Academic literature on the topic 'Wnt genes'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Wnt genes.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Wnt genes"
Nusse, Roel, and Harold E. Varmus. "Wnt genes." Cell 69, no. 7 (June 1992): 1073–87. http://dx.doi.org/10.1016/0092-8674(92)90630-u.
Full textParr, Brian A., and Andrew P. McMahon. "Wnt genes and vertebrate development." Current Opinion in Genetics & Development 4, no. 4 (August 1994): 523–28. http://dx.doi.org/10.1016/0959-437x(94)90067-d.
Full textBrueggmann, Doerthe, Jenny M. Jaque, Celeste Leigh Pearce, and Claire Templeman. "Expression of Wnt-Signaling Pathway Genes and Wnt-Target Genes in Human Endometriosis Tissue [25]." Obstetrics & Gynecology 125 (May 2015): 18S. http://dx.doi.org/10.1097/01.aog.0000465314.25702.ef.
Full textGirich, A. S., and A. V. Boyko. "Wnt and Frizzled Genes in Echinoderms." Russian Journal of Marine Biology 45, no. 4 (July 2019): 302–12. http://dx.doi.org/10.1134/s1063074019040072.
Full textHogvall, Mattias, Bruno C. Vellutini, José M. Martín-Durán, Andreas Hejnol, Graham E. Budd, and Ralf Janssen. "Embryonic expression of priapulid Wnt genes." Development Genes and Evolution 229, no. 4 (July 2019): 125–35. http://dx.doi.org/10.1007/s00427-019-00636-6.
Full textKrauss, S., V. Korzh, A. Fjose, and T. Johansen. "Expression of four zebrafish wnt-related genes during embryogenesis." Development 116, no. 1 (September 1, 1992): 249–59. http://dx.doi.org/10.1242/dev.116.1.249.
Full textWong, G. T., B. J. Gavin, and A. P. McMahon. "Differential transformation of mammary epithelial cells by Wnt genes." Molecular and Cellular Biology 14, no. 9 (September 1994): 6278–86. http://dx.doi.org/10.1128/mcb.14.9.6278.
Full textWong, G. T., B. J. Gavin, and A. P. McMahon. "Differential transformation of mammary epithelial cells by Wnt genes." Molecular and Cellular Biology 14, no. 9 (September 1994): 6278–86. http://dx.doi.org/10.1128/mcb.14.9.6278-6286.1994.
Full textJackstadt, Rene, Michael Charles Hodder, and Owen James Sansom. "WNT and β-Catenin in Cancer: Genes and Therapy." Annual Review of Cancer Biology 4, no. 1 (March 9, 2020): 177–96. http://dx.doi.org/10.1146/annurev-cancerbio-030419-033628.
Full textDing, Xin, Junxia Liu, Lu Zheng, Jiangbo Song, Niannian Li, Hai Hu, Xiaoling Tong, and Fangyin Dai. "Genome-Wide Identification and Expression Profiling of Wnt Family Genes in the Silkworm, Bombyx mori." International Journal of Molecular Sciences 20, no. 5 (March 11, 2019): 1221. http://dx.doi.org/10.3390/ijms20051221.
Full textDissertations / Theses on the topic "Wnt genes"
Huguet, Emmanuel L. "Wnt genes in human breast biology." Thesis, University of Oxford, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.297228.
Full textTorres, Monica Alexandra. "WNT signaling pathways in Xenopus laevis /." Thesis, Connect to this title online; UW restricted, 1997. http://hdl.handle.net/1773/6293.
Full textNambiar, Roopa. "Zebrafish hdac1 reciprocally regulates the canonical and non-canonical Wnt pathways." Columbus, Ohio : Ohio State University, 2006. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1150313622.
Full textLako, Majlinda. "Identifying and characterising novel human WNT genes." Thesis, University of Newcastle Upon Tyne, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.242351.
Full textLeal, Letícia Ferro. "Via Wnt/?-catenina em tumores adrenocorticais pediátricos." Universidade de São Paulo, 2011. http://www.teses.usp.br/teses/disponiveis/17/17144/tde-06012016-181445/.
Full textContext: CTNNB1 mutations and activation of Wnt/-catenin pathway are frequent in adult adrenocortical tumors (ACTs) but data on childhood ACTs are lacking. Objective: To investigate Wnt/-catenin pathway abnormalities and CTNNB1 mutations in childhood ACTs. Patients and Methods: Clinicopathological findings and outcome of 62 childhood ACTs patients were analyzed regarding to CTNNB1/ -catenin mutations and to the expression of Wnt-related genes (CTNNB1, a Wnt ligand: WNT4, Wnt inhibitors: SFRP1, DKK3 and AXIN1, a transcription factor: TCF7, and target genes: MYC and WISP2) by qPCR and immunohistochemistry. Results: Overall survival (OS) was higher in patients younger than 5 years (p<0.0001) and associated with less advanced tumoral stage (p<0.0001). The p.R337H P53 mutation, found in 87% of the patients, was not associated with clinicopathological findings or outcome. CTNNB1 activating mutations were found in only 4/62 ACTs (6%), all of them harboring TP53 mutation. There was association between the presence of CTNNB1 mutation and death (p=0.02). Diffuse -catenin accumulation was found in 71% of ACTs, most of them without CTNNB1 mutation. CTNNB1 mutated ACTs presented weak/moderate -catenin accumulation. Compared to normal adrenals, ACTs presented increased expression of CTNNB1 (p=0.008) and underexpression of Wnt inhibitor genes: DKK3 (p<0.0001), SFRP1 (p=0.05) and AXIN1 (p=0.04). With regards to Wnt/-catenin target genes, ACTs presented lower expression of MYC but increased expression of WISP2. Higher overall survival was associated with underexpression of SFRP1 (p=0.01), WNT4 (p=0.004) and TCF7 (p<0.01). Conclusions: In childhood ACTs, CTNNB1 mutations are rare and appear to be associated with poor prognosis. Regardless of CTNNB1 mutations, these tumors presented reduced expression of Wnt inhibitor genes (DKK3, SFRP1 and AXIN1) and increased expression of CTNNB1 and a target gene, WISP2. Thus, besides CTNNB1 mutations, additional genetic events affecting the Wnt/-catenin pathway may be involved in childhood adrenocortical tumorigenesis.
Chow, Hei-man, and 周熙文. "Hormonal, chemical, and transcriptional regulations of Wnt/{221}-catenin signaling in mammary carcinogensis." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2010. http://hub.hku.hk/bib/B4589100X.
Full textNg, Chun-laam, and 吳圳嵐. "Wnt inhibitory factor 1 (Wif-1) coordinates Shh and Wnt signaling activities in urorectal development." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2012. http://hub.hku.hk/bib/B48329629.
Full textpublished_or_final_version
Surgery
Doctoral
Doctor of Philosophy
Railo, A. (Antti). "Wnt-11 signalling, its role in cardiogenesis and identification of Wnt/β-catenin pathway target genes." Doctoral thesis, University of Oulu, 2010. http://urn.fi/urn:isbn:9789514261534.
Full textSobreira, Debora Rodrigues 1981. "Identificação de uma nova variante do gene Dapper1 gerada por splicing alternativo durante o desenvolvimento de vertebrados e sua analise numa abordagem evolutiva." [s.n.], 2009. http://repositorio.unicamp.br/jspui/handle/REPOSIP/317676.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Biologia
Made available in DSpace on 2018-08-13T10:17:43Z (GMT). No. of bitstreams: 1 Sobreira_DeboraRodrigues_M.pdf: 2481929 bytes, checksum: 2cb1105ccc78322b5f11f4528108d2fc (MD5) Previous issue date: 2009
Resumo: Splicing Alternativo é um mecanismo importante para expandir a diversidade protéica em eucariotos. Este processo permite a produção de diferentes mRNAs a partir de uma mesma molécula de pré-RNA e é freqüentemente utilizado pelos genes envolvidos no desenvolvimento embrionário. O gene Oapper1 (Opr1) é um importante modulador da via de sinalização Wnt, atuando em diversos processos como especificação do tecido neural, morfogênese cefálica e desenvolvimento do coração e olho. Entre seus parceiros estão as '1lOléculas Dishevelled, o fator de transcrição TCF-3 (ambas as moléculas envolvidas na sinalização Wnt) e Dbf-4 (regulador do ciclo celular). Considerando que Dpr1 possui uma estrutura modular e interage com diferentes parceiros moleculares através de diferentes domínios estruturais, esta molécula poderia utilizar a maquinaria de Splicing Alternativo para combinar diferentes domínios e conseqüentemente ampliar suas funções biológicas. Neste estudo, descrevemos uma nova Variante do gene Opr1, identificada inicialmente no transcriptoma de camundongo utilizando ferramentas de Bioinformática. Esta nova Variante é maior em 111 pb em relação à codificada pela seqüência referência de RNAm para Dpr1 RefSeq, as quais são denominadas, respectivamente, como Variante A e Variante B. Estes transcritos variantes são gerados por dois sítios aceptores de Splicing distintos presentes no início do exon 4. O segmento exclusivo da Variante A codifica 37 aminoácidos localizados na região onde Opr1 se associa ao fator transcricional TCF-3. Uma análise comparativa do lócus de Opr1 entre diversos vertebrados (peixe, anfíbio, galinha, camundongo e humano) revelou que ambos os sítios aceptores de Splicing são conservados nos tetrápodas, enquanto que em peixe apenas um sítio é encontrado. Ensaios de RT-PCR confirmaram nossos resultados obtidos em Bioinformática. Além disso, demonstramos que ambas as Variantes são co-expressas ao longo do desenvolvimento de galinha, sugerindo que a concentração relativa dessas moléculas pode ser importante para a sua função. Finalmente, análises de pressão seletiva foram realizadas para a molécula de Dpr1. Apesar de não se confirmar a presença de seleção positiva ao longo da proteína Dpr1, o exon 4 parece estar sob pressão seletiva mais relaxada quando comparado aos outros exons. Nossos resultados são consistentes com a hipótese de que o mecanismo de Splicing Alternativo atua acelerando a evolução, reduzindo a seleção negativa.
Abstract: Alternative splicing is an important mechanism to expand protein diversity in eukaryotes. This process allows the production of different mRNAs from a single coding sequence and is frequentfy used by genes involved in development. Oapper 1 (Opr1) is an important rnodulator of Wnt signalling, working in several developmental processes, such as neural tissue specification, head morphogenesis, heart and eye development. While its interaction with Oishevelled is known to modulate Wnt signalling both in vivo and in vitre, the interaction wrth other molecules is required to mediate its multiple biological functions. Considering that Dpr1 has a modular structure that mediates its interaction with different partners through different structural domains, this molecule could greatly benefit from alternative splicing in order to combine different domains and consequently amplify its biological functions. In the present study we describe a new Opr1 isoform that was initially identified in the mouse transcriptome using bioinformatic tools. This isoform is 111 pb longer than the one encoded by the RefSeq mRNA for Opr1, here named O and E isoforms, respectively. The variant transcripts are generated through two distinct acceptor splice sites in exon 4. The segment exclusive of the O isoform is in frame and encodes 37 residues located in a variable region of Oprl exon 4, known to be necessary for the interaction with the transcriptional factor Tcf3. comparative analysis of the Opr1 locus among fish, frog, chicken, mouse and human revealed that in tetrapods two acceptor splice sites are conserved in the beginning of the exon 4, while in fish a single acceptor splice site is found. RT-PCR using species-specific primers confirmed the expression of the O and E isoforms in tetrapods while in fish only the O isoform was detected. In addition, we showed that the Opr1 isoforms are coexpressed throughout chicken development, suggesting that the relative concentration of these molecules may be important for their functionality. Finally, even though no evidence of positive selection was detected for the entire Dpr1 protein, exon 4 seems to be under more relaxed selective pressure than the other exons. These results are consistent with the notion that alternative splicing can act as a mechanism for opening accelerated paths of evolution by reducing negative selection pressure.
Mestrado
Histologia
Mestre em Biologia Celular e Estrutural
Ho, Sze-hang, and 何思恆. "Differential expression of Wnt inhibitors Dickkopf-1 (Dkk-1) and Wnt inhibitory factor-1 (Wif1) in the regulation of urorectal development." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2014. http://hdl.handle.net/10722/207999.
Full textpublished_or_final_version
Surgery
Master
Master of Philosophy
Books on the topic "Wnt genes"
Wnt signaling in development. Georgetown, Tex: Landes Bioscience/Eurekah.com, 2003.
Find full textKühl, Michael. Wnt signaling in development. Georgetown, Tex: Landes Bioscience, 2003.
Find full textHagens, Olivier. An investigation of two novel genes associated with Wnt signalling in Drosophila melanogaster. Brighton, UK: University of Sussex, 2000.
Find full textNusse, Roel, Xi He, and Renee van Amerongen. Wnt signaling: A subject collection from Cold Spring harbor perspectives in biology. Cold Spring Harbor, N.Y: Cold Spring Harbor Laboratory Press, 2012.
Find full textDerkx, Peter, and Felix van de Laar. Genen, wat willen we ermee?: 21 wetenschappers over de consequenties van genomics. Antwerpen: Garant, 2012.
Find full textJameson, Richard T. They went thataway: Redefining film genres : a National Society of Film Critics video guide. San Francisco: Mercury House, 1994.
Find full textBauernsatiren: Entstehung und Entwicklung des bäuerlichen Genres in der deutschen und niederländischen Kunst ca. 1470-1570. Niederzier: Lukassen, 1986.
Find full textSchröder, Martin. Humor und Dialekt: Untersuchungen zur Genese sprachlicher Konnotationen am Beispiel der niederdeutschen Folklore und Literatur. Neumünster: K. Wachholtz, 1995.
Find full textWe all want to change the world: Rock and politics from Elvis to Eminem. Lanham, MD: Taylor Trade Pub., 2005.
Find full textBook chapters on the topic "Wnt genes"
Bergstein, Ivan, and Anthony M. C. Brown. "WNT Genes and Breast Cancer." In Breast Cancer, 181–98. Totowa, NJ: Humana Press, 1999. http://dx.doi.org/10.1007/978-1-59259-456-6_8.
Full textSun, Zijie, and Suk Hyung Lee. "Androgen Action, Wnt Signaling, and Prostate Tumorigenesis." In Androgen-Responsive Genes in Prostate Cancer, 101–16. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-6182-1_7.
Full textBordet, Guillaume, and Vincent Bertrand. "Zic Genes in Nematodes: A Role in Nervous System Development and Wnt Signaling." In Advances in Experimental Medicine and Biology, 59–68. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-7311-3_4.
Full textEdwards, Paul A. W., Clare Abram, Susan E. Hiby, Christina Niemeyer, Trevor C. Dale, and Jane M. Bradbury. "The Role of erbB-Family Genes and Wnt Genes in Normal and Preneoplastic Mammary Epithelium, Studied by Tissue Reconstitution." In Intercellular Signalling in the Mammary Gland, 57–66. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-1973-7_6.
Full textPlanutis, Kestutis, Marina Planutiene, and Randall F. Holcombe. "In Situ Hybridization to Evaluate the Expression of Wnt and Frizzled Genes in Mammalian Tissues." In Methods in Molecular Biology, 231–41. Totowa, NJ: Humana Press, 2008. http://dx.doi.org/10.1007/978-1-59745-249-6_18.
Full textAoki, Koji, and Makoto M. Taketo. "Tissue-Specific Transgenic, Conditional Knockout and Knock-In Mice of Genes in the Canonical Wnt Signaling Pathway." In Methods in Molecular Biology, 307–31. Totowa, NJ: Humana Press, 2008. http://dx.doi.org/10.1007/978-1-59745-249-6_24.
Full textZhang, Chen U., and Ken M. Cadigan. "An Overview of Gene Regulation by Wnt/β-Catenin Signaling." In Wnt Signaling in Development and Disease, 51–71. Hoboken, NJ, USA: John Wiley & Sons, Inc, 2014. http://dx.doi.org/10.1002/9781118444122.ch4.
Full textBryant, J. "Introduction: Part II–Genomes, genes and proteins." In WIT Transactions on State-of-the-art in Science and Engineering, 13–27. Southampton UK: WIT Press, 2006. http://dx.doi.org/10.2495/978-1-85312-853-0/02.
Full textWeber-Hall, Stephen, Deborah Phippard, Christina Niemeyer, and Trevor Dale. "Developmental and Hormonal Regulation of Wnt Gene Expression in the Mouse Mammary Gland." In Intercellular Signalling in the Mammary Gland, 105–6. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-1973-7_26.
Full textTanner, Matthew J., Elina Levina, Michael Shtutman, Mengqian Chen, Patrice Ohouo, and Ralph Buttyan. "Unique Effects of Wnt Signaling on Prostate Cancer Cells: Modulation of the Androgen Signaling Pathway by Interactions of the Androgen Receptor Gene and Protein with Key Components of the Canonical Wnt Signaling Pathway." In Androgen Action in Prostate Cancer, 569–86. New York, NY: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-69179-4_24.
Full textConference papers on the topic "Wnt genes"
Phillip, Cornel J., and Carlos S. Moreno. "Abstract 4932: Genistein Can Induce Demethylation Of Wnt Negative Regulatory Genes In Prostate Cancer Cells." In Proceedings: AACR 101st Annual Meeting 2010‐‐ Apr 17‐21, 2010; Washington, DC. American Association for Cancer Research, 2010. http://dx.doi.org/10.1158/1538-7445.am10-4932.
Full textBernabe-Dones, Raul D., Sharon C. Fonseca-Williams, Mercedes Y. Lacourt-Ventura, Cristina Muñoz, Maribel Tirado-Gomez, and Marcia R. Cruz-Correa. "Abstract 4783: Expression of genes panel related to WNT- signaling in colorectal cancer Human Papillomavirus-positive colorectal cancer." In Proceedings: AACR 104th Annual Meeting 2013; Apr 6-10, 2013; Washington, DC. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.am2013-4783.
Full textKomatsu, Hisateru, Atsushi Niida, Masami Ueda, Hidenari Hirata, Ryutaro Uchi, Sho Nambara, Tomoko Saito, et al. "Abstract 1948: In silico screening for novel Wnt/β-catenin pathway target and regulator genes in human hepatocellular carcinoma." In Proceedings: AACR 106th Annual Meeting 2015; April 18-22, 2015; Philadelphia, PA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.am2015-1948.
Full textRipple, Michael J., Amanda Struckhoff, Robin McGoey, and Luis Del Valle. "Abstract 4774: JC virus T-antigen-dependent activation of Wnt target genes and cell cycle progression in colon cancer." In Proceedings: AACR 104th Annual Meeting 2013; Apr 6-10, 2013; Washington, DC. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.am2013-4774.
Full textBobbs, Alexander, William Morgan Hallas, Katrina Gellerman, Stancy Joseph, and Karen Cowden Dahl. "Abstract POSTER-BIOL-1303: ARID3B alters tumor cell adhesion by binding to the promoter regions in fzd5 and other wnt pathway genes." In Abstracts: 10th Biennial Ovarian Cancer Research Symposium; September 8-9, 2014; Seattle, WA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1557-3265.ovcasymp14-poster-biol-1303.
Full textJanuskevicius, Andrius, Simona Lavinskiene, Reinoud Gosens, Ieva Janulaityte, Deimante Hoppenot, Raimundas Sakalauskas, and Kestutis Malakauskas. "LSC Abstract – Eosinophils enhance WNT-5a and TGF-β1 genes expression in airway smooth muscle cells and promote their proliferation in asthma." In ERS International Congress 2016 abstracts. European Respiratory Society, 2016. http://dx.doi.org/10.1183/13993003.congress-2016.pa632.
Full textJanuskevicius, Andrius, Simona Lavinskiene, Reinoud Gosens, Ieva Janulaityte, Deimante Hoppenot, Raimundas Sakalauskas, and Kestutis Malakauskas. "LSC Abstract – Eosinophils enhance WNT-5a and TGF-β1 genes expression in airway smooth muscle cells and promote their proliferation in asthma." In ERS International Congress 2016 abstracts. European Respiratory Society, 2016. http://dx.doi.org/10.1183/13993003.congress-2016.pp222.
Full textLinnekamp, Janneke, Raju Kandimalla, Louis Vermeulen, Hanneke van Laarhoven, and Jan Paul Medema. "Abstract 5273: Role of methylation of Wnt target genes in tumorigenesis and effect of re-expression with demethylating agent decitabine in colon cancer." In Proceedings: AACR 106th Annual Meeting 2015; April 18-22, 2015; Philadelphia, PA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.am2015-5273.
Full textSarkar, Dipak K., Shaima Jabbar, and Omkaram Gangisetty. "Abstract 1125: Developmental pluripotency associated 4 oncogene interacts with Wnt/β-catenin signaling and stem cells regulatory genes to control pituitary tumor cells invasiveness." In Proceedings: AACR Annual Meeting 2018; April 14-18, 2018; Chicago, IL. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.am2018-1125.
Full textLuo, Li Z., Ewa Krawczyk, Anbarasu Lourdusamy, Lisa C. Storer, Lingling Xian, Kenneth J. Cohen, Richard Schlegel, Richard Grundy, and Linda Resar. "Abstract LB-224: A novel model of pediatric spinal ependymoma using conditionally reprogrammed cells from a primary tumor demonstrates aberrant expression ofHMGA, HOX, MYCand other Wnt target genes." In Proceedings: AACR Annual Meeting 2017; April 1-5, 2017; Washington, DC. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.am2017-lb-224.
Full textReports on the topic "Wnt genes"
Wang, Xianshu. Analysis of Human AXIN2 and Other Wnt Signal Pathway Genes in Human Prostate Cancer. Fort Belvoir, VA: Defense Technical Information Center, March 2003. http://dx.doi.org/10.21236/ada415833.
Full textHuang, Shixia, and Harold Varmus. The Use of cDNA Microarray to Study Gene Expression in Wnt-1 Induced Mammary Tumors. Fort Belvoir, VA: Defense Technical Information Center, August 2002. http://dx.doi.org/10.21236/ada411264.
Full text