Journal articles on the topic 'Wisconsin breast cancer dataset'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Wisconsin breast cancer dataset.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
N, Saranya, and Kavi Priya S. "Diagnosis of breast cancer using machine learning algorithms based on features selected by Genetic Algorithm: Assessed on five datasets." Journal of University of Shanghai for Science and Technology 23, no. 11 (2021): 749–58. http://dx.doi.org/10.51201/jusst/21/11963.
Full textKurugh, Kumawuese Jennifer, Muhammad Aminu Ahmad, and Awwal Ahmad Babajo. "THE EFFECT OF DATASETS ON BREAST CANCER DETECTION MODELS." FUDMA JOURNAL OF SCIENCES 4, no. 4 (2021): 309–15. http://dx.doi.org/10.33003/fjs-2020-0404-487.
Full textChakravarty, Alok, and Shweta Tewari. "Detecting Breast Cancer Using Visual ML." Journal of Neonatal Surgery 14, no. 4S (2025): 1211–16. https://doi.org/10.52783/jns.v14.1933.
Full textAwan, Muhammad Zeerak, Muhammad Shoaib Arif, Mirza Zain Ul Abideen, and Kamaleldin Abodayeh. "Comparative analysis of machine learning models for breast cancer prediction and diagnosis: a dual-dataset approach." Indonesian Journal of Electrical Engineering and Computer Science 34, no. 3 (2024): 2032. http://dx.doi.org/10.11591/ijeecs.v34.i3.pp2032-2044.
Full textAwan, Muhammad Zeerak, Muhammad Shoaib Arif, Mirza Zain Ul Abideen, and Kamaleldin Abodayeh. "Comparative analysis of machine learning models for breast cancer prediction and diagnosis: a dual-dataset approach." Indonesian Journal of Electrical Engineering and Computer Science 34, no. 3 (2024): 2032–44. https://doi.org/10.11591/ijeecs.v34.i3.pp2032-2044.
Full textAzis, Azminuddin I. S., Irma Surya Kumala Idris, Budy Santoso, and Yasin Aril Mustofa. "Pendekatan Machine Learning yang Efisien untuk Prediksi Kanker Payudara." Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) 3, no. 3 (2019): 458–69. http://dx.doi.org/10.29207/resti.v3i3.1347.
Full textAamir, Sanam, Aqsa Rahim, Zain Aamir, et al. "Predicting Breast Cancer Leveraging Supervised Machine Learning Techniques." Computational and Mathematical Methods in Medicine 2022 (August 16, 2022): 1–13. http://dx.doi.org/10.1155/2022/5869529.
Full textOyelakin, Akinyemi Moruff. "A Model for the Classification of Breast Cancer Using Random Forest Algorithm." DIU Journal of Science & Technology 16, no. 2 (2024): 1–5. https://doi.org/10.5281/zenodo.13827503.
Full textDas, Sumit, Subhodip Koley, and Tanusree Saha. "Machine Learning Approaches for Investigating Breast Cancer." Biosciences Biotechnology Research Asia 20, no. 4 (2023): 1109–31. http://dx.doi.org/10.13005/bbra/3163.
Full textreddy, Anuradha. "Support Vector Machine Classifier For Prediction Of Breast Malignancy Using Wisconsin Breast Cancer Dataset." Journal of Artificial Intelligence, Machine Learning and Neural Network, no. 21 (January 1, 2022): 1–8. http://dx.doi.org/10.55529/jaimlnn.21.1.8.
Full textreddy, Anuradha. "Support Vector Machine Classifier For Prediction Of Breast Malignancy Using Wisconsin Breast Cancer Dataset." Journal of Artificial Intelligence, Machine Learning and Neural Network, no. 21 (January 1, 2022): 1–8. http://dx.doi.org/10.55529/jaimlnn21.1.8.
Full textKandhasamy, Premalatha, Duraisamy Prabha Devi, and Sivakumar Kandhasamy. "Machine learning framework for breast cancer detection with feature selection with L2 ridge regularization: insights from multiple datasets." Journal of Translational Genetics and Genomics 9, no. 1 (2025): 11–34. https://doi.org/10.20517/jtgg.2024.82.
Full textManir, Shamiha Binta, and Priya Deshpande. "Critical Risk Assessment, Diagnosis, and Survival Analysis of Breast Cancer." Diagnostics 14, no. 10 (2024): 984. http://dx.doi.org/10.3390/diagnostics14100984.
Full textKadhim, Rania R., and Mohammed Y. Kamil. "Comparison of breast cancer classification models on Wisconsin dataset." International Journal of Reconfigurable and Embedded Systems (IJRES) 11, no. 2 (2022): 166. http://dx.doi.org/10.11591/ijres.v11.i2.pp166-174.
Full textRania, R. Kadhim, and Y. Kamil Mohammed. "Comparison of breast cancer classification models on Wisconsin dataset." International Journal of Reconfigurable and Embedded Systems (IJRES) 11, no. 2 (2022): 166–74. https://doi.org/10.11591/ijres.v11.i2.pp166-174.
Full textTian, Jianxue, Jue Zhang, Xiaofen Tang, and Ting Dong. "A Hybrid of Random Over Sample Examples and Boosted C5.0 Algorithms for Breast Cancer Diagnosis on Imbalanced Data." Journal of Medical Imaging and Health Informatics 10, no. 11 (2020): 2686–92. http://dx.doi.org/10.1166/jmihi.2020.3201.
Full textPeng, Lifang, Bin Huang, Kefu Chen, and Leyuan Zhou. "A Novel Breast Cancer Detection Technology Using an Advanced Transfer Maximal Entropy Clustering Algorithm." Journal of Medical Imaging and Health Informatics 9, no. 8 (2019): 1639–44. http://dx.doi.org/10.1166/jmihi.2019.2775.
Full textPrastyo, Pulung Hendro, I. Gede Yudi Paramartha, Michael S. Moses Pakpahan, and Igi Ardiyanto. "Predicting Breast Cancer: A Comparative Analysis of Machine Learning Algorithms." Proceeding International Conference on Science and Engineering 3 (April 30, 2020): 455–59. http://dx.doi.org/10.14421/icse.v3.545.
Full textAkkur, Erkan, Fuat Türk, and Osman Erogul. "Breast cancer classification using a novel hybrid feature selection approach." Neural Network World 33, no. 2 (2023): 67–83. http://dx.doi.org/10.14311/nnw.2023.33.005.
Full textJain, Bhoomi, and Neetu Singla. "Breast Cancer Detection using Machine Learning Algorithms." Journal of Computers, Mechanical and Management 2, no. 6 (2023): 30–35. http://dx.doi.org/10.57159/gadl.jcmm.2.6.230109.
Full textEllingsen, Herman, Aliaksandr Hubin, Filippo Remonato, and Solve Sæbø. "Outlier Detection in Bayesian Neural Networks." Nordic Machine Intelligence 4, no. 1 (2024): 1–15. http://dx.doi.org/10.5617/nmi.11406.
Full textHamsagayathri, P., and P. Sampath. "PERFORMANCE ANALYSIS OF BREAST CANCER CLASSIFICATION USING DECISION TREE CLASSIFIERS." International Journal of Current Pharmaceutical Research 9, no. 2 (2017): 19. http://dx.doi.org/10.22159/ijcpr.2017v9i2.17383.
Full textRahmanul Hoque, Suman Das, Mahmudul Hoque, and Mahmudul Hoque. "Breast Cancer Classification using XGBoost." World Journal of Advanced Research and Reviews 21, no. 2 (2024): 1985–94. http://dx.doi.org/10.30574/wjarr.2024.21.2.0625.
Full textRahmanul, Hoque, Das Suman, Hoque Mahmudul, and Haque Ehteshamul. "Breast Cancer Classification using XGBoost." World Journal of Advanced Research and Reviews 21, no. 2 (2024): 1985–94. https://doi.org/10.5281/zenodo.14043719.
Full textSuresh, Tamilarasi, Assegie Tsehay Admassu, Sangeetha Ganesan, Tulasi Ravulapalli Lakshmi, Radha Mothukuri, and Salau Ayodeji Olalekan. "Explainable extreme boosting model for breast cancer diagnosis." International Journal of Electrical and Computer Engineering (IJECE) 13, no. 5 (2023): 5764–69. https://doi.org/10.11591/ijece.v13i5.pp5764-5769.
Full textSingh, Shatakshi, Sunil Kumar Jangir, Manish Kumar, et al. "Feature Importance Score-Based Functional Link Artificial Neural Networks for Breast Cancer Classification." BioMed Research International 2022 (April 2, 2022): 1–8. http://dx.doi.org/10.1155/2022/2696916.
Full textJain, Parul, Shalini Aggarwal, Sufiyan Adam, and Mohsin Imam. "Parametric optimization and comparative study of machine learning and deep learning algorithms for breast cancer diagnosis." Breast Disease 43, no. 1 (2024): 257–70. http://dx.doi.org/10.3233/bd-240018.
Full textChandhare, Pranita, Harshwardhan Gaikwad, and Prashant Bangar. "Breast Cancer Prediction Using Logistic Regression." International Journal for Research in Applied Science and Engineering Technology 13, no. 4 (2025): 1630–35. https://doi.org/10.22214/ijraset.2025.67963.
Full textHernández-Julio, Yamid Fabián, Leonardo Antonio Díaz-Pertuz, Martha Janeth Prieto-Guevara, Mauricio Andrés Barrios-Barrios, and Wilson Nieto-Bernal. "Intelligent Fuzzy System to Predict the Wisconsin Breast Cancer Dataset." International Journal of Environmental Research and Public Health 20, no. 6 (2023): 5103. http://dx.doi.org/10.3390/ijerph20065103.
Full textKumari, Madhu, and Prachi Ahlawat. "Intelligent Information Retrieval for Reducing Missed Cancer and Improving the Healthcare System." International Journal of Information Retrieval Research 12, no. 1 (2022): 1–25. http://dx.doi.org/10.4018/ijirr.2022010102.
Full textSubasree, S., N. K. Sakthivel, M. Shobana, and Amit Kumar Tyagi. "Deep Learning based Improved Generative Adversarial Network for Addressing Class Imbalance Classification Problem in Breast Cancer Dataset." International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 31, no. 03 (2023): 387–412. http://dx.doi.org/10.1142/s0218488523500204.
Full textBekkouche, Amina, Mohammed Merzoug, Mourad Hadjila, and Wafaa Ferhi. "Towards Early Breast Cancer Detection: A Deep Learning Approach." Engineering, Technology & Applied Science Research 14, no. 5 (2024): 17517–23. http://dx.doi.org/10.48084/etasr.8634.
Full textGurcan, Fatih, and Ahmet Soylu. "Learning from Imbalanced Data: Integration of Advanced Resampling Techniques and Machine Learning Models for Enhanced Cancer Diagnosis and Prognosis." Cancers 16, no. 19 (2024): 3417. http://dx.doi.org/10.3390/cancers16193417.
Full textVivekanandan, S., S. Mounika, P. Monisha, and M. Balaganesh. "Robust Breast Cancer Prognosis Prediction: Adaptive Outlier Removal using SVM and K-Means Clustering." March 2024 6, no. 1 (2024): 85–99. http://dx.doi.org/10.36548/jscp.2024.1.007.
Full textSaheb karan, Abhik Roy Chowdhury, Amit Pal, Susmita Das, Sulekha Das, and Avijit Kumar Chaudhuri. "Early Detection Of Breast Cancer Using Logistic Regression Method." international journal of engineering technology and management sciences 7, no. 2 (2023): 133–42. http://dx.doi.org/10.46647/ijetms.2023.v07i02.017.
Full textEgwom, Onyinyechi Jessica, Mohammed Hassan, Jesse Jeremiah Tanimu, Mohammed Hamada, and Oko Michael Ogar. "An LDA–SVM Machine Learning Model for Breast Cancer Classification." BioMedInformatics 2, no. 3 (2022): 345–58. http://dx.doi.org/10.3390/biomedinformatics2030022.
Full textAlsabry, Ayman, and Malek Algabri. "Iterative Tuning of Tree-Ensemble-Based Models' parameters Using Bayesian Optimization for Breast Cancer Prediction." Informatics and Automation 23, no. 1 (2024): 129–68. http://dx.doi.org/10.15622/ia.23.1.5.
Full textRasool, Abdur, Chayut Bunterngchit, Luo Tiejian, Md Ruhul Islam, Qiang Qu, and Qingshan Jiang. "Improved Machine Learning-Based Predictive Models for Breast Cancer Diagnosis." International Journal of Environmental Research and Public Health 19, no. 6 (2022): 3211. http://dx.doi.org/10.3390/ijerph19063211.
Full textKusuma, Edi, Guruh Shidik, and Ricardus Pramunendar. "Optimization of Neural Network using Nelder Mead in Breast Cancer Classification." International Journal of Intelligent Engineering and Systems 13, no. 6 (2020): 330–37. http://dx.doi.org/10.22266/ijies2020.1231.29.
Full textMoldovanu, Simona, Iulia-Nela Anghelache Nastase, Mihaela Miron, and Luminita Moraru. "Performance comparison of two non-parametric classifiers for classification using geometric features." Annals of the ”Dunarea de Jos” University of Galati Fascicle II Mathematics Physics Theoretical Mechanics 45, no. 2 (2022): 59–62. http://dx.doi.org/10.35219/ann-ugal-math-phys-mec.2022.2.04.
Full textChuiko, Gennady, and Denys Honcharov. "Dimensionality cutback and deep learning algorithms efficacy as to the breast cancer diagnostic dataset." Radioelectronic and Computer Systems 2024, no. 4 (2024): 91–98. https://doi.org/10.32620/reks.2024.4.08.
Full textAbdurrahman, Ginanjar. "Klasifikasi Kanker Payudara Menggunakan Algoritma SVM dengan Kernel RBF, Linier, dan Sigmoid." JUSTIFY : Jurnal Sistem Informasi Ibrahimy 2, no. 1 (2023): 74–80. http://dx.doi.org/10.35316/justify.v2i1.3370.
Full textVig, Leena. "Comparative Analysis of Different Classifiers for the Wisconsin Breast Cancer Dataset." OALib 01, no. 06 (2014): 1–7. http://dx.doi.org/10.4236/oalib.1100660.
Full textSukmandhani, Arief Agus, Lukas, Yaya Heryadi, Wayan Suparta, and Antoni Wibowo. "Classification Algorithm Analysis for Breast Cancer." E3S Web of Conferences 388 (2023): 02012. http://dx.doi.org/10.1051/e3sconf/202338802012.
Full textI, Arathi Chandran R., and V. Mary Amala Bai. "Optimized Deep Convolutional Neural Network for the Prediction of Breast Cancer Recurrence." Journal of Applied Engineering and Technological Science (JAETS) 5, no. 1 (2023): 495–514. http://dx.doi.org/10.37385/jaets.v5i1.3384.
Full textMorkonda Gunasekaran, Dinesh, and Prabha Dhandayudam. "Design of novel multi filter union feature selection framework for breast cancer dataset." Concurrent Engineering 29, no. 3 (2021): 285–90. http://dx.doi.org/10.1177/1063293x211016046.
Full textCakmak, Yigitcan, and Ishak Pacal. "Enhancing Breast Cancer Diagnosis: A Comparative Evaluation of Machine Learning Algorithms Using the Wisconsin Dataset." Journal of Operations Intelligence 3, no. 1 (2025): 175–96. https://doi.org/10.31181/jopi31202539.
Full textMohd Nasir, Haslinah, Noor Mohd Ariff Brahin, Suraya Zainuddin, Mohd Syafiq Mispan, Ida Syafiza Md Isa, and Mohd Nurul Al Hafiz Sha’abani. "The Comparative Study of Deep Learning Neural Network Approaches for Breast Cancer Diagnosis." International Journal of Online and Biomedical Engineering (iJOE) 19, no. 06 (2023): 127–40. http://dx.doi.org/10.3991/ijoe.v19i06.34905.
Full textJakkaladiki, Sudha Prathyusha, and Filip Maly. "Integrating hybrid transfer learning with attention-enhanced deep learning models to improve breast cancer diagnosis." PeerJ Computer Science 10 (February 28, 2024): e1850. http://dx.doi.org/10.7717/peerj-cs.1850.
Full textWan, Nor Liyana Wan Hassan Ibeni, Zaki Mohd Salikon Mohd, Mustapha Aida, Adli Daud Saiful, and Najib Mohd Salleh Mohd. "Comparative analysis on bayesian classification for breast cancer problem." Bulletin of Electrical Engineering and Informatics 8, no. 4 (2019): 1303–11. https://doi.org/10.11591/eei.v8i4.1628.
Full text