNs by defining network energy conservation strategies. This constraint becomes especially acute when the network deployment environment does not allow for battery replenishment or node connection to the net. This is the case of the environment considered for COSA evaluation. The use case considered is a WSN deployed along a waterway in order to monitor the state of the water and detect the presence of pollutant sources. The definition of COSA is inspired by the Multiagent Systems (MAS) paradigm through the identification of nodes in a WSN with agents in a MAS. COSA defines a coalition formation algorithm based on peer-to-peer dialogues between neighbouring agents (nodes). The algorithm is completely embedded into the agent behaviour. Agents implementing COSA communicate with its neighbours to exchange information about their perception of the environment and their state. As a result of this local communication, agents select the role to play in the organisation and can then establish leader-follower relationships. The establishment of these peer-to-peer relationships is based on two relational functions and a negotiation protocol that lays down the norms of this co-ordination. Agents join in groups in order to trade off the accuracy of the sensed data and their energy consumption. As a consequence, COSA endows the network with self-organisation capacity. This ability is used to adapt energy consumption to changes in the environment and, at the same time, to fulfil sampling objectives in terms of the quality of the information reported to the sink. The results derived from experimentation support preliminary hypotheses about COSA good performance. They also provide insights on the relationship between local co-ordination and the gains obtained from COSA’s use.
APA, Harvard, Vancouver, ISO, and other styles
5

Yousefi, Zowj Afsoon. "A Genetic Programming Approach to Cost-Sensitive Control in Wireless Sensor Networks." ScholarWorks @ UVM, 2016. http://scholarworks.uvm.edu/graddis/493.

Full text
Abstract:
In some wireless sensor network applications, multiple sensors can be used to measure the same variable, while differing in their sampling cost, for example in their power requirements. This raises the problem of automatically controlling heterogeneous sensor suites in wireless sensor network applications, in a manner that balances cost and accuracy of sensors. Genetic programming (GP) is applied to this problem, considering two basic approaches. First, a hierarchy of models is constructed, where increasing levels in the hierarchy use sensors of increasing cost. If a model that polls low cost sensors exhibits too much prediction uncertainty, the burden of prediction is automatically transferred to a higher level model using more expensive sensors. Second, models are trained with cost as an optimization objective, called non-hierarchical models, that use conditionals to automatically select sensors based on both cost and accuracy. These approaches are compared in a setting where the available budget for sampling is considered to remain constant, and in a setting where the system is sensitive to a fluctuating budget, for example available battery power. It is showed that in both settings, for increasingly challenging datasets, hierarchical models makes predictions with equivalent accuracy yet lower cost than non-hierarchical models.
APA, Harvard, Vancouver, ISO, and other styles
6

Li, Jiakai. "AI-WSN: Adaptive and Intelligent Wireless Sensor Networks." University of Toledo / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1341258416.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Gao, Zhenning. "Parallel and Distributed Implementation of A Multilayer Perceptron Neural Network on A Wireless Sensor Network." University of Toledo / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1383764269.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lu, Yapeng. "An integrated algorithm for distributed optimization in networked systems." Click to view the E-thesis via HKUTO, 2009. http://sunzi.lib.hku.hk/hkuto/record/B43224234.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Shaon, Mohammad. "A computationally intelligent approach to the detection of wormhole attacks in wireless sensor networks." World Comp,14th International Conference on Wireless Networks, 2015, 2015. http://hdl.handle.net/1993/31981.

Full text
Abstract:
This thesis proposes an innovative wormhole detection scheme to detect wormhole attacks using computational intelligence and an artificial neural network (ANN). The aim of the proposed research is to develop a detection scheme that can detect wormhole attacks (In-band, out of band, hidden wormhole attack, active wormhole attack) in both uniformly and non-uniformly distributed sensor networks. Furthermore, the proposed research does not require any special hardware and causes no significant network overhead throughout the network. Most importantly, the probable location of the wormhole nodes can be tracked down by the proposed ANN-based detection scheme. We evaluate the efficacy of the proposed detection scheme in terms of detection accuracy, false positive rate, and false negative rate. The performance of the proposed model is also compared with other machine learning techniques (i.e. SVM and regularized nonlinear logistic regression (LR) based detection models) based detection schemes. The simulation results show that proposed ANN-based detection model outperforms the SVM and LR based detection schemes in terms of detection accuracy, false positive rate, and false negative rates.<br>February 2017
APA, Harvard, Vancouver, ISO, and other styles
10

Al-Olimat, Hussein S. "Optimizing Cloudlet Scheduling and Wireless Sensor Localization using Computational Intelligence Techniques." University of Toledo / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1403922600.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Lu, Yapeng, and 呂亞鵬. "An integrated algorithm for distributed optimization in networked systems." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2009. http://hub.hku.hk/bib/B43224234.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Cheng, Yongqiang. "Wireless mosaic eyes based robot path planning and control : autonomous robot navigation using environment intelligence with distributed vision sensors." Thesis, University of Bradford, 2010. http://hdl.handle.net/10454/4421.

Full text
Abstract:
As an attempt to steer away from developing an autonomous robot with complex centralised intelligence, this thesis proposes an intelligent environment infrastructure where intelligences are distributed in the environment through collaborative vision sensors mounted in a physical architecture, forming a wireless sensor network, to enable the navigation of unintelligent robots within that physical architecture. The aim is to avoid the bottleneck of centralised robot intelligence that hinders the application and exploitation of autonomous robot. A bio-mimetic snake algorithm is proposed to coordinate the distributed vision sensors for the generation of a collision free Reference-snake (R-snake) path during the path planning process. By following the R-snake path, a novel Accompanied snake (A-snake) method that complies with the robot's nonholonomic constraints for trajectory generation and motion control is introduced to generate real time robot motion commands to navigate the robot from its current position to the target position. A rolling window optimisation mechanism subject to control input saturation constraints is carried out for time-optimal control along the A-snake. A comprehensive simulation software and a practical distributed intelligent environment with vision sensors mounted on a building ceiling are developed. All the algorithms proposed in this thesis are first verified by the simulation and then implemented in the practical intelligent environment. A model car with less on-board intelligence is successfully controlled by the distributed vision sensors and demonstrated superior mobility.
APA, Harvard, Vancouver, ISO, and other styles
13

Dota, Mara Andréa. "Modelo para a classificação da qualidade da água contaminada por solo usando indução por árvore de decisão." Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/3/3141/tde-14082015-151933/.

Full text
Abstract:
A possibilidade de avaliar remotamente e de forma instantânea alterações na qualidade das águas em função da entrada de solos permite o monitoramento de processos ecológicos como o assoreamento, perdas e solos, carreamento de pesticidas e degradação de habitats aquáticos. Com a utilização de um modelo automatizado, torna-se possível um monitoramento em tempo real remoto coletando dados por meio de Redes de Sensores Sem Fio. Esta pesquisa propõe um modelo de classificação da qualidade da água contaminada por solo usando técnicas de Árvore de Decisão. Com este modelo torna-se possível acompanhar alterações que venham a ocorrer em águas superficiais indicando o nível de contaminação por solo com maior rapidez do que a forma convencional que necessita de análise em laboratório e coleta de amostra manual. A classificação proposta considera sete classes de qualidade da água, conforme dados de um experimento conduzido em laboratório. Foram utilizadas técnicas de Inteligência Artificial com o intuito de realizar a Fusão de Sensores para avaliar, em tempo real, as leituras dos sensores, indicando a qual classe de qualidade a amostra se enquadra. Na verificação de quantas classes seria o ideal, utilizou-se o algoritmo k-means++. Para a construção do modelo de classificação foram usadas técnicas de Indução por Árvore de Decisão, tais como: Best-First Decision Tree Classifier BFTree, Functional Trees FT, Naïve Bayes Decision Tree NBTree, Grafted C4.5 Decision Tree J48graft, C4.5 Decision Tree J48, LADTree. Os testes realizados indicam que a classificação proposta é coerente, visto que os diferentes algoritmos comprovaram uma relação estatística forte entre as instâncias das classes, garantindo que o modelo proposto irá predizer saídas para entradas de dados desconhecidas com acurácia. Os algoritmos com melhores resultados foram FT, J48graft e J48.<br>The possibility to remotely and instantaneously evaluate changes in water quality due to soil contamination allows monitoring ecological processes such as siltation, soil losses, loading of pesticides and degradation of aquatic habitats. Using an automated model to classify soil-contaminated water quality allows for a remote realtime monitoring by collecting data using Wireless Sensor Networks. This study proposes a model to classify soil-contaminated water quality by using Decision Tree techniques. With this model, it is possible to track changes that may occur in surface waters indicating the level of contamination by soil faster than the conventional way, which requires laboratory analysis and manual sampling. The classification proposed considers seven classes of water quality, according to data from an experiment carried out in laboratory. Artificial Intelligence techniques were used in order to implement Sensor Fusion to evaluate, in real time, sensor readings to which class the sample quality fits. By checking how many classes would be ideal, the k-means + + algorithm was used. To build the classification model, Decision Tree Induction techniques were used, such as: Best-First Decision Tree Classifier BFTree, Functional Trees FT, Naïve Bayes Decision Tree NBTree, Grafted C4.5 Decision Tree J48graft, C4.5 Decision Tree J48, LADTree. Tests indicated that the proposed classification is consistent because different algorithms results confirmed a strong statistical relationship between instances of classes, ensuring that this model will predict outputs to unknown inputs accurately. The algorithms with best results were FT, J48graft and J48.
APA, Harvard, Vancouver, ISO, and other styles
14

Benatia, Mohamed Amin. "Optimisation multi-objectives d’une infrastructure réseau dédiée aux bâtiments intelligents." Thesis, Rouen, INSA, 2016. http://www.theses.fr/2016ISAM0024/document.

Full text
Abstract:
Au cours de cette thèse, nous avons étudié le problème de déploiement des Réseaux de Capteurs Sans-Fil (RCSF) pour des applications indoor tel que le bâtiment intelligent. Le but de notre travail était de développer un outil de déploiement capable d'assister les concepteurs de RCSF lors de la phase de déploiement de ces derniers. Nous avons commencé cette thèse par la modélisation de tous les paramètres qui interviennent lors du déploiement des RCSF, à savoir : coût, connectivité, couverture et durée de vie. Par la suite, nous avons implémenté cinq algorithmes d'optimisation, dont trois multi-objectifs afin de résoudre le problème de déploiement. Deux cas d'études réelles (grande et petite instance) ont été identifiés afin de tester ces algorithmes. Les résultats obtenus ont montré que ces algorithmes sont efficaces quand il s'agit d'un petit bâtiment (petit espace). Par contre, dès que la surface du bâtiment augmente les performances des algorithmes étudiés se dégradent. Pour répondre à cela, nous avons développé et implémenté un algorithme d'optimisation multi-objectifs hybride. Cet algorithme se base sur des notions de clustering et d'analyse de données afin de limiter le nombre d'évaluations directes qu'entreprennent ces méthodes pendant chaque itération. Afin d'assurer cette limitation d'évaluation les fonctions de fitness sont approximées grâce aux réseaux de neurones et l'algorithme de classification K-means. Les résultats obtenus ont montré une très bonne performance sur les deux instances de tailles différentes. Ces résultats ont été comparés à ceux obtenus avec les méthodes classiques utilisées et sont compétitives et prometteuses<br>In this thesis, we studied the Wireless Sensor Network deployment for indoor environments with a focus on smart building application. The goal of our work was to develop a WSN deployment tool which is able to assist network designers in the deployment phase. We begin this thesis with network modeling of all the deployment parameters and requirement, such as : cost, coverage, connectivity and network lifetime. Thereafter, we implement five optimisation methods, including three multi-objective optimization agorithms, to resolve WSN deployment problem. Then, two realistics study cases were identified to test the performances of the aforementioned algorithms. The obtained results shows that these algorithms are very efficient for deploying a small scale network in small buildings. However, when the building surface becomes more important the algorithms tends to converge to local optimum while consuming high processing time. To resolve this problem, we develop and implement a new Hybrid multi-objectif optimization algorithm wich limits the number of direct evaluation. This algorithm is based on data-mining methods (Artificial Neural Networks and K-means) and tries to approximate the fitness value of each individual in each generation. At every generation of the algorithm, the population is divided to K clusters and we evaluate only the closest individual to cluster centroide. The fitness value of the rest of population is approximated using a trained ANN. A comparative study was made and the obtained results show that our method outperformes others in the two sudy cases (small and big buildings)
APA, Harvard, Vancouver, ISO, and other styles
15

Duhart, Clément. "Toward organic ambient intelligences ? : EMMA." Thesis, Le Havre, 2016. http://www.theses.fr/2016LEHA0035/document.

Full text
Abstract:
L’Intelligence Ambiamte (AmI) est un domaine de recherche investigant les techniques d’intelligence artificielle pour créer des environnements réactifs. Les réseaux de capteurs et effecteurs sans-fils sont les supports de communication entre les appareils ménagers, les services installés et les interfaces homme-machine. Cette thèse s’intéresse à la conception d’Environements Réactifs avec des propriétés autonomiques i.e. des systèmes qui ont la capacité de se gérer eux-même. De tels environements sont ouverts, à grande échelle, dynamique et hétérogène, ce qui induit certains problèmes pour leur gestion par des systèmes monolithiques. L’approche proposée est bio-inspirée en considérant chacune des plate-formes comme une cellule indépendente formant un organisme intelligent distribué. Chaque cellule est programmée par un processus ADN-RNA décrit par des règles réactives décrivant leur comportement interne et externe. Ces règles sont modelées par des agents mobiles ayant des capacités d’auto-réécriture et offrant ainsi des possibilités de reprogrammation dynamique. Le framework EMMA est composé d’un middleware modulaire avec une architecture orientée ressource basée sur la technologie 6LoWPAN et d’une architecture MAPE-K pour concevoir des AmI à plusieurs échelles. Les différentes relations entre les problèmes techniques et les besoins théoriques sont discutées dans cette thèse depuis les plate-formes, le réseau, le middleware, les agents mobiles, le déploiement des applications jusqu’au système intelligent. Deux algorithmes pour AmI sont proposés : un modèle de contrôleur neuronal artificiel pour le contrôle automatique des appareils ménagers avec des processus d’apprentissage ainsi qu’une procédure de vote distribuée pour synchroniser les décisions de plusieurs composants systèmes<br>AThe Ambient Intelligence (AmI) is a research area investigating AI techniques to create Responsive Environments (RE). Wireless Sensor and Actor Network (WSAN) are the supports for communications between the appliances, the deployed services and Human Computer Interface (HCI). This thesis focuses on the design of RE with autonomic properties i.e. system that have the ability to manage themselves. Such environments are open, large scale, dynamic and heterogeneous which induce some difficulties in their management by monolithic system. The bio-inspired proposal considers all devices like independent cells forming an intelligent distributed organism. Each cell is programmed by a DNA-RNA process composed of reactive rules describing its internal and external behaviour. These rules are modelled by reactive agents with self-rewriting features offering dynamic reprogramming abilities. The EMMA framework is composed of a modular Resource Oriented Architecture (ROA) Middleware based on IPv6 LoW Power Wireless Area Networks (6LoWPAN) technology and a MAPE-K architecture to design multi-scale AmI. The different relations between technical issues and theoretical requirements are discussed through the platforms, the network, the middleware, the mobile agents, the application deployment to the intelligent system. Two algorithms for AmI are proposed: an Artificial Neural Controller (ANC) model for automatic control of appliances with learning processes and a distributed Voting Procedures (VP) to synchronize the decisions of several system components over the WSAN
APA, Harvard, Vancouver, ISO, and other styles
16

Khursheed, Khursheed. "Investigation of intelligence partitioning in wireless visual sensor networks." Licentiate thesis, Mittuniversitetet, Institutionen för informationsteknologi och medier, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-14445.

Full text
Abstract:
The wireless visual sensor network is an emerging field which is formed by deploying many visual sensor nodes in the field and in which each individual visual sensor node contains an image sensor, on board processor, memory and wireless transceiver. In comparison to the traditional wireless sensor networks, which operate on one dimensional data, the wireless visual sensor networks operate on two dimensional data which requires higher processing power and communication bandwidth. Research focus within the field of wireless visual sensor networks has been on two different extremes, involving either sending raw data to the central base station without local processing or conducting all processing locally at the visual sensor node and transmitting only the final results.This research work focuses on determining an optimal point of hardware/software partitioning at the visual sensor node as well as partitioning tasks between local and central processing, based on the minimum energy consumption for the vision processing tasks. Different possibilities in relation to partitioning the vision processing tasks between hardware, software and locality for the implementation of the visual sensor node, used in wireless visual sensor networks have been explored. The effect of packets relaying and node density on the energy consumption and implementation of the individual wireless visual sensor node, when used in a multi-hop wireless visual sensor networks have also been explored.The lifetime of the visual sensor node is predicted by evaluating the energy requirement of the embedded platform with a combination of the Field Programmable Gate Arrays (FPGA) and the micro-controller for the implementation of the visual sensor node and, in addition, taking into account the amount of energy required for receiving/forwarding the packets of other nodes in the multi-hop network.Advancements in FPGAs have been the motivation behind their choice as the vision processing platform for implementing visual sensor node. This choice is based on the reduced time-to-market, low Non-Recurring Engineering (NRE) cost and programmability as compared to ASICs. The other part of the architecture of the visual sensor node is the SENTIO32 platform, which is used for vision processing in the software implementation of the visual sensor node and for communicating the results to the central base station in the hardware implementation (using the RF transceiver embedded in SENTIO32).
APA, Harvard, Vancouver, ISO, and other styles
17

Oladimeji, Muyiwa Olakanmi. "Computational intelligence algorithms for optimisation of wireless sensor networks." Thesis, London South Bank University, 2017. http://researchopen.lsbu.ac.uk/1867/.

Full text
Abstract:
Recent studies have tended towards incorporating Computation Intelligence, which is a large umbrella for all Machine Learning and Metaheuristic approaches into wireless sensor network (WSN) applications for enhanced and intuitive performance. Meta-heuristic optimisation techniques are used for solving several WSN issues such as energy minimisation, coverage, routing, scheduling and so on. This research designs and develops highly intelligent WSNs that can provide the core requirement of energy efficiency and reliability. To meet these requirements, two major decisions were carried out at the sink node or base station. The first decision involves the use of supervised and unsupervised machine learning algorithms to achieve an accurate decision at the sink node. This thesis presents a new hybrid approach for event (fire) detection system using k-means clustering on aggregated fire data to form two class labels (fire and non-fire). The resulting data outputs are trained and tested by the Feed Forward Neural Network, Naive Bayes, and Decision Trees classifier. This hybrid approach was found to significantly improve fire detection performance against the use of only the classifiers. The second decision employs a metaheuristic approach to optimise the solution of WSNs clustering problem. Two metaheuristic-based protocols namely the Dynamic Local Search Algorithm for Clustering Hierarchy (DLSACH) and Heuristics Algorithm for Clustering Hierarchy (HACH) are proposed to achieve an evenly balanced energy and minimise the net residual energy of each sensor nodes. This thesis proved that the two protocols outperforms state-of-the-art protocols such as LEACH, TCAC and SEECH in terms of network lifetime and maintains a favourable performance even under different energy heterogeneity settings.
APA, Harvard, Vancouver, ISO, and other styles
18

Shafin, Rubayet. "3D Massive MIMO and Artificial Intelligence for Next Generation Wireless Networks." Diss., Virginia Tech, 2020. http://hdl.handle.net/10919/97633.

Full text
Abstract:
3-dimensional (3D) massive multiple-input-multiple-output (MIMO)/full dimensional (FD) MIMO and application of artificial intelligence are two main driving forces for next generation wireless systems. This dissertation focuses on aspects of channel estimation and precoding for 3D massive MIMO systems and application of deep reinforcement learning (DRL) for MIMO broadcast beam synthesis. To be specific, downlink (DL) precoding and power allocation strategies are identified for a time-division-duplex (TDD) multi-cell multi-user massive FD-MIMO network. Utilizing channel reciprocity, DL channel state information (CSI) feedback is eliminated and the DL multi-user MIMO precoding is linked to the uplink (UL) direction of arrival (DoA) estimation through estimation of signal parameters via rotational invariance technique (ESPRIT). Assuming non-orthogonal/non-ideal spreading sequences of the UL pilots, the performance of the UL DoA estimation is analytically characterized and the characterized DoA estimation error is incorporated into the corresponding DL precoding and power allocation strategy. Simulation results verify the accuracy of our analytical characterization of the DoA estimation and demonstrate that the introduced multi-user MIMO precoding and power allocation strategy outperforms existing zero-forcing based massive MIMO strategies. In 3D massive MIMO systems, especially in TDD mode, a base station (BS) relies on the uplink sounding signals from mobile stations to obtain the spatial information for downlink MIMO processing. Accordingly, multi-dimensional parameter estimation of MIMO channel becomes crucial for such systems to realize the predicted capacity gains. In this work, we also study the joint estimation of elevation and azimuth angles as well as the delay parameters for 3D massive MIMO orthogonal frequency division multiplexing (OFDM) systems under a parametric channel modeling. We introduce a matrix-based joint parameter estimation method, and analytically characterize its performance for massive MIMO OFDM systems. Results show that antenna array configuration at the BS plays a critical role in determining the underlying channel estimation performance, and the characterized MSEs match well with the simulated ones. Also, the joint parametric channel estimation outperforms the MMSEbased channel estimation in terms of the correlation between the estimated channel and the real channel. Beamforming in MIMO systems is one of the key technologies for modern wireless communication. Creating wide common beams are essential for enhancing the coverage of cellular network and for improving the broadcast operation for control signals. However, in order to maximize the coverage, patterns for broadcast beams need to be adapted based on the users' movement over time. In this dissertation, we present a MIMO broadcast beam optimization framework using deep reinforcement learning. Our proposed solution can autonomously and dynamically adapt the MIMO broadcast beam parameters based on user' distribution in the network. Extensive simulation results show that the introduced algorithm can achieve the optimal coverage, and converge to the oracle solution for both single cell and multiple cell environment and for both periodic and Markov mobility patterns.<br>Doctor of Philosophy<br>Multiple-input-multiple-output (MIMO) is a technology where a transmitter with multiple antennas communicates with one or multipe receivers having multiple antennas. 3- dimensional (3D) massive MIMO is a recently developed technology where a base station (BS) or cell tower with a large number of antennas placed in a two dimensional array communicates with hundreds of user terminals simultaneously. 3D massive MIMO/full dimensional (FD) MIMO and application of artificial intelligence are two main driving forces for next generation wireless systems. This dissertation focuses on aspects of channel estimation and precoding for 3D massive MIMO systems and application of deep reinforcement learning (DRL) for MIMO broadcast beam synthesis. To be specific, downlink (DL) precoding and power allocation strategies are identified for a time-division-duplex (TDD) multi-cell multi-user massive FD-MIMO network. Utilizing channel reciprocity, DL channel state information (CSI) feedback is eliminated and the DL multi-user MIMO precoding is linked to the uplink (UL) direction of arrival (DoA) estimation through estimation of signal parameters via rotational invariance technique (ESPRIT). Assuming non-orthogonal/non-ideal spreading sequences of the UL pilots, the performance of the UL DoA estimation is analytically characterized and the characterized DoA estimation error is incorporated into the corresponding DL precoding and power allocation strategy. Simulation results verify the accuracy of our analytical characterization of the DoA estimation and demonstrate that the introduced multi-user MIMO precoding and power allocation strategy outperforms existing zero-forcing based massive MIMO strategies. In 3D massive MIMO systems, especially in TDD mode, a BS relies on the uplink sounding signals from mobile stations to obtain the spatial information for downlink MIMO processing. Accordingly, multi-dimensional parameter estimation of MIMO channel becomes crucial for such systems to realize the predicted capacity gains. In this work, we also study the joint estimation of elevation and azimuth angles as well as the delay parameters for 3D massive MIMO orthogonal frequency division multiplexing (OFDM) systems under a parametric channel modeling. We introduce a matrix-based joint parameter estimation method, and analytically characterize its performance for massive MIMO OFDM systems. Results show that antenna array configuration at the BS plays a critical role in determining the underlying channel estimation performance, and the characterized MSEs match well with the simulated ones. Also, the joint parametric channel estimation outperforms the MMSE-based channel estimation in terms of the correlation between the estimated channel and the real channel. Beamforming in MIMO systems is one of the key technologies for modern wireless communication. Creating wide common beams are essential for enhancing the coverage of cellular network and for improving the broadcast operation for control signals. However, in order to maximize the coverage, patterns for broadcast beams need to be adapted based on the users' movement over time. In this dissertation, we present a MIMO broadcast beam optimization framework using deep reinforcement learning. Our proposed solution can autonomously and dynamically adapt the MIMO broadcast beam parameters based on user' distribution in the network. Extensive simulation results show that the introduced algorithm can achieve the optimal coverage, and converge to the oracle solution for both single cell and multiple cell environment and for both periodic and Markov mobility patterns.
APA, Harvard, Vancouver, ISO, and other styles
19

Selvarajah, K. "Swarm intelligence and its applications to wireless ad hoc and sensor networks." Thesis, University of Sheffield, 2006. http://etheses.whiterose.ac.uk/14899/.

Full text
Abstract:
Swarm intelligence, as inspired by natural biological swarms, has numerous powerful properties for distributed problem solving in complex real world applications such as optimisation and control. Swarm intelligence properties can be found in natural systems such as ants, bees and birds, whereby the collective behaviour of unsophisticated agents interact locally with their environment to explore collective problem solving without centralised control. Recent advances in wireless communication and digital electronics have instigated important changes in distributed computing. Pervasive computing environments have emerged, such as large scale communication networks and wireless ad hoc and sensor networks that are extremely dynamic and unreliable. The network management and control must be based on distributed principles where centralised approaches may not be suitable for exploiting the enormous potential of these environments. In this thesis, we focus on applying swarm intelligence to the wireless ad hoc and sensor networks optimisation and control problems. Firstly, an analysis of the recently proposed particle swarm optimisation, which is based on the swarm intelligence techniques, is presented. Previous stability analysis of the particle swarm optimisation was restricted to the assumption that all of the parameters are non random since the theoretical analysis with the random parameters is difficult. We analyse the stability of the particle dynamics without these restrictive assumptions using Lyapunov stability and passive systems concepts. The particle swarm optimisation is then used to solve the sink node placement problem in sensor networks. Secondly, swarm intelligence based routing methods for mobile ad hoc networks are investigated. Two protocols have been proposed based on the foraging behaviour of biological ants and implemented in the NS2 network simulator. The first protocol allows each node in the network to choose the next node for packets to be forwarded on the basis of mobility influenced routing table. Since mobility is one of the most important factors for route changes in mobile ad hoc networks, the mobility of the neighbour node using HELLO packets is predicted and then translated into a pheromone decay as found in natural biological systems. The second protocol uses the same mechanism as the first, but instead of mobility the neighbour node remaining energy level and its drain rate are used. The thesis clearly shows that swarm intelligence methods have a very useful role to play in the management and control iv problems associated with wireless ad hoc and sensor networks. This thesis has given a number of example applications and has demonstrated its usefulness in improving performance over other existing methods.
APA, Harvard, Vancouver, ISO, and other styles
20

Schafer, David C. "A systems engineering survey of artificial intelligence and smart sensor networks in a network-centric environment." Thesis, Monterey, California : Naval Postgraduate School, 2009. http://edocs.nps.edu/npspubs/scholarly/theses/2009/Sep/09Sep%5FSchafer%5FDavid.pdf.

Full text
Abstract:
Thesis (M.S. in Systems Engineering)--Naval Postgraduate School, September 2009.<br>Thesis Advisor(s): Goshorn, Rachel ; Goshorn, Deborah. "September 2009." Description based on title screen as viewed on November 5, 2009. Author(s) subject terms: Smart Sensor Networks, Artificial Intelligence, Distributed Artificial Intelligence, Multiagent Systems, Network-centric Warfare, Network-centric Operations, Systems Engineering, Network-centric Systems Engineering, System of Systems. Includes bibliographical references (p. 85-89). Also available in print.
APA, Harvard, Vancouver, ISO, and other styles
21

Falcon, Martinez Rafael Jesus. "Towards Fault Reactiveness in Wireless Sensor Networks with Mobile Carrier Robots." Thèse, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/22685.

Full text
Abstract:
Wireless sensor networks (WSN) increasingly permeate modern societies nowadays. But in spite of their plethora of successful applications, WSN are often unable to surmount many operational challenges that unexpectedly arise during their lifetime. Fortunately, robotic agents can now assist a WSN in various ways. This thesis illustrates how mobile robots which are able to carry a limited number of sensors can help the network react to sensor faults, either during or after its deployment in the monitoring region. Two scenarios are envisioned. In the first one, carrier robots surround a point of interest with multiple sensor layers (focused coverage formation). We put forward the first known algorithm of its kind in literature. It is energy-efficient, fault-reactive and aware of the bounded robot cargo capacity. The second one is that of replacing damaged sensing units with spare, functional ones (coverage repair), which gives rise to the formulation of two novel combinatorial optimization problems. Three nature-inspired metaheuristic approaches that run at a centralized location are proposed. They are able to find good-quality solutions in a short time. Two frameworks for the identification of the damaged nodes are considered. The first one leans upon diagnosable systems, i.e. existing distributed detection models in which individual units perform tests upon each other. Two swarm intelligence algorithms are designed to quickly and reliably spot faulty sensors in this context. The second one is an evolving risk management framework for WSNs that is entirely formulated in this thesis.
APA, Harvard, Vancouver, ISO, and other styles
22

Abba, Ari Ado Adamou. "Bio-inspired Solutions for Optimal Management in Wireless Sensor Networks." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLV044.

Full text
Abstract:
Au cours de ces dernières années, les réseaux de capteurs sans fils ont connu un intérêt croissant à la fois au sein de la communauté scientifique et industrielle en raison du large potentiel en terme d’applications offertes. Toutefois, les capteurs sont conçus avec d’extrêmes contraintes en ressources, en particulier la limitation de l’énergie. Il est donc nécessaire de concevoir des protocoles efficaces, évolutifs et moins consommateur d’énergie afin de prolonger la durée de vie de ces réseaux. Le clustering est une approche très populaire, utilisée pour l’optimisation de la consommation d’énergie des capteurs. Cette technique permet d’influencer fortement la performance globale du réseau. En outre, dans de tels réseaux, le routage génère un nombre assez élevé d’opérations non négligeables qui affectent considérablement la durée de vie du réseau ainsi que le débit offert. Dans cette thèse, nous nous sommes intéressés d’une part aux problèmes de clustering et de routage en utilisant des méthodes d’optimisation inspirées de certaines sociétés biologiques fournissant des modèles puissants qui conduisent à l’établissement d’une intelligence globale en se basant sur des comportements individuels très simples. Nous avons proposé une approche de clustering distribuée basée sur le processus de sélection des sites de nidification chez les colonies d’abeilles. Nous avons formulé le problème de clustering distribuée comme un processus social de prise de décision dans lequel les capteurs agissent d’une manière collective pour choisir des représentants au sein de leurs clusters respectifs. Le protocole proposé assure une distribution de l’équilibrage de charge entre les membres de chaque cluster afin de prolonger la durée de vie du réseau en faisant un compromis entre la consommation d’énergie et la qualité du canal de communication. D’autre part, nous avons proposé un protocole de routage basé sur des clusters en utilisant un algorithme inspiré du phénomène de butinage des abeilles. Nous avons formulé le problème de clustring comme un problème de programmation linéaire alors que le problème du routage est résolu par une fonction de coûts. L’algorithme de clustering permet la construction efficace des clusters en faisant un compromis entre la consommation d’énergie et la qualité du canal communication au sein des clusters tandis que le routage est réalisé de manière distribuée. Les protocoles proposés ont été intensivement expérimentés sur plusieurs topologies dans différents scénarios de réseaux et comparés avec des protocoles bien connus de clustering et routage. Les résultats obtenus démontrent l’efficacité des protocoles proposés<br>During the past few years, wireless sensor networks witnessed an increased interest in both the industrial and the scientific community due to the potential wide area of applications. However, sensors’ components are designed with extreme resource constraints, especially the power supply limitation. It is therefore necessary to design low power, scalable and energy efficient protocols in order to extend the lifetime of such networks. Cluster-based sensor networks are the most popular approach for optimizing the energy consumption of sensor nodes, in order to strongly influence the overall performance of the network. In addition, routing involves non negligible operations that considerably affect the network lifetime and the throughput. In this thesis, we addressed the clustering and routing problems by hiring intelligent optimization methods through biologically inspired computing, which provides the most powerful models that enabled a global intelligence through local and simple behaviors. We proposed a distributed clustering approach based on the nest-sites selection process of a honeybee swarm. We formulated the distributed clustering problem as a social decision-making process in which sensors act in a collective manner to choose their cluster heads. To achieve this choice, we proposed a multi- objective cost-based fitness function. In the design of our proposed algorithm, we focused on the distribution of load balancing among each cluster member in order to extend network lifetime by making a tradeoff between the energy consumption and the quality of the communication link among sensors. Then, we proposed a centralized cluster-based routing protocol for wireless sensor networks by using the fast and efficient searching features of the artificial bee colony algorithm. We formulated the clustering as a linear programming problem and the routing problem is solved by proposing a cost-based function. We designed a multi-objective fitness function that uses the weighted sum approach, in the assignment of sensors to a cluster. The clustering algorithm allows the efficient building of clusters by making a tradeoff between the energy consumption and the quality of the communication link within clusters while the routing is realized in a distributed manner. The proposed protocols have been intensively experimented with a number of topologies in various network scenarios and the results are compared with the well-known cluster-based routing protocols. The results demonstrated the effectiveness of the proposed protocols
APA, Harvard, Vancouver, ISO, and other styles
23

Al-Obaidi, Mohanad. "ENAMS : energy optimization algorithm for mobile wireless sensor networks using evolutionary computation and swarm intelligence." Thesis, De Montfort University, 2010. http://hdl.handle.net/2086/5187.

Full text
Abstract:
Although traditionally Wireless Sensor Network (WSNs) have been regarded as static sensor arrays used mainly for environmental monitoring, recently, its applications have undergone a paradigm shift from static to more dynamic environments, where nodes are attached to moving objects, people or animals. Applications that use WSNs in motion are broad, ranging from transport and logistics to animal monitoring, health care and military. These application domains have a number of characteristics that challenge the algorithmic design of WSNs. Firstly, mobility has a negative effect on the quality of the wireless communication and the performance of networking protocols. Nevertheless, it has been shown that mobility can enhance the functionality of the network by exploiting the movement patterns of mobile objects. Secondly, the heterogeneity of devices in a WSN has to be taken into account for increasing the network performance and lifetime. Thirdly, the WSN services should ideally assist the user in an unobtrusive and transparent way. Fourthly, energy-efficiency and scalability are of primary importance to prevent the network performance degradation. This thesis contributes toward the design of a new hybrid optimization algorithm; ENAMS (Energy optimizatioN Algorithm for Mobile Sensor networks) which is based on the Evolutionary Computation and Swarm Intelligence to increase the life time of mobile wireless sensor networks. The presented algorithm is suitable for large scale mobile sensor networks and provides a robust and energy- efficient communication mechanism by dividing the sensor-nodes into clusters, where the number of clusters is not predefined and the sensors within each cluster are not necessary to be distributed in the same density. The presented algorithm enables the sensor nodes to move as swarms within the search space while keeping optimum distances between the sensors. To verify the objectives of the proposed algorithm, the LEGO-NXT MIND-STORMS robots are used to act as particles in a moving swarm keeping the optimum distances while tracking each other within the permitted distance range in the search space.
APA, Harvard, Vancouver, ISO, and other styles
24

Hernández, Pibernat Hugo. "Swarm intelligence techniques for optimization and management tasks insensor networks." Doctoral thesis, Universitat Politècnica de Catalunya, 2012. http://hdl.handle.net/10803/81861.

Full text
Abstract:
The main contributions of this thesis are located in the domain of wireless sensor netorks. More in detail, we introduce energyaware algorithms and protocols in the context of the following topics: self-synchronized duty-cycling in networks with energy harvesting capabilities, distributed graph coloring and minimum energy broadcasting with realistic antennas. In the following, we review the research conducted in each case. We propose a self-synchronized duty-cycling mechanism for sensor networks. This mechanism is based on the working and resting phases of natural ant colonies, which show self-synchronized activity phases. The main goal of duty-cycling methods is to save energy by efficiently alternating between different states. In the case at hand, we considered two different states: the sleep state, where communications are not possible and energy consumption is low; and the active state, where communication result in a higher energy consumption. In order to test the model, we conducted an extensive experimentation with synchronous simulations on mobile networks and static networks, and also considering asynchronous networks. Later, we extended this work by assuming a broader point of view and including a comprehensive study of the parameters. In addition, thanks to a collaboration with the Technical University of Braunschweig, we were able to test our algorithm in the real sensor network simulator Shawn (http://shawn.sf.net). The second part of this thesis is devoted to the desynchronization of wireless sensor nodes and its application to the distributed graph coloring problem. In particular, our research is inspired by the calling behavior of Japanese tree frogs, whose males use their calls to attract females. Interestingly, as female frogs are only able to correctly localize the male frogs when their calls are not too close in time, groups of males that are located nearby each other desynchronize their calls. Based on a model of this behavior from the literature, we propose a novel algorithm with applications to the field of sensor networks. More in detail, we analyzed the ability of the algorithm to desynchronize neighboring nodes. Furthermore, we considered extensions of the original model, hereby improving its desynchronization capabilities.To illustrate the potential benefits of desynchronized networks, we then focused on distributed graph coloring. Later, we analyzed the algorithm more extensively and show its performance on a larger set of benchmark instances. The classical minimum energy broadcast (MEB) problem in wireless ad hoc networks, which is well-studied in the scientific literature, considers an antenna model that allows the adjustment of the transmission power to any desired real value from zero up to the maximum transmission power level. However, when specifically considering sensor networks, a look at the currently available hardware shows that this antenna model is not very realistic. In this work we re-formulate the MEB problem for an antenna model that is realistic for sensor networks. In this antenna model transmission power levels are chosen from a finite set of possible ones. A further contribution concerns the adaptation of an ant colony optimization algorithm --currently being the state of the art for the classical MEB problem-- to the more realistic problem version, the so-called minimum energy broadcast problem with realistic antennas (MEBRA). The obtained results show that the advantage of ant colony optimization over classical heuristics even grows when the number of possible transmission power levels decreases. Finally we build a distributed version of the algorithm, which also compares quite favorably against centralized heuristics from the literature.<br>Las principles contribuciones de esta tesis se encuentran en el domino de las redes de sensores inalámbricas. Más en detalle, introducimos algoritmos y protocolos que intentan minimizar el consumo energético para los siguientes problemas: gestión autosincronizada de encendido y apagado de sensores con capacidad para obtener energía del ambiente, coloreado de grafos distribuido y broadcasting de consumo mínimo en entornos con antenas reales. En primer lugar, proponemos un sistema capaz de autosincronizar los ciclos de encendido y apagado de los nodos de una red de sensores. El mecanismo está basado en las fases de trabajo y reposo de las colonias de hormigas tal y como estas pueden observarse en la naturaleza, es decir, con fases de actividad autosincronizadas. El principal objectivo de este tipo de técnicas es ahorrar energía gracias a alternar estados de forma eficiente. En este caso en concreto, consideramos dos estados diferentes: el estado dormido, en el que los nodos no pueden comunicarse y el consumo energético es bajo; y el estado activo, en el que las comunicaciones propician un consumo energético elevado. Con el objetivo de probar el modelo, se ha llevado a cabo una extensa experimentación que incluye tanto simulaciones síncronas en redes móviles y estáticas, como simulaciones en redes asíncronas. Además, este trabajo se extendió asumiendo un punto de vista más amplio e incluyendo un detallado estudio de los parámetros del algoritmo. Finalmente, gracias a la colaboración con la Technical University of Braunschweig, tuvimos la oportunidad de probar el mecanismo en el simulador realista de redes de sensores, Shawn (http://shawn.sf.net). La segunda parte de esta tesis está dedicada a la desincronización de nodos en redes de sensores y a su aplicación al problema del coloreado de grafos de forma distribuida. En particular, nuestra investigación está inspirada por el canto de las ranas de árbol japonesas, cuyos machos utilizan su canto para atraer a las hembras. Resulta interesante que debido a que las hembras solo son capaces de localizar las ranas macho cuando sus cantos no están demasiado cerca en el tiempo, los grupos de machos que se hallan en una misma región desincronizan sus cantos. Basado en un modelo de este comportamiento que se encuentra en la literatura, proponemos un nuevo algoritmo con aplicaciones al campo de las redes de sensores. Más en detalle, analizamos la habilidad del algoritmo para desincronizar nodos vecinos. Además, consideramos extensiones del modelo original, mejorando su capacidad de desincronización. Para ilustrar los potenciales beneficios de las redes desincronizadas, nos centramos en el problema del coloreado de grafos distribuido que tiene relación con diferentes tareas habituales en redes de sensores. El clásico problema del broadcasting de consumo mínimo en redes ad hoc ha sido bien estudiado en la literatura. El problema considera un modelo de antena que permite transmitir a cualquier potencia elegida (hasta un máximo establecido por el dispositivo). Sin embargo, cuando se trabaja de forma específica con redes de sensores, un vistazo al hardware actualmente disponible muestra que este modelo de antena no es demasiado realista. En este trabajo reformulamos el problema para el modelo de antena más habitual en redes de sensores. En este modelo, los niveles de potencia de transmisión se eligen de un conjunto finito de posibilidades. La siguiente contribución consiste en en la adaptación de un algoritmo de optimización por colonias de hormigas a la versión más realista del problema, también conocida como broadcasting de consumo mínimo con antenas realistas. Los resultados obtenidos muestran que la ventaja de este método sobre heurísticas clásicas incluso crece cuando el número de posibles potencias de transmisión decrece. Además, se ha presentado una versión distribuida del algoritmo, que también se compara de forma bastante favorable contra las heurísticas centralizadas conocidas.
APA, Harvard, Vancouver, ISO, and other styles
25

Hynes, Sean E. "Multi-agent simulations (MAS) for assessing massive sensor coverage and deployment." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2003. http://library.nps.navy.mil/uhtbin/hyperion-image/03sep%5FHynes.pdf.

Full text
Abstract:
Thesis (M.S. in Computer Science)--Naval Postgraduate School, September 2003.<br>Thesis advisor(s): Neil C. Rowe, Curtis Blais, Don Brutzman. Includes bibliographical references (p. 57-62). Also available online.
APA, Harvard, Vancouver, ISO, and other styles
26

Singh, Harkirat. "Development and implementation of an artificially intelligent search algorithm for sensor fault detection using neural networks." Thesis, Texas A&M University, 2003. http://hdl.handle.net/1969.1/116.

Full text
Abstract:
This work is aimed towards the development of an artificially intelligent search algorithm used in conjunction with an Auto Associative Neural Network (AANN) to help locate and reconstruct faulty sensor inputs in control systems. The AANN can be trained to detect when sensors go faulty but the problem of locating the faulty sensor still remains. The search algorithm aids the AANN to help locate the faulty sensors and reconstruct their actual values. The algorithm uses domain specific heuristics based on the inherent behavior of the AANN to achieve its task. Common sensor errors such as drift, shift and random errors and the algorithms response to them have been studied. The issue of noise has also been investigated. These areas cover the first part of this work. The second part focuses on the development of a web interface that implements and displays the working of the algorithm. The interface allows any client on the World Wide Web to connect to the engineering software called MATLAB. The client can then simulate a drift, shift or random error using the graphical user interface and observe the response of the algorithm.
APA, Harvard, Vancouver, ISO, and other styles
27

Elsayed, Medhat. "Machine Learning-Enabled Radio Resource Management for Next-Generation Wireless Networks." Thesis, Université d'Ottawa / University of Ottawa, 2021. http://hdl.handle.net/10393/42476.

Full text
Abstract:
A new era of wireless networks is evolving, thanks to the significant advances in communications and networking technologies. In parallel, wireless services are witnessing a tremendous change due to increasingly heterogeneous and stringent demands, whose quality of service requirements are expanding in several dimensions, putting pressure on mobile networks. Examples of those services are augmented and virtual reality, as well as self-driving cars. Furthermore, many physical systems are witnessing a dramatic shift into autonomy by enabling the devices of those systems to communicate and transfer control and data information among themselves. Examples of those systems are microgrids, vehicles, etc. As such, the mobile network indeed requires a revolutionary shift in the way radio resources are assigned to those services, i.e., RRM. In RRM, radio resources such as spectrum and power are assigned to users of the network according to various metrics such as throughput, latency, and reliability. Several methods have been adopted for RRM such as optimization-based methods, heuristics and so on. However, these methods are facing several challenges such as complexity, scalability, optimality, ability to learn dynamic environments. In particular, a common problem in conventional RRM methods is the failure to adapt to the changing situations. For example, optimization-based methods perform well under static network conditions, where an optimal solution is obtained for a snapshot of the network. This leads to higher complexity as the network is required to solve the optimization at every time slot. Machine learning constitutes a promising tool for RRM with the aim to address the conflicting objectives, i.e., KPIs, complexity, scalability, etc. In this thesis, we study the use of reinforcement learning and its derivatives for improving network KPIs. We highlight the advantages of each reinforcement learning method under the studied network scenarios. In addition, we highlight the gains and trade-offs among the proposed learning techniques as well as the baseline methods that rely on either optimization or heuristics. Finally, we present the challenges facing the application of reinforcement learning to wireless networks and propose some future directions and open problems toward an autonomous wireless network. The contributions of this thesis can be summarized as follows. First, reinforcement learning methods, and in particular model-free Q-learning, experience large convergence time due to the large state-action space. As such, deep reinforcement learning was employed to improve generalization and speed up the convergence. Second, the design of the state and reward functions impact the performance of the wireless network. Despite the simplicity of this observation, it turns out to be a key one for designing autonomous wireless systems. In particular, in order to facilitate autonomy, agents need to have the ability to learn/adjust their goals. In this thesis, we propose transfer in reinforcement learning to address this point, where knowledge is transferred between expert and learner agents with simple and complex tasks, respectively. As such, the learner agent aims to learn a more complex task using the knowledge transferred from an expert performing a simpler (partial) task.
APA, Harvard, Vancouver, ISO, and other styles
28

Challita, Ursula. "Distributed algorithms for optimized resource management of LTE in unlicensed spectrum and UAV-enabled wireless networks." Thesis, University of Edinburgh, 2018. http://hdl.handle.net/1842/33099.

Full text
Abstract:
Next-generation wireless cellular networks are morphing into a massive Internet of Things (IoT) environment that integrates a heterogeneous mix of wireless-enabled devices such as unmanned aerial vehicles (UAVs) and connected vehicles. This unprecedented transformation will not only drive an exponential growth in wireless traffic, but it will also lead to the emergence of new wireless service applications that substantially differ from conventional multimedia services. To realize the fifth generation (5G) mobile networks vision, a new wireless radio technology paradigm shift is required in order to meet the quality of service requirements of these new emerging use cases. In this respect, one of the major components of 5G is self-organized networks. In essence, future cellular networks will have to rely on an autonomous and self-organized behavior in order to manage the large scale of wireless-enabled devices. Such an autonomous capability can be realized by integrating fundamental notions of artificial intelligence (AI) across various network devices. In this regard, the main objective of this thesis is to propose novel self-organizing and AI-inspired algorithms for optimizing the available radio resources in next-generation wireless cellular networks. First, heterogeneous networks that encompass licensed and unlicensed spectrum are studied. In this context, a deep reinforcement learning (RL) framework based on long short-term memory cells is introduced. The proposed scheme aims at proactively allocating the licensed assisted access LTE (LTE-LAA) radio resources over the unlicensed spectrum while ensuring an efficient coexistence with WiFi. The proposed deep learning algorithm is shown to reach a mixed-strategy Nash equilibrium, when it converges. Simulation results using real data traces show that the proposed scheme can yield up to 28% and 11% gains over a conventional reactive approach and a proportional fair coexistence mechanism, respectively. In terms of priority fairness, results show that an efficient utilization of the unlicensed spectrum is guaranteed when both technologies, LTE-LAA and WiFi, are given equal weighted priorities for transmission on the unlicensed spectrum. Furthermore, an optimization formulation for LTE-LAA holistic traffic balancing across the licensed and the unlicensed bands is proposed. A closed form solution for the aforementioned optimization problem is derived. An attractive aspect of the derived solution is that it can be applied online by each LTE-LAA small base station (SBS), adapting its transmission behavior in each of the bands, and without explicit communication with WiFi nodes. Simulation results show that the proposed traffic balancing scheme provides a better tradeoff between maximizing the total network throughput and achieving fairness among all network ows compared to alternative approaches from the literature. Second, UAV-enabled wireless networks are investigated. In particular, the problems of interference management for cellular-connected UAVs and the use of UAVs for providing backhaul connectivity to SBSs are studied. Speci cally, a deep RL framework based on echo state network cells is proposed for optimizing the trajectories of multiple cellular-connected UAVs while minimizing the interference level caused on the ground network. The proposed algorithm is shown to reach a subgame perfect Nash equilibrium upon convergence. Moreover, an upper and lower bound for the altitude of the UAVs is derived thus reducing the computational complexity of the proposed algorithm. Simulation results show that the proposed path planning scheme allows each UAV to achieve a tradeoff between minimizing energy efficiency, wireless latency, and the interference level caused on the ground network along its path. Moreover, in the context of UAV-enabled wireless networks, a UAV-based on-demand aerial backhaul network is proposed. For this framework, a network formation algorithm, which is guaranteed to reach a pairwise stable network upon convergence, is presented. Simulation results show that the proposed scheme achieves substantial performance gains in terms of both rate and delay reaching, respectively, up to 3.8 and 4-fold increase compared to the formation of direct communication links with the gateway node. Overall, the results of the different proposed schemes show that these schemes yield significant improvements in the total network performance as compared to current existing literature. In essence, the proposed algorithms can also provide self-organizing solutions for several resource management problems in the context of new emerging use cases in 5G networks, such as connected autonomous vehicles and virtual reality headsets.
APA, Harvard, Vancouver, ISO, and other styles
29

Gebben, Florian. "Modeling and Simulation of Solar Energy Harvesting Systems with Artificial Neural Networks." Thesis, Mittuniversitetet, Avdelningen för elektronikkonstruktion, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-29626.

Full text
Abstract:
Simulations are a good method for the verification of the correct operation of solar-powered sensor nodes over the desired lifetime. They do, however, require accurate models to capture the influences of the loads and solar energy harvesting system. Artificial neural networks promise a simplification and acceleration of the modeling process in comparison to state-of-the-art modeling methods. This work focuses on the influence of the modeling process's different configurations on the accuracy of the model. It was found that certain parameters, such as the network's number of neurons and layers, heavily influence the outcome, and that these factors need to be determined individually for each modeled harvesting system. But having found a good configuration for the neural network, the model can predict the supercapacitor's charge depending on the solar current fairly accurately. This is also true in comparison to the reference models in this work. Nonetheless, the results also show a crucial need for improvements regarding the acquisition and composition of the neural network's training set.
APA, Harvard, Vancouver, ISO, and other styles
30

Zhao, Yi. "Combination of Wireless sensor network and artifical neuronal network : a new approach of modeling." Thesis, Toulon, 2013. http://www.theses.fr/2013TOUL0013/document.

Full text
Abstract:
Face à la limitation de la modélisation paramétrique, nous avons proposé dans cette thèse une procédure standard pour combiner les données reçues a partir de Réseaux de capteurs sans fils (WSN) pour modéliser a l'aide de Réseaux de Neurones Artificiels (ANN). Des expériences sur la modélisation thermique ont permis de démontrer que la combinaison de WSN et d'ANN est capable de produire des modèles thermiques précis. Une nouvelle méthode de formation "Multi-Pattern Cross Training" (MPCT) a également été introduite dans ce travail. Cette méthode permet de fusionner les informations provenant de différentes sources de données d'entraînements indépendants (patterns) en un seul modèle ANN. D'autres expériences ont montré que les modèles formés par la méthode MPCT fournissent une meilleure performance de généralisation et que les erreurs de prévision sont réduites. De plus, le modèle de réseau neuronal basé sur la méthode MPCT a montré des avantages importants dans le multi-variable Model Prédictive Control (MPC). Les simulations numériques indiquent que le MPC basé sur le MPCT a surpassé le MPC multi-modèles au niveau de l'efficacité du contrôle<br>A Wireless Sensor Network (WSN) consisting of autonomous sensor nodes can provide a rich stream of sensor data representing physical measurements. A well built Artificial Neural Network (ANN) model needs sufficient training data sources. Facing the limitation of traditional parametric modeling, this paper proposes a standard procedure of combining ANN and WSN sensor data in modeling. Experiments on indoor thermal modeling demonstrated that WSN together with ANN can lead to accurate fine grained indoor thermal models. A new training method "Multi-Pattern Cross Training" (MPCT) is also introduced in this work. This training method makes it possible to merge knowledge from different independent training data sources (patterns) into a single ANN model. Further experiments demonstrated that models trained by MPCT method shew better generalization performance and lower prediction errors in tests using different data sets. Also the MPCT based Neural Network Model has shown advantages in multi-variable Neural Network based Model Predictive Control (NNMPC). Software simulation and application results indicate that MPCT implemented NNMPC outperformed Multiple models based NNMPC in online control efficiency
APA, Harvard, Vancouver, ISO, and other styles
31

Wilhelmi, Roca Francesc. "Towards spatial reuse in future wireless local area networks: a sequential learning approach." Doctoral thesis, Universitat Pompeu Fabra, 2020. http://hdl.handle.net/10803/669970.

Full text
Abstract:
The Spatial Reuse (SR) operation is gaining momentum in the latest IEEE 802.11 family of standards due to the overwhelming requirements posed by next-generation wireless networks. In particular, the rising traffic requirements and the number of concurrent devices compromise the efficiency of increasingly crowded Wireless Local Area Networks (WLANs) and throw into question their decentralized nature. The SR operation, initially introduced by the IEEE~802.11ax-2021 amendment and further studied in IEEE 802.11be-2024, aims to increase the number of concurrent transmissions in an Overlapping Basic Service Set (OBSS) using sensitivity adjustment and transmit power control, thus improving spectral efficiency. Our analysis of the SR operation shows outstanding potential in improving the number of concurrent transmissions in crowded deployments, which contributed to enabling low-latency next-generation applications. However, the potential gains of SR are currently limited by the rigidity of the mechanism introduced for the 11ax, and the lack of coordination among BSSs implementing it. The SR operation is evolving towards coordinated schemes where different BSSs cooperate. Nevertheless, coordination entails communication and synchronization overhead, which impact on the performance of WLANs remains unknown. Moreover, the coordinated approach is incompatible with devices using previous IEEE 802.11 versions, potentially leading to degrading the performance of legacy networks. For those reasons, in this thesis, we start assessing the viability of decentralized SR, and thoroughly examine the main impediments and shortcomings that may result from it. We aim to shed light on the future shape of WLANs concerning SR optimization and whether their decentralized nature should be kept, or it is preferable to evolve towards coordinated and centralized deployments. To address the SR problem in a decentralized manner, we focus on Artificial Intelligence (AI) and propose using a class of sequential learning-based methods, referred to as Multi-Armed Bandits (MABs). The MAB framework suits the SR problem because it addresses the uncertainty caused by the concurrent operation of multiple devices (i.e., multi-player setting) and the lack of information in decentralized deployments. MABs can potentially overcome the complexity of the spatial interactions that result from devices modifying their sensitivity and transmit power. In this regard, our results indicate significant performance gains (up to 100\% throughput improvement) in highly dense WLAN deployments. Nevertheless, the multi-agent setting raises several concerns that may compromise network devices' performance (definition of joint goals, time-horizon convergence, scalability aspects, or non-stationarity). Besides, our analysis of multi-agent SR encompasses an in-depth study of infrastructure aspects for next-generation AI-enabled networking.<br>L'operació de reutilització espacial (SR) està guanyant impuls per a la darrera família d'estàndards IEEE 802.11 a causa dels aclaparadors requisits que presenten les xarxes sense fils de nova generació. En particular, la creixent necessitat de tràfic i el nombre de dispositius concurrents comprometen l'eficiència de les xarxes d'àrea local sense fils (WLANs) cada cop més concorregudes i posen en dubte la seva naturalesa descentralitzada. L'operació SR, inicialment introduïda per l'estàndard IEEE 802.11ax-2021 i estudiada posteriorment a IEEE 802.11be-2024, pretén augmentar el nombre de transmissions concurrents en un conjunt bàsic de serveis superposats (OBSS) mitjançant l'ajustament de la sensibilitat i el control de potència de transmissió, millorant així l'eficiència espectral. El nostre estudi sobre el funcionament de SR mostra un potencial destacat per millorar el nombre de transmissions simultànies en desplegaments multitudinaris, contribuint així al desenvolupament d'aplicacions de nova generació de baixa latència. Tot i això, els beneficis potencials de SR són actualment limitats per la rigidesa del mecanisme introduït per a l'11ax, i la manca de coordinació entre els BSS que ho implementen. L'operació SR evoluciona cap a esquemes coordinats on cooperen diferents BSS. En canvi, la coordinació comporta una sobrecàrrega de comunicació i sincronització, el qual té un impacte en el rendiment de les WLAN. D'altra banda, l'esquema coordinat és incompatible amb els dispositius que utilitzen versions anteriors IEEE 802.11, la qual cosa podria deteriorar el rendiment de les xarxes ja existents. Per aquests motius, en aquesta tesi s'avalua la viabilitat de mecanismes descentralitzats per a SR i s'analitzen minuciosament els principals impediments i mancances que se'n poden derivar. El nostre objectiu és donar llum a la futura forma de les WLAN pel que fa a l?optimització de SR i si s'ha de mantenir el seu caràcter descentralitzat, o bé és preferible evolucionar cap a desplegaments coordinats i centralitzats. Per abordar SR de forma descentralitzada, ens centrem en la Intel·ligència Artificial (AI) i ens proposem utilitzar una classe de mètodes seqüencials basats en l'aprenentatge, anomenats Multi-Armed Bandits (MAB). L'esquema MAB s'adapta al problema descentralitzat de SR perquè aborda la incertesa causada pel funcionament simultani de diversos dispositius (és a dir, un entorn multi-jugador) i la falta d'informació que se'n deriva. Els MAB poden fer front a la complexitat darrera les interaccions espacials entre dispositius que resulten de modificar la seva sensibilitat i potència de transmissió. En aquest sentit, els nostres resultats indiquen guanys importants de rendiment (fins al 100 \%) en desplegaments altament densos. Tot i això, l'aplicació d'aprenentatge automàtic amb múltiples agents planteja diversos problemes que poden comprometre el rendiment dels dispositius d'una xarxa (definició d'objectius conjunts, horitzó de convergència, aspectes d'escalabilitat o manca d'estacionarietat). A més, el nostre estudi d'aprenentatge multi-agent per a SR multi-agent inclou aspectes d'infraestructura per a xarxes de nova generació que integrin AI de manera intrínseca.
APA, Harvard, Vancouver, ISO, and other styles
32

Howard, Shaun Michael. "Deep Learning for Sensor Fusion." Case Western Reserve University School of Graduate Studies / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=case1495751146601099.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Henson, Cory Andrew. "A Semantics-based Approach to Machine Perception." Wright State University / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=wright1387645909.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Papaliakos, Vasilios. "Content repurposing of electrical diagrams for presentation in handheld devices." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2004. http://library.nps.navy.mil/uhtbin/hyperion/04Dec%5FPapaliakos.pdf.

Full text
Abstract:
Thesis (M.S. in Computer Science)--Naval Postgraduate School, December 2004.<br>Thesis advisor(s): Neil C. Rowe, Gurminder Singh. Includes bibliographical references (p. 59-65). Also available online.
APA, Harvard, Vancouver, ISO, and other styles
35

Gibilini, Daniel. "Aplicação de técnicas de inteligência artificial na alocação dinâmica de canais em redes sem fio." Universidade de São Paulo, 2006. http://www.teses.usp.br/teses/disponiveis/3/3141/tde-04092006-154457/.

Full text
Abstract:
Nos últimos anos, as redes de comunicação móveis se tornaram de fundamental importância para a infraestrutura dos sistemas de comunicação. Uma das áreas de maior crescimento é a computação móvel. Realizada através de sinais de rádio, a quantidade de canais disponíveis raramente é suficiente para atender a crescente demanda. Este trabalho apresenta uma solução para a questão da alocação de canais, um tópico desafiador dentro da área de redes móveis. A implementação de alocação dinâmica com uso de técnicas computacionais clássicas melhora a utilização dos recursos disponíveis,mas necessita de ajustes periódicos para se adequar a novos cenários. Para a construção de um sistema mais flexível e adaptável, a abordagem escolhida utiliza técnicas de Inteligência Artificial. O modelo proposto combina Teoria Nebulosa, Redes Neurais Artificiais e Sistemas Multi-Agentes. As características de cada técnica foram analisadas e identificamos as partes do sistema que poderiam ser beneficiadas por cada uma. O sistema é resultado da combinação coordenada das três técnicas, e constitui um método eficiente e flexível para gerenciamento de recursos de rádio. Após o detalhamento do modelo, realizamos uma simulação de uma rede celular com o sistema proposto e seu comportamento é comparado com uma rede de referência, para verificação das diferenças e melhorias alcançadas. Por fim, apresentamos a situação atual da pesquisa e os possíveis caminhos para aprimoramento do sistema.<br>In the last years, mobile networks became more important for communication systems’ infrastructure. One area of great growth is mobile computation, which is performed through radio signals. The amount of available channels rarely is enough to attend the increasing demand. This work presents a solution for the channel allocation topic, a challenging topic inside mobile networks area. The implementation of dynamic allocation using classic computational techniques improves the use of available resources, but it needs periodic and frequent adjustments for new scenarios. The construction of a more flexible and adaptable system was achieved using Artificial Intelligence techniques. Proposed model combines Fuzzy Logic, Artificial Neural Networks and Multi-Agents Systems. Features of each technique had been analyzed and we identified the system modules which could be benefited by them. The system is the result of coordinated combination of these three techniques, and constitutes an efficient and flexible method for radio resources management. After model detailing, we executed a cellular network simulation using proposed system, and its behavior is compared with a reference network, presenting reached differences and improvements. Finally, we present current situation of this research and possible ways for system improvement.
APA, Harvard, Vancouver, ISO, and other styles
36

Matta, Natalie. "Vers une gestion décentralisée des données des réseaux de capteurs dans le contexte des smart grids." Thesis, Troyes, 2014. http://www.theses.fr/2014TROY0010/document.

Full text
Abstract:
Cette thèse s’intéresse à la gestion décentralisée des données récoltées par les réseaux de capteurs dans le contexte des réseaux électriques intelligents (smart grids). Nous proposons une architecture décentralisée basée sur les systèmes multi-agents pour la gestion des données et de l’énergie dans un smart grid. En particulier, nos travaux traitent de la gestion des données des réseaux de capteurs dans le réseau de distribution d’un smart grid et ont pour objectif de lever deux verrous essentiels : (1) l'identification et la détection de défaillances et de changements nécessitant une prise de décision et la mise en œuvre des actions correspondantes ; (2) la gestion des grandes quantités de données qui seront récoltées suite à la prolifération des capteurs et des compteurs communicants. La gestion de ces informations peut faire appel à plusieurs méthodes, dont l'agrégation des paquets de données sur laquelle nous nous focalisons dans cette thèse. Nous proposons d’agréger (PriBaCC) et/ou de corréler (CoDA) le contenu de ces paquets de données de manière décentralisée. Ainsi, le traitement de ces données s'effectuera plus rapidement, ce qui aboutira à une prise de décision rapide et efficace concernant la gestion de l'énergie. La validation par simulation de nos contributions a montré que celles-ci répondent aux enjeux identifiés, notamment en réduisant le volume des données à gérer et le délai de communication des données prioritaires<br>This thesis focuses on the decentralized management of data collected by wireless sensor networks which are deployed in a smart grid, i.e. the evolved new generation electricity network. It proposes a decentralized architecture based on multi-agent systems for both data and energy management in the smart grid. In particular, our works deal with data management of sensor networks which are deployed in the distribution electric subsystem of a smart grid. They aim at answering two key challenges: (1) detection and identification of failure and disturbances requiring swift reporting and appropriate reactions; (2) efficient management of the growing volume of data caused by the proliferation of sensors and other sensing entities such as smart meters. The management of this data can call upon several methods, including the aggregation of data packets on which we focus in this thesis. To this end, we propose to aggregate (PriBaCC) and/or to correlate (CoDA) the contents of these data packets in a decentralized manner. Data processing will thus be done faster, consequently leading to rapid and efficient decision-making concerning energy management. The validation of our contributions by means of simulation has shown that they meet the identified challenges. It has also put forward their enhancements with respect to other existing approaches, particularly in terms of reducing data volume as well as transmission delay of high priority data
APA, Harvard, Vancouver, ISO, and other styles
37

Davis, Cledo L. "The systems integration of autonomous behavior analysis to create a "Maritime Smart Environment" for the enhancement of maritime domain awareness." Thesis, Monterey, California : Naval Postgraduate School, 2010. http://edocs.nps.edu/npspubs/scholarly/theses/2010/Jun/10Jun%5FDavis.pdf.

Full text
Abstract:
Thesis (M.S. in Systems Engineering)--Naval Postgraduate School, June 2010.<br>Thesis Advisor(s): Goshorn, Rachel ; Goshorn, Deborah. "June 2010." Description based on title screen as viewed on June 24, 2010. Author(s) subject terms: Anomaly Detection, Artificial Intelligence, Automation, Behavior Analysis, Distributed Artificial Intelligence, Intelligence-Surveillance-Reconnaissance, Maritime Domain Awareness, Maritime Force Protection, Multi-agent Systems, Network-centric Operations, Network-centric Systems Engineering, Network-centric Warfare, Smart Sensor Networks, Systems Engineering, Systems Integration, System of Systems. Includes bibliographical references (p. 209-212). Also available in print.
APA, Harvard, Vancouver, ISO, and other styles
38

Khan, Safdar Abbas. "Localisation et détection de fautes dans les réseaux de capteurs sans fil." Thesis, Paris Est, 2011. http://www.theses.fr/2011PEST1028/document.

Full text
Abstract:
Dans cette thèse, on s'est intéressé à trois problématiques des réseaux de capteurs sans fil (WSN). Dans un premier temps nous avons analysé l'impact de la chute de tension dans la batterie du nœud sur la puissance du signal en réception. On propose alors une méthode pour compenser l'augmentation apparente de la distance calculée entre les nœuds due à la diminution de l'énergie de la batterie. Pour les nœuds passant par deux états principaux endormi et actif, on propose d'étudier, la relation entre la diminution de la tension de la batterie en fonction du temps passé par un nœud dans l'état actif. Ensuite, on calcule le rapport entre la RSS et la distance entre les nœuds connectés avec des batteries complètement chargées. Après on mesure la RSS en faisant varier la tension de la batterie du nœud émetteur et en gardant le nœud récepteur à une distance constante. Finalement, on propose une relation entre la RSS observée et la tension actuelle de la batterie du nœud émetteur. Cette fonction permet de calculer la valeur corrigée de la RSS qui correspond à la distance réelle entre les nœuds connectés. Ainsi l'efficacité des méthodes de la localisation basée sur la RSS se trouvent améliorées. Dans la deuxième partie de cette thèse on propose une méthode d'estimation des positions des nœuds dans un WSN. Dans l'algorithme de localisation proposé, on utilise des nœuds ancres comme des points de référence. On a utilisé une approche heuristique pour trouver la topologie relative avec l'aide de la matrice de distance. Le but de la matrice de distance est d'indiquer s'il existe une connexion entre une paire de nœuds donnée et en cas de connectivité, la distance estimée entre ces nœuds. En utilisant les informations de connectivité entre les nœuds et leurs distances, on obtient la topologie du réseau. La méthode proposée utilise la solution de l'intersection de deux cercles au lieu de la méthode classique de triangulation, où un système quadratique de trois équations avec deux variables est utilisé ce qui rend la complexité de calcul augmentée. Lorsque deux nœuds connectés ont un autre nœud en commun, puis en utilisant les informations de distances entre ces nœuds interconnectés, nous pouvons calculer deux positions possibles pour le troisième nœud. La présence ou l'absence d'un lien entre le troisième nœud et un quatrième nœud, permet de trouver la position précise. Ce processus est réitéré jusqu'à ce que toutes les positions des nœuds aient été obtenues. Une fois la topologie relative calculée, il faut trouver la symétrie, l'orientation et la position de cette topologie dans le plan. C'est à ce moment que la connaissance des positions des trois nœuds entre en action. La topologie donne les coordonnées temporaires des nœuds. En ayant une comparaison de certaines caractéristiques entre les coordonnées temporaires et les coordonnées exactes, on trouve d'abord la symétrie de la topologie relative qui correspondrait à la topologie originale. En d'autres termes on vérifie si oui ou non la topologie relative est une image miroir de la topologie originale. Des opérateurs géométriques sont alors utilisés pour corriger la topologie relative par rapport à la topologie réelle. Ainsi, on localise tous les nœuds dans un WSN en utilisant exactement trois ancres. Dans la dernière partie de cette thèse, on propose une méthode pour la détection de défauts dans un WSN. Il y a toujours une possibilité qu'un capteur d'un nœud ne donne pas toujours des mesures précises. On utilise des systèmes récurrents et non récurrents pour la modélisation et on prend comme variable d'entrée, en plus des variables du nœud en question, les informations des capteurs voisins. La différence entre la valeur estimée et celle mesurée est utilisée pour déterminer la possibilité de défaillance d'un nœud<br>In this thesis three themes related to wireless sensor networks (WSNs) are covered. The first one concerns the power loss in a node signal due to voltage droop in the battery of the node. In the first part of the thesis a method is proposed to compensate for the apparent increase in the calculated distance between the related nodes due to decrease in the energy of the signal sending node battery. A function is proposed whose arguments are the apparently observed RSS and the current voltage of the emitter node battery. The return of the function is the corrected RSS that corresponds to the actual distance amongst the connected nodes. Hence increasing the efficiency of the RSS based localization methods in WSNs. In the second part of the thesis a position estimation method for localization of nodes in a WSN is proposed. In the proposed localization algorithm anchor nodes are used as landmark points. The localization method proposed here does not require any constraint on the placement of the anchors; rather any three randomly chosen nodes can serve as anchors. A heuristic approach is used to find the relative topology with the help of distance matrix. The purpose of the distance matrix is to indicate whether or not a pair of nodes has a connection between them and in case of connectivity it gives the estimated distance between the nodes. By using the information of connectivity between the nodes and their respective distances the topology of the nodes is calculated. This method is heuristic because it uses the point solution from the intersection of two circles instead of conventional triangulation method, where a system of three quadratic equations in two variables is used whereby the computational complexity of the position estimation method is increased. When two connected nodes have another node in common, then by using the information of distances between these interconnected nodes, two possible positions are calculated for the third node. The presence or absence of a connection between the third node and a fourth node helps in finding the accurate possibility out of the two. This process is iterated till all the nodes have been relatively placed. Once the relative topology has been calculated, we need to find the exact symmetry, orientation, and position of this topology in the plane. It is at this moment the knowledge of three nodes positions comes into action. From the relative topology we know the temporary coordinates of the nodes. By having a comparison of certain characteristics between the temporary coordinates and the exact coordinates; first the symmetry of relative topology is obtained that would correspond to the original topology. In other words it tells whether or not the relative topology is a mirror image of the original topology. Some geometrical operators are used to correct the topology position and orientation. Thus, all the nodes in the WSN are localized using exactly three anchors. The last part of the thesis focuses on the detection of faults in a WSN. There is always a possibility that a sensor of a node is not giving accurate measurements all of the time. Therefore, it is necessary to find if a node has developed a faulty sensor. With the precise information about the sensor health, one can determine the extent of reliance on its sensor measurement. To equip a node with multiple sensors is not an economical solution. Thus the sensor measurements of a node are modeled with the help of the fuzzy inference system (FIS). For each node, both recurrent and non-recurrent systems are used to model its sensor measurement. An FIS for a particular node is trained with input variables as the actual sensor measurements of the neighbor nodes and with output variable as the real sensor measurements of that node. The difference between the FIS approximated value and the actual measurement of the sensor is used as an indication for whether or not to declare a node as faulty
APA, Harvard, Vancouver, ISO, and other styles
39

Oliveira, Felipe Denis Mendon?a de. "Desenvolvimento de um software de comunica??o sem fio aplicado ? instrumenta??o de unidade de eleva??o de petr?leo tipo Plunger Lift." Universidade Federal do Rio Grande do Norte, 2009. http://repositorio.ufrn.br:8080/jspui/handle/123456789/15283.

Full text
Abstract:
Made available in DSpace on 2014-12-17T14:55:35Z (GMT). No. of bitstreams: 1 FelipeDMO.pdf: 2614728 bytes, checksum: fd69e303891800912ab5260562a5545d (MD5) Previous issue date: 2009-02-13<br>This dissertation aims to develop a software applied to a communication system for a wireless sensor network (WSN) for tracking analog and digital variables and control valve of the gas flow in artificial oil s elevation units, Plunger Lift type. The reason for this implementation is due to the fact that, in the studied plant configuration, the sensors communicate with the PLC (Programmable and Logic Controller) by the cables and pipelines, making any changes in that system, such as changing the layout of it, as well as inconveniences that arise from the nature of the site, such as the vicinity s animals presence that tend to destroy the cables for interconnection of sensors to the PLC. For software development, was used communication polling method via SMAC protocol (Simple Medium Access ControlIEEE 802.15.4 standard) in the CodeWarrior environment to which generated a firmware, loaded into the WSN s transceivers, present in the kit MC13193-EVK, (all items described above are owners of Freescale Semiconductors Inc.). The network monitoring and parameterization used in its application, was developed in LabVIEW software from National Instruments. The results were obtained through the observation of the network s behavior of sensors proposal, focusing on aspects such as: indoor and outdoor quantity of packages received and lost, general aspects of reliability in data transmission, coexistence with other types of wireless networks and power consumption under different operating conditions. The results were considered satisfactory, which showed the software efficiency in this communication system<br>Este trabalho tem por finalidade desenvolver um software aplicado a um sistema de comunica??o de uma rede de sensores sem fio (RSSF), para monitoramento de vari?veis anal?gicas, digitais e comando de v?lvulas de passagem do fluxo de g?s em unidades de eleva??o artificial de petr?leo e g?s natural do tipo Plunger Lift. A raz?o desta implementa??o deve-se ao fato que, na configura??o da planta estudada, os sensores comunicam-se com o CLP (Controlador L?gico Program?vel) atrav?s de cabos e dutos, dificultando eventuais modifica??es nesse sistema, tais como mudan?a de layout do mesmo, al?m de inconveni?ncias que venham a surgir da pr?pria natureza do local, como a presen?a de animais nas redondezas que tendem a destruir os cabos de interconex?o dos sensores ao CLP. Para o desenvolvimento do software, foi utilizado o m?todo de comunica??o polling, atrav?s do protocolo SMAC (Simple Medium Access Control - padr?o IEEE 802.15.4), no ambiente CodeWarrior, ao qual gerou um firmware, carregado nas placas de monitoramento da RSSF, presentes no kit MC13193-EVK, (todos os itens descritos acima s?o propriet?rios da Freescale Semiconductors Inc.). O monitoramento e parametriza??o da rede utilizou uma aplica??o, desenvolvida no software LabVIEW, da National Instruments. Os resultados foram obtidos atrav?s da observa??o do comportamento da rede de sensores proposta, focando aspectos, tais como: quantidade de pacotes recebidos e perdidos em ambientes externos (Outdoor) e internos (Indoor), aspectos gerais de confiabilidade na transmiss?o dos dados, coexist?ncia entre outros tipos de redes sem fio e consumo de energia sob diferentes condi??es de opera??o. Os resultados obtidos foram considerados satisfat?rios, o que comprovou a efici?ncia do software neste sistema de comunica??o
APA, Harvard, Vancouver, ISO, and other styles
40

Dosciatti, Eden Ricardo. "Uma nova arquitetura para provisão de QoS utilizando enxame de partículas em redes WiMAX fixas." Universidade Tecnológica Federal do Paraná, 2015. http://repositorio.utfpr.edu.br/jspui/handle/1/1309.

Full text
Abstract:
Os avanços tecnológicos ocorridos nos últimos anos provocaram um crescimento na base de usuários que utilizam as redes de comunicação, principalmente com serviços de multimídia, como IPTV, videoconferência e VoIP. Como estes serviços requerem mais recursos e geram uma grande demanda sobre a infraestrutura da rede, cada usuário deve ter as suas aplicações tratadas de acordo com determinadas prioridades, para oferecer um nível aceitável de serviço. Partindo deste pressuposto, as redes de comunicação para acesso sem fio em banda larga, baseadas no padrão IEEE 802.16, também conhecidas como WiMAX, conseguem atender as várias demandas dos usuários finais, como a necessidade de acesso aos dados em todos os momentos e em qualquer lugar e a conectividade de banda larga eficiente, oferecendo uma excelente relação custo-benefício para o utilizador final, pois possibilitam uma elevada capacidade de transmissão de dados a um custo relativamente baixo de implantação. A provisão de qualidade de serviços é um fator de grande importância para o desempenho das redes de comunicação, para isso, os mecanismos de escalonamento, de controle de admissão de conexões e de policiamento de tráfego, devem estar presentes. Porém, o padrão IEEE 802.16 apenas especifica as políticas de como estes mecanismos devem ser implementados, mas não define como implementá-los. Esta pesquisa tem como objetivo apresentar uma nova arquitetura para o tráfego uplink, nas estações bases das redes WiMAX, com provisão de qualidade de serviços, utilizando a metaheurística de otimização por enxame de partículas para o cálculo da duração do tempo do quadro, quando houver a necessidade, possibilitando encontrar o valor ideal para esta quantidade, proporcionando uma melhor alocação de usuários na rede.<br>Technological advances in recent years have led to a growth in the user base using communication networks, especially with multimedia services such as IPTV, video conferencing and VoIP. As these services require more resources and generate a great demand on the network infrastructure, each user must have their applications dealt with in accordance with certain priorities, to provide an acceptable level of service. Under this assumption, the communication networks for wireless broadband, based on the IEEE 802.16 standard, also known as WiMAX, can meet the various demands of end users, the need for access to data at all times and in any place and the connectivity efficient broadband, offering excellent tredeoff for the end user by enabling high data transmission capacity at a relatively low cost of deployment. The provision of quality services is a very important factor for the performance of communication networks for that, the scheduling mechanisms, admission control connections and traffic policing, must be present. However, the IEEE 802.16 standard specifies only policies of how these mechanisms should be implemented, but does not define how to implement them. This research aims to present a new architecture for uplink traffic, the WiMAX network base stations, with provision of quality services through the particle swarm optimization metaheuristic to calculate the frame duration, allowing to find an ideal value, providing a better allocation of network users.
APA, Harvard, Vancouver, ISO, and other styles
41

Amadou, Kountché Djibrilla. "Localisation dans les bâtiments des personnes handicapées et classification automatique de données par fourmis artificielles." Thesis, Tours, 2013. http://www.theses.fr/2013TOUR4021/document.

Full text
Abstract:
Le concept du « smart » envahit de plus en plus notre vie quotidienne. L’exemple type est sans doute le smartphone. Celui-ci est devenu au fil des ans un appareil incontournable. Bientôt, c’est la ville, la voiture, la maison qui seront « intelligentes ». L’intelligence se manifeste par une capacité d’interaction et de prise de décision entre l’environnement et l’utilisateur. Ceci nécessite des informations sur les changements d’états survenus des deux côtés. Les réseaux de capteurs permettent de collecter ces données, de leur appliquer des pré-traitements et de les transmettre aux applications. Ces réseaux de par certaines de leurs caractéristiques se rapprochent de l’intelligence collective, dans le sens, où des entités de faibles capacités se coordonnent automatiquement, sans intervention humaine, de façon décentralisée et distribuée pour accomplir des tâches complexes. Ces méthodes bio-inspirées ont servi à la résolution de plusieurs problèmes, surtout l’optimisation, ce qui nous a encouragé à étudier la possibilité de les utiliser pour les problèmes liés à l’Ambient Assisted Living ou AAL et à la classification automatique de données. L’AAL est un sous-domaine des services dits basés sur le contexte, et a pour objectifs de faciliter la vie des personnes âgées et handicapées dans leurs défis quotidiens. Pour ce faire, il détermine le contexte et, sur cette base, propose divers services. Deux éléments du contexte nous ont intéressé : le handicap et la position. Bien que la détermination de la position (localisation, positionnement) se fasse à l’extérieur des bâtiments avec des précisions très satisfaisantes, elle rencontre plusieurs difficultés à l’intérieur des bâtiments, liées à la propagation des ondes électromagnétiques dans les milieux difficiles, aux coûts des systèmes, à l’interopérabilité, etc. Nos travaux se sont intéressés au positionnement des personnes handicapées à l’intérieur de bâtiments en utilisant un réseau de capteurs afin de déterminer les caractéristiques de l’onde électromagnétique (puissance, temps, angle) pour estimer la position par méthodes géométriques (triangulation, latération), méthodes de fingerprinting (k plus proches voisins), par des filtres baysiens (filtre de Kalman). L’application est d’offrir des services types AAL tel que la navigation. Nous avons élargi la notion de réseau de capteurs pour prendre en compte tout appareil capable d’émettre et de recevoir une onde électromagnétique et se trouvant dans l’environnement. Nous avons aussi appliqué l’algorithme API sur la classification automatique de données. Enfin, nous avons proposé une architecture à middleware pour la localisation indoor<br>The concept of « smart » invades more and more our daily life. A typical example is the smartphone, which becames by years an essential device. Soon, it’s the city, the car and the home which will become « smart ». The intelligence is manifested by the ability for the environment to interact and to take decisons in its relationships with users and other environments. This needs information on state changes occurred on both sides. Sensor networks allow to collect these data, to apply on them some pre-processings and to transmit them. Sensor network, towards some of their caracteristics are closed to Swarm Intelligence in the sense that small entities with reduced capababilities can cooperate automatically, in unattended, decentralised and distributed manner in order to accomplish complex tasks. These bio-inspired methods have served as basis for the resolution of many problems, mostly optimization and this insipired us to apply them on problems met in Ambient Assisted Living and on the data clustering problem. AAL is a sub-field of context-aware services, and its goals are to facilitate the everyday life of elderly and disable people. These systems determine the context and then propose different kind of services. We have used two important elements of the context : the position and the disabilty. Although positioning has very good precision outdoor, it faces many challenges in indoor environments due to the electromagnetic wave propagation in harsh conditions, the cost of systems, interoperabilty, etc. Our works have been involved in positioning disabled people in indoor environment by using wireless sensor network for determining the caracteristics of the electromagnetic wave (signal strenght, time, angle) for estimating the position by geometric methods (triangulation, lateration), fingerprinting methods (k-nearest neighbours), baysiens filters (Kalman filter). The application is to offer AAL services like navigation. Therefore we extend the definition of sensor node to take into account any device, in the environment, capable of emiting and receiving a signal. Also, we have studied the possibility of using Pachycondylla Apicalis for data clustering and for indoor localization by casting this last problem as data clustering problem. Finally we have proposed a system based on a middleware architecture
APA, Harvard, Vancouver, ISO, and other styles
42

Bou, Tayeh Gaby. "Towards smart firefighting using the internet of things and machine learning." Thesis, Bourgogne Franche-Comté, 2020. http://www.theses.fr/2020UBFCD015.

Full text
Abstract:
L’objectif de cette de thèse est d’étudier à la fois des solutions matérielles et logicielles pour améliorer les conditions de travail des sapeurs-pompiers. Il s’agit de développer un système intelligent basé sur l’internet des objets pour surveiller l'état de santé des pompiers et aider à les localiser lors des interventions. Dans la première partie de la thèse, nous avons étudié et proposé plusieurs approches permettant de réduire la consommation d’énergie du système afin de maximiser sa durée de vie. La première approche présente un modèle de prédiction basé sur la corrélation temporelle entre les mesures collectées par le même capteur. Il permet de réduire la quantité de données collectées et transmises au centre de contrôle. Ce modèle est exécuté à la fois par le capteur et le centre et qui s'auto-adapte en fonction de l’écart constaté entre les mesures réelles collectées et les mesures prédites. Une deuxième version de cette approche a été étudiée pour prendre en considération la perte de message et la synchronisation entre le capteur et le centre de contrôle. D’un autre côté et pour réduire davantage la consommation d’énergie, nous avons couplé l’approche de prédiction avec un algorithme de collecte de données adaptatif permettant de réduire l’activité du capteur et le taux d’échantillonnage. Toutes ces approches ont été testées via des simulations et de l’implémentation réelle. Les résultats obtenus montrent l’efficacité de ces approches en termes de réduction de la consommation d’énergie tout en gardant l’intégrité de données. La deuxième partie de cette thèse est dédiée au traitement des données issues des interventions des sapeurs-pompiers. Nous avons étudié plusieurs méthodes de clustérisation permettant un prétraitement de données avant l’extraction des connaissances. D’un autre côté, nous avons appliqué des méthodes d'apprentissage profond sur un grand ensemble de données concernant 200.000 interventions qui ont eu lieu pendant une période de 6 ans dans le département du Doubs, en France. Le but de cette partie était de prédire le nombre d’interventions futures en fonction de variables explicatives externes, pour aider les pompiers à bien gérer leurs ressources<br>In this thesis, we present a multilevel scheme consisting of both hardware and software solutions to improve the daily operational life of firefighters. As a core part of this scheme, we design and develop a smart system of wearable IoT devices used for state assessment and localization of firefighters during interventions. To ensure a maximum lifetime for this system, we propose multiple data-driven energy management techniques for resource constraint IoT devices. The first one is an algorithm that reduces the amount of data transmitted between the sensor and the destination (Sink). This latter exploits the temporal correlation of collected sensor measurements to build a simple yet robust model that can forecast future observations. Then, we coupled this approach with a mechanism that can identify lost packets, force synchronization, and reconstruct missing data. Furthermore, knowing that the sensing activity does also require a significant amount of energy, we extended the previous algorithm and added an additional adaptive sampling layer. Finally, we also proposed a decentralized data reduction approach for cluster-based sensor networks. All the previous algorithms have been tested and validated in terms of energy efficiency using custom-built simulators and through implementation on real sensor devices. The results were promising as we were able to demonstrate that our proposals can significantly improve the lifetime of the network. The last part of this thesis focusses on building data-centric decision-making tools to improve the efficiency of interventions. Since sensor data clustering is an important pre-processing phase and a stepstone towards knowledge extraction, we review recent clustering techniques for massive data management in IoT and compared them using real data for a gas leak detection sensor network. Furthermore, with our hands on a large dataset containing information on 200,000 interventions that happened during a period of 6 years in the region of Doubs, France. We study the possibility of using Machine Learning to predict the number of future interventions and help firefighters better manage their mobile resources according to the frequency of events
APA, Harvard, Vancouver, ISO, and other styles
43

Hu, Zheng. "Auto-configuration, supervision et contrôle d'entités physiques par l'intermédiaire de réseaux de capteurs et actionneurs." Thesis, Lyon 1, 2014. http://www.theses.fr/2014LYO10001/document.

Full text
Abstract:
Les entités physiques prises en compte par les applications dites M2M dans les télécoms sont aujourd’hui de plus en plus hétérogènes. Le défi adressé par ce travail est donc l’intégration, et la configuration automatiques de toutes ces différentes variétés d’entités physiques d’une façon homogène dans les systèmes M2M, en généralisant les approches de configuration automatique déjà connues et utilisées pour les objets communicants numériques. Cette thèse présente un cadre théorique général et des mécanismes de base pour l’identification de modèles de telles entités physiques dans les systèmes d’information embarqués répartis, en englobant dans une même approche les équipements et les sous-ensembles de l’espace, faisant se rejoindre les points de vue ”internet des objets” et ”environnement interactif” dans une nouvelle vision unifiée de l’intelligence ambiante. Ce travail, motivé initialement par les applications à la gestion d’énergie domestique, cherche à intégrer au réseau local de la maison des entités physiques qui ont un impact énergétique mais ne sont dotés d’aucune connexion réseau, ce qui correspond à une extension qualitative du périmètre de l’Internet des Objets. Cette intégration se fait de manière tout à fait similaire à ce qui est fait classiquement pour des équipements numériques état de l’art, c’est-à-dire par des mécanismes de découverte et configuration spontanés. Ces mécanismes comportent les étapes suivantes : détection de la présence d’une entité physique par analyse de la coïncidence d’évènements significatifs reçus de capteurs ; sélection d’un premier modèle générique représentatif de l’entité physique détectée depuis une ontologie de référence en analysant des données reçues les capteurs ; création d’un composant logiciel représentant l’entité physique détectée, à partir du modèle sélectionné, et associant les capteurs et actionneurs utiles ; supervision et contrôle de l’entité cible par l’intermédiaire de ce composant logiciel ; mise à jour incrémentale du modèle de l’entité identifiée par analyse des données issues des capteurs associés. Ce travail est parti d’applications dans l’environnement de la maison, pour lesquelles il a été validé et mis en œuvre. Mais notre approche a vocation à être généralisée et étendue à des environnements comme les bâtiments ou la ville, en offrant suivant le même principe une infrastructure partagée pour toutes les applications M2M dans ces environnements<br>The physical entities which are taken into account by Machine to Machine (M2M) telecom applications are more and more heterogeneous. The challenge addressed by our research is the automatic integration and configuration of all these types of physical entities in M2M systems, with a homogeneous solution that generalizes self-configuration approaches used for networked digital devices. This thesis presents a general theoretical framework and basic mechanisms for the identification and configuration of such physical entity models in distributed embedded information systems. Our approach deals jointly with equipment and space entities encompassing the ”Internet of Things” (IoT) and ”interactive environment” viewpoints in a renewed interpretation of ambient intelligence. This work has been motivated initially by home energy management applications, trying to integrate into the Home Area Network all home entities that play a role in energy management, but do not have a networked interface of their own. This corresponds to a qualitative extension of the perimeter of the Home Area Network. This integration is achieved in a way similar to what is done for state of the art digital devices, through a spontaneous discovery and configuration mechanism, with the following stages: detection of the presence of a physical entity by analyzing the coincidence of significant events detected by sensors; selection of the first generic model corresponding to the detected physical entity from a reference ontology, on the basis of received sensors data; creation of a software component representing the detected physical entity, based on the selected model, associated with relevant sensors and actuators; provision of application interface for monitoring and control of the target entity through this intermediate software component; iterative update of the identified entity model on the basis of data from associated sensors. The proposed approach has been validated and implemented in home environments, but it is intended to be generalized and expanded to environments such as buildings or cities, offering a similarly shared infrastructure for all M2M applications in these environments
APA, Harvard, Vancouver, ISO, and other styles
44

Wåhlin, Peter. "Enhanching the Human-Team Awareness of a Robot." Thesis, Mälardalens högskola, Akademin för innovation, design och teknik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-16371.

Full text
Abstract:
The use of autonomous robots in our society is increasing every day and a robot is no longer seen as a tool but as a team member. The robots are now working side by side with us and provide assistance during dangerous operations where humans otherwise are at risk. This development has in turn increased the need of robots with more human-awareness. Therefore, this master thesis aims at contributing to the enhancement of human-aware robotics. Specifically, we are investigating the possibilities of equipping autonomous robots with the capability of assessing and detecting activities in human teams. This capability could, for instance, be used in the robot's reasoning and planning components to create better plans that ultimately would result in improved human-robot teamwork performance. we propose to improve existing teamwork activity recognizers by adding intangible features, such as stress, motivation and focus, originating from human behavior models. Hidden markov models have earlier been proven very efficient for activity recognition and have therefore been utilized in this work as a method for classification of behaviors. In order for a robot to provide effective assistance to a human team it must not only consider spatio-temporal parameters for team members but also the psychological.To assess psychological parameters this master thesis suggests to use the body signals of team members. Body signals such as heart rate and skin conductance. Combined with the body signals we investigate the possibility of using System Dynamics models to interpret the current psychological states of the human team members, thus enhancing the human-awareness of a robot.<br>Användningen av autonoma robotar i vårt samhälle ökar varje dag och en robot ses inte längre som ett verktyg utan som en gruppmedlem. Robotarna arbetar nu sida vid sida med oss och ger oss stöd under farliga arbeten där människor annars är utsatta för risker. Denna utveckling har i sin tur ökat behovet av robotar med mer människo-medvetenhet. Därför är målet med detta examensarbete att bidra till en stärkt människo-medvetenhet hos robotar. Specifikt undersöker vi möjligheterna att utrusta autonoma robotar med förmågan att bedöma och upptäcka olika beteenden hos mänskliga lag. Denna förmåga skulle till exempel kunna användas i robotens resonemang och planering för att ta beslut och i sin tur förbättra samarbetet mellan människa och robot. Vi föreslår att förbättra befintliga aktivitetsidentifierare genom att tillföra förmågan att tolka immateriella beteenden hos människan, såsom stress, motivation och fokus. Att kunna urskilja lagaktiviteter inom ett mänskligt lag är grundläggande för en robot som ska vara till stöd för laget. Dolda markovmodeller har tidigare visat sig vara mycket effektiva för just aktivitetsidentifiering och har därför använts i detta arbete. För att en robot ska kunna ha möjlighet att ge ett effektivt stöd till ett mänskligtlag måste den inte bara ta hänsyn till rumsliga parametrar hos lagmedlemmarna utan även de psykologiska. För att tyda psykologiska parametrar hos människor förespråkar denna masteravhandling utnyttjandet av mänskliga kroppssignaler. Signaler så som hjärtfrekvens och hudkonduktans. Kombinerat med kroppenssignalerar påvisar vi möjligheten att använda systemdynamiksmodeller för att tolka immateriella beteenden, vilket i sin tur kan stärka människo-medvetenheten hos en robot.<br><p>The thesis work was conducted in Stockholm, Kista at the department of Informatics and Aero System at Swedish Defence Research Agency.</p>
APA, Harvard, Vancouver, ISO, and other styles
45

Branco, António Sérgio Antunes. "Cloud services and Cloud learning: autonomous reacting algorithms applied to Wireless Sensor Networks." Master's thesis, 2018. http://hdl.handle.net/1822/60516.

Full text
Abstract:
Dissertação de mestrado integrado em Engenharia Eletrónica Industrial e Computadores<br>Internet of Things (IoT), Wireless Sensor Network (WSN), Cloud Services and Artificial Intelligence (AI) are having their breakthrough for the past few years. The markets are booming and growing at high speed, the number of solutions offered by enterprises is increasing and money is being invested in research and development. These fields complement each other in distinct ways. Therefore, there are thousands of projects where these technologies are merged to fulfil the necessities each one has. WSN allows the real-time enviroment monitoring, providing the inputs necessary for AI to learn. AI solves the problem of requiring a real person analysing large amounts of data, in short periods of time. Additionally, the Cloud gives all the necessary computational power to store data and analyse it. Furthermore, it provides a scalable and flexible way for the system to grow, that traditional computers do not. However, it is still not possible to find a generic solution, or a standard way, to implement an IoT solution with all these technologies. There is still some divergence in terms of data collection, communication methods and algorithms used. These facts, are a challenge merging multiple IoT solutions together. The current Master Thesis aims to study the best solutions and to provide a way to implement a generic solution, that helps to reduce this fragmentation and to solve some of the problems these fields are facing. The results obtained from this Master Thesis proves how the use of msgpack can make data serialization faster and reduce the message length. Moreover, it was proven the use of multiple security layers was able to reduce and avoid most of the security issues found nowadays. Additionally, this Master Thesis provides insights in how the creation of multiple microservices increases scalability and security. Furthermore, it shows how CLARA may be a good option to have an AI service that easily learns from any source.<br>This work has been supported by COMPETE: POCI-01-0145-FEDER-007043 and FCT – Fundação para a Ciência e Tecnologia within the Project Scope: UID/CEC/00319/2013. European Structural and Investment Funds in the FEDER component, through the Operational Competitiveness and Internationalization Programme (COMPETE 2020) Project no 002797; Funding Reference: POCI-01-0247-FEDER-002797
APA, Harvard, Vancouver, ISO, and other styles
46

"Self-Configuring and Self-Adaptive Environment Control Systems for Buildings." Doctoral diss., 2015. http://hdl.handle.net/2286/R.I.36025.

Full text
Abstract:
abstract: Lighting systems and air-conditioning systems are two of the largest energy consuming end-uses in buildings. Lighting control in smart buildings and homes can be automated by having computer controlled lights and window blinds along with illumination sensors that are distributed in the building, while temperature control can be automated by having computer controlled air-conditioning systems. However, programming actuators in a large-scale environment for buildings and homes can be time consuming and expensive. This dissertation presents an approach that algorithmically sets up the control system that can automate any building without requiring custom programming. This is achieved by imbibing the system self calibrating and self learning abilities. For lighting control, the dissertation describes how the problem is non-deterministic polynomial-time hard(NP-Hard) but can be resolved by heuristics. The resulting system controls blinds to ensure uniform lighting and also adds artificial illumination to ensure light coverage remains adequate at all times of the day, while adjusting for weather and seasons. In the absence of daylight, the system resorts to artificial lighting. For temperature control, the dissertation describes how the temperature control problem is modeled using convex quadratic programming. The impact of every air conditioner on each sensor at a particular time is learnt using a linear regression model. The resulting system controls air-conditioning equipments to ensure the maintenance of user comfort and low cost of energy consumptions. The system can be deployed in large scale environments. It can accept multiple target setpoints at a time, which improves the flexibility and efficiency of cooling systems requiring temperature control. The methods proposed work as generic control algorithms and are not preprogrammed for a particular place or building. The feasibility, adaptivity and scalability features of the system have been validated through various actual and simulated experiments.<br>Dissertation/Thesis<br>Doctoral Dissertation Computer Science 2015
APA, Harvard, Vancouver, ISO, and other styles
47

Trong-The, Nguyen, and 阮仲體. "Study on Computational Intelligence for Wireless Sensor Networks." Thesis, 2016. http://ndltd.ncl.edu.tw/handle/17403516795795433622.

Full text
Abstract:
博士<br>國立高雄應用科技大學<br>電子工程系碩士班<br>104<br>As an emerging technology, a wireless sensor network (WSN) consists of spatially distributed sensor nodes to collect the selected information in the target environment. WSNs have been widely used in variety of fields from civil to military. Challenges in many WSN applications like optimal deployment, clustering topology, localization, task scheduling, security, energy aware routing, quality of service, and data aggregation and fusion arise from subtle requirements of such problems, particularly whenever the size of a sensor network is large. Computational intelligence (CI) is a promising answer for these challenges. CI is a set of nature-inspired computational methodologies to address complex real-world problems. In CI, the mathematical model or tool of intelligence capable of inputting data, processing data, and producing results can be used to exploit the representing paralleling, generating reliable responses, and facing up high fault tolerance. Complex and dynamic environments like WSNs, CIs could bring reasonably about flexibility, autonomous behavior, and robustness against topology of medium changes, communication failures and scenario alterations. Paradigms of CI like fuzzy logic (FL), swarm intelligence (SI), and evolutionary algorithms (EA) have been applied successfully to WSNs environments. This dissertation intends to bridge the gap between theory and practice and attempts to learn how to analyze, redesign or improve the methodologies of CI for solving various WSN problems. In this dissertation, several improved and analyzed algorithms are parallel bat algorithm (BA), hybrid particle and bee algorithm, compact BA, diversity grey wolf optimization (GWO), etc. Beside of discussing the advantages and disadvantages of CIs over traditional methods, the results of this dissertation are reviewed briefly the selected proposed methods and compared their performances with others related methods in the literature. The proposed methods include the proposed fuzzy logic topology for prolonging the WSN lifetime, a self-configuration chromosome genetic algorithm for global optimization the communication distances in WSN, a hybrid particles and bees (HPB) for topology control WSN problem, bat algorithm (BA) for the unequal clustering formation in WSNs, the communication strategies particles and bats for the base stations (BS) optimization in WSN, an energy-based cluster head selection algorithm (ECHA) for optimal selecting cluster head (CH) based on effective of the distances of normal node to CH and CHs to the BS.
APA, Harvard, Vancouver, ISO, and other styles
48

Wu, Ru-Ting, and 吳如婷. "Swarm Intelligence Based Deployment Protocol on Lifetime Sensing Coverage for Wireless Sensor Networks." Thesis, 2009. http://ndltd.ncl.edu.tw/handle/86617104180786407136.

Full text
Abstract:
碩士<br>大同大學<br>資訊經營學系(所)<br>97<br>Sensor deployment is a critical issue since it reflects the cost and detection capability of a wireless sensor network. Coverage is also important in quality of monitoring in wireless sensor networks. Ant colony optimization (ACO) algorithm provides natural and intrinsic way of exploration of search space in multiple knapsack problem (MKP). In this work, we consider the problem of sensor deployment to full the coverage and maximize the lifetime of the network. We will formulate the deployment of sensors for coverage to the multiple knapsack like problem. Based on ACO algorithm, our paper proposed a deployment strategy to prolong the network lifetime, while ensuring a full coverage. The simulations have shown that our algorithm can prolong the lifetime of the network.
APA, Harvard, Vancouver, ISO, and other styles
49

Ryman, Shaun K. "Temporal responses of chemically diverse sensor arrays for machine olfaction using artificial intelligence." 2016. http://hdl.handle.net/1993/31056.

Full text
Abstract:
The human olfactory system can classify new odors in a dynamic environment with varying odor complexity and concentration, while simultaneously reducing the influence of stable background odors. Replication of this capability has remained an active area of research over the past 3 decades and has great potential to advance medical diagnostics, environmental monitoring and industrial monitoring, among others. New methods for rapid dynamic temporal evaluation of chemical sensor arrays for the monitoring of analytes is explored in this work. One such method is high and low bandpass filtering of changing sensor responses; this is applied to reduce the effects of background noise and sensor drift over time. Processed sensor array responses, coupled with principal component analysis (PCA), will be used to develop a novel approach to classify odors in the presence of changing sensor responses associated with evolving odor concentrations. These methods will enable the removal of noise and drift, as well as facilitating the normalization to decouple classification patterns from intensity; lastly, PCA and artificial neural networks (ANNs) will be used to demonstrate the capability of this approach to function under dynamic conditions, where concentration is changing temporally.<br>February 2016
APA, Harvard, Vancouver, ISO, and other styles
50

Chang, Wei-Lun, and 張偉倫. "An Artificial Bee Colony besed Algorithm to Extend Network Lifetime in Wireless Sensor Networks." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/64613194310586225244.

Full text
Abstract:
碩士<br>朝陽科技大學<br>資訊管理系碩士班<br>102<br>Due to the sensed data (temperature, humidity, pressure and so on) of sensor nodes need to consider the confidentiality and integrity in Wireless Sensor Network (WSN), an intrusion detection system called patrol intrusion detection system (PIDS) is proposed. The PIDS transmits an attack feature packet by roam way among patrol nodes to detect malicious sensor nodes. However, if there is not good roam path to transmit attack feature packet, sensor nodes&apos;&apos; battery energy will consume rapidly to make WSN lifetime reduce. Artificial Bee Colony (ABC) algorithm is utilized to find a low power consumption path for transmitting attack feature packet and promoting energy efficiency in WSN. The method of the research is divided into three phases, initialization phase, employed bees phase and onlooker bees phase. In initialization phase, the method will randomly create a population of initial path. After that, the employed bees phase and the onlooker bees phase are invoked iteratively until the maximum iteration number is reached. The shortest path after each cycle is registered. The experiment result indicates that ABC-based algorithm can save battery energy consumption of sensor nodes effectively, so that WSN lifetime is extended.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography