Journal articles on the topic 'Wood – Defects'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Wood – Defects.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Prasmana, Muhammad Farid, Deny Andesta, and Hidayat Hidayat. "Analysis of the Causes of Defects in the Timber Production Process Using the FMEA (Failure Mode Effect Analysis) Method Approach at PT. KQW." Jurnal Sains dan Teknologi Industri 20, no. 2 (February 16, 2023): 639. http://dx.doi.org/10.24014/sitekin.v20i2.21837.
Full textIbrahim, Eihab Abdelkariem Bashir, Ummi Raba'ah Hashim, Lizawati Salahuddin, Nor Haslinda Ismail, Ngo Hea Choon, Kasturi Kanchymalay, and Siti Normi Zabri. "Evaluation of texture feature based on basic local binary pattern for wood defect classification." International Journal of Advances in Intelligent Informatics 7, no. 1 (March 31, 2021): 26. http://dx.doi.org/10.26555/ijain.v7i1.393.
Full textNi, Song Yuan, Hua Dong Xu, and Li Hai Wang. "Quantitative Identification of Defects in Lumber Based on Modal Frequencies and Artificial Neural Network." Advanced Materials Research 183-185 (January 2011): 2279–83. http://dx.doi.org/10.4028/www.scientific.net/amr.183-185.2279.
Full textLi, Hongli, Zhiqi Yi, Zhibin Wang, Ying Wang, Liang Ge, Wei Cao, Liye Mei, Wei Yang, and Qin Sun. "FDADNet: Detection of Surface Defects in Wood-Based Panels Based on Frequency Domain Transformation and Adaptive Dynamic Downsampling." Processes 12, no. 10 (September 30, 2024): 2134. http://dx.doi.org/10.3390/pr12102134.
Full textBatista, Djeison Cesar, Márcio Pereira da Rocha, and Ricardo Jorge Klitzke. "COMPARISON BETWEEN WOOD DRYING DEFECT SCORES: SPECIMEN TESTING X ANALYSIS OF KILN-DRIED BOARDS." Revista Árvore 39, no. 2 (April 2015): 395–403. http://dx.doi.org/10.1590/0100-67622015000200019.
Full textMu, Hong Bo, Da Wei Qi, and Ming Ming Zhang. "Image Segmentation of Wood with Knot Defects Based on Gray Transformation." Applied Mechanics and Materials 71-78 (July 2011): 1691–94. http://dx.doi.org/10.4028/www.scientific.net/amm.71-78.1691.
Full textGao, Mingyu, Fei Wang, Peng Song, Junyan Liu, and DaWei Qi. "BLNN: Multiscale Feature Fusion-Based Bilinear Fine-Grained Convolutional Neural Network for Image Classification of Wood Knot Defects." Journal of Sensors 2021 (August 17, 2021): 1–18. http://dx.doi.org/10.1155/2021/8109496.
Full textZhu, Yuhang, Zhezhuang Xu, Ye Lin, Dan Chen, Zhijie Ai, and Hongchuan Zhang. "A Multi-Source Data Fusion Network for Wood Surface Broken Defect Segmentation." Sensors 24, no. 5 (March 2, 2024): 1635. http://dx.doi.org/10.3390/s24051635.
Full textJackson, Marcus B., Beverly M. Bulaon, and Michael A. Marsden. "Wood Changes in Four Size Classes of Fire-Killed Western Larch." Western Journal of Applied Forestry 25, no. 2 (April 1, 2010): 62–67. http://dx.doi.org/10.1093/wjaf/25.2.62.
Full textGao, Mingyu, Dawei Qi, Hongbo Mu, and Jianfeng Chen. "A Transfer Residual Neural Network Based on ResNet-34 for Detection of Wood Knot Defects." Forests 12, no. 2 (February 11, 2021): 212. http://dx.doi.org/10.3390/f12020212.
Full textAlbrektas, Darius, and Agne Styraite. "Modelling and Investigating Real-World Drying Defects in Wood." Drvna industrija 73, no. 2 (May 31, 2022): 115–23. http://dx.doi.org/10.5552/drvind.2022.2040.
Full textWang, Rijun, Fulong Liang, Bo Wang, and Xiangwei Mou. "ODCA-YOLO: An Omni-Dynamic Convolution Coordinate Attention-Based YOLO for Wood Defect Detection." Forests 14, no. 9 (September 16, 2023): 1885. http://dx.doi.org/10.3390/f14091885.
Full textJambreković, Branimir, Filip Veselčić, Iva Ištok, Tomislav Sinković, Vjekoslav Živković, and Tomislav Sedlar. "A Comparative Analysis of Oak Wood Defect Detection Using Two Deep Learning (DL)-Based Software." Applied System Innovation 7, no. 2 (April 15, 2024): 30. http://dx.doi.org/10.3390/asi7020030.
Full textDocherty, Hugh. "Historical defects in buildings – No. 5: Wood-wool formwork." Structural Engineer 102, no. 3 (March 1, 2024): 16–17. http://dx.doi.org/10.56330/yspw6016.
Full textSun, Liping, Hongju Zhou, Hongwei Zhou, Guizhong Jiao, and Ling Ma. "Imaging of Internal Defects of Polymer-Modified Wood Using Total Focusing Method." Advances in Polymer Technology 2019 (June 17, 2019): 1–7. http://dx.doi.org/10.1155/2019/1045280.
Full textWang, Rijun, Fulong Liang, Bo Wang, Guanghao Zhang, Yesheng Chen, and Xiangwei Mou. "An Efficient and Accurate Surface Defect Detection Method for Wood Based on Improved YOLOv8." Forests 15, no. 7 (July 6, 2024): 1176. http://dx.doi.org/10.3390/f15071176.
Full textMeng, Wei, and Yilin Yuan. "SGN-YOLO: Detecting Wood Defects with Improved YOLOv5 Based on Semi-Global Network." Sensors 23, no. 21 (October 25, 2023): 8705. http://dx.doi.org/10.3390/s23218705.
Full textYe, Ruochen, Ying Pei, Weibin Wang, and Haibin Zhou. "Scientific Computational Visual Analysis of Wood Internal Defects Detection in View of Tomography Image Reconstruction Algorithm." Mobile Information Systems 2022 (March 27, 2022): 1–15. http://dx.doi.org/10.1155/2022/6091352.
Full textMastap, Sushardi, Tibertius Agus Prayitno, Yustinus Suranto, and Ganis Lukmandaru. "Suitability of Teak Log Quality from Gunung Kidul and Bantul Yogyakarta Community Forest for Export Meubel Purpose." Journal of Sylva Indonesiana 4, no. 02 (August 30, 2021): 78–86. http://dx.doi.org/10.32734/jsi.v4i02.6347.
Full textWang, Bo, Rijun Wang, Yesheng Chen, Chunhui Yang, Xianglong Teng, and Peng Sun. "FDD-YOLO: A Novel Detection Model for Detecting Surface Defects in Wood." Forests 16, no. 2 (February 10, 2025): 308. https://doi.org/10.3390/f16020308.
Full textYuan, Peng, Liming Lou, Yu Shi, Pengle Cheng, Lei Yan, and Lei Pang. "Motion-blurry Image Restoration Method for Detecting Surface Defects of Wood Veneer." International Journal of Circuits, Systems and Signal Processing 16 (March 11, 2022): 843–51. http://dx.doi.org/10.46300/9106.2022.16.103.
Full textGao, Mingyu, Peng Song, Fei Wang, Junyan Liu, Andreas Mandelis, and DaWei Qi. "A Novel Deep Convolutional Neural Network Based on ResNet-18 and Transfer Learning for Detection of Wood Knot Defects." Journal of Sensors 2021 (August 13, 2021): 1–16. http://dx.doi.org/10.1155/2021/4428964.
Full textÖzcan, Uğur, Kazım Kiliç, Kenan Kiliç, and İbrahim Alper Doğru. "Using Deep Learning Techniques for Anomaly Detection of Wood Surface." Drvna industrija 75, no. 3 (September 30, 2024): 275–86. http://dx.doi.org/10.5552/drvind.2024.0114.
Full textHashim, Ummi Rabaah, Siti Zaiton Mohd Hashim, Azah Kamilah Muda, Kasturi Kanchymalay, Intan Ermahani Abd Jalil, and Muhammad Hakim Othman. "Systematic feature analysis on timber defect images." International Journal of Advances in Intelligent Informatics 3, no. 2 (July 31, 2017): 56. http://dx.doi.org/10.26555/ijain.v3i2.94.
Full textHuang, Guo Xiang, Supapan Chaiprapat, and Kriangkrai Waiyagan. "A Probabilistic Model of Wood Defects." Applied Mechanics and Materials 799-800 (October 2015): 217–21. http://dx.doi.org/10.4028/www.scientific.net/amm.799-800.217.
Full textShi, Jiahao, Zhenye Li, Tingting Zhu, Dongyi Wang, and Chao Ni. "Defect Detection of Industry Wood Veneer Based on NAS and Multi-Channel Mask R-CNN." Sensors 20, no. 16 (August 6, 2020): 4398. http://dx.doi.org/10.3390/s20164398.
Full textKlement, Ivan, Tatiana Vilkovská, Miroslav Uhrín, Jacek Barański, and Aleksandra Konopka. "Impact of high temperature drying process on beech wood containing tension wood." Open Engineering 9, no. 1 (August 28, 2019): 428–33. http://dx.doi.org/10.1515/eng-2019-0047.
Full textChun, Teo Hong, Ummi Raba'ah Hashim, Sabrina Ahmad, Lizawati Salahuddin, Ngo Hea Choon, Kasturi Kanchymalay, and Nur Haslinda Ismail. "Identification of wood defect using pattern recognition technique." International Journal of Advances in Intelligent Informatics 7, no. 2 (April 19, 2021): 163. http://dx.doi.org/10.26555/ijain.v7i2.588.
Full textNefjodovs, Vadims, Laura Andze, Martins Andzs, Inese Filipova, Ramunas Tupciauskas, Linda Vecbiskena, and Martins Kapickis. "Wood as Possible Renewable Material for Bone Implants—Literature Review." Journal of Functional Biomaterials 14, no. 5 (May 10, 2023): 266. http://dx.doi.org/10.3390/jfb14050266.
Full textNurlaelah, Azis, U. Sudjadi, J. Hatmoko, and H. A. Rusdi. "The Detailed Description of Residential Defects in Years 2010 – 2011 of Citra Garden Residence in Indonesia." Applied Mechanics and Materials 584-586 (July 2014): 288–92. http://dx.doi.org/10.4028/www.scientific.net/amm.584-586.288.
Full textUrbonas, Augustas, Vidas Raudonis, Rytis Maskeliūnas, and Robertas Damaševičius. "Automated Identification of Wood Veneer Surface Defects Using Faster Region-Based Convolutional Neural Network with Data Augmentation and Transfer Learning." Applied Sciences 9, no. 22 (November 15, 2019): 4898. http://dx.doi.org/10.3390/app9224898.
Full textXie, Yonghua, and Jiaxin Ling. "Wood defect classification based on lightweight convolutional neural networks." BioResources 18, no. 4 (September 27, 2023): 7663–80. http://dx.doi.org/10.15376/biores.18.4.7663-7680.
Full textDhanamathi, A., K. Ajith, V. Balamurugan, and S. Sridhar. "A framework for wood quality assessment using DenseNet algorithm." i-manager’s Journal on Pattern Recognition 11, no. 1 (2024): 30. http://dx.doi.org/10.26634/jpr.11.1.21060.
Full textJackson, M. R., R. M. Parkin, and N. Brown. "Waves on wood." Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 216, no. 4 (April 1, 2002): 475–97. http://dx.doi.org/10.1243/0954405021520175.
Full textRahiddin, Rahillda Nadhirah Norizzaty, Ummi Rabaah Hashim, Nor Haslinda Ismail, Lizawati Salahuddin, Ngo Hea Choon, and Siti Normi Zabri. "Classification of wood defect images using local binary pattern variants." International Journal of Advances in Intelligent Informatics 6, no. 1 (March 29, 2020): 36. http://dx.doi.org/10.26555/ijain.v6i1.392.
Full textWang, Rijun, Yesheng Chen, Fulong Liang, Bo Wang, Xiangwei Mou, and Guanghao Zhang. "BPN-YOLO: A Novel Method for Wood Defect Detection Based on YOLOv7." Forests 15, no. 7 (June 25, 2024): 1096. http://dx.doi.org/10.3390/f15071096.
Full textXi, Honglei, Rijun Wang, Fulong Liang, Yesheng Chen, Guanghao Zhang, and Bo Wang. "SiM-YOLO: A Wood Surface Defect Detection Method Based on the Improved YOLOv8." Coatings 14, no. 8 (August 7, 2024): 1001. http://dx.doi.org/10.3390/coatings14081001.
Full textWieruszwski, Marek, Radosław Mirski, Adrian Ttrociński, and Jakub Kawalerczyk. "Effect of sawn zone on the quality of lumber in the evaluation of selected pine wood defects." Annals of WULS, Forestry and Wood Technology 114 (June 28, 2021): 26–32. http://dx.doi.org/10.5604/01.3001.0015.2370.
Full textPEDREIRA, Paula A., Eduardo A. PENON, A. Cecilia GOZZI, Nicolás PENON-SOBERO, and Mariela BORGNIA. "Damage to the wood of forest species caused by the debarking of Pallas´s squirrel introduced into Argentina." Forest Systems 32, no. 2 (July 3, 2023): e012. http://dx.doi.org/10.5424/fs/2023322-20098.
Full textWang, Jun, Changsen Zhang, Maocheng Zhao, Hongyan Zou, Liang Qi, and Zheng Wang. "A Composite Pulse Excitation Technique for Air-Coupled Ultrasonic Detection of Defects in Wood." Sensors 24, no. 23 (November 26, 2024): 7550. http://dx.doi.org/10.3390/s24237550.
Full textRozi, Fahrul, and Widya Setiafindari. "Analisis Pengendalian Kualitas pada Pengolahan Produk Lemari Tipe MC11 01 dengan Metode Statistical Process Control pada PT Alis Jaya Ciptatama." JURNAL TEKNIK INDUSTRI 3, no. 1 (May 19, 2022): 1–15. http://dx.doi.org/10.37366/jutin0301.0115.
Full textMohsin, Mazhar, Oluwafemi Samson Balogun, Keijo Haataja, and Pekka Toivanen. "Convolutional neural networks for real-time wood plank detection and defect segmentation." F1000Research 12 (March 23, 2023): 319. http://dx.doi.org/10.12688/f1000research.131905.1.
Full textKamperidou, Vasiliki, Efstratios Aidinidis, and Ioannis Barboutis. "Impact of Structural Defects on the Surface Quality of Hardwood Species Sliced Veneers." Applied Sciences 10, no. 18 (September 9, 2020): 6265. http://dx.doi.org/10.3390/app10186265.
Full textLee, Sang-Joon, Sangdae Lee, Sung-Jun Pang, Chul-Ki Kim, Kwang-Mo Kim, Ki-Bok Kim, and Jun-Jae Lee. "Indirect Detection of Internal Defects in Wooden Rafter with Ultrasound." Journal of the Korean Wood Science and Technology 41, no. 2 (March 25, 2013): 164–72. http://dx.doi.org/10.5658/wood.2013.41.2.164.
Full textLi, Meng, Yong Xiang Kang, Van Quy Nguyen, Xu Zhen Gao, Li Li Zhang, Jin Ling Wang, Xiao Qiang Zhou, and Gang Zhen Ma. "3D reconstruction of the tree internal decay based on radar waves." BioResources 17, no. 4 (September 21, 2022): 6277–92. http://dx.doi.org/10.15376/biores.17.4.6277-6292.
Full textAnoop, E. V., Gayathri Mukundan, Comath Shibu, and Anish Mavila Chathoth. "Development of Coconut Palm Wood Seasoning Schedules." CORD 40 (January 6, 2025): 11–18. https://doi.org/10.37833/cord.v40i.451.
Full textPham, D. T., and S. Sagiroglu. "Neural network classification of defects in veneer boards." Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 214, no. 3 (March 1, 2000): 255–58. http://dx.doi.org/10.1243/0954405001517649.
Full textSun, Ping’an. "Wood Quality Defect Detection Based on Deep Learning and Multicriteria Framework." Mathematical Problems in Engineering 2022 (May 26, 2022): 1–9. http://dx.doi.org/10.1155/2022/4878090.
Full textMiao, Y., M. Zhong, and Z. Liu. "Locating Wood Defects Based on Vibration Modes." Journal of Testing and Evaluation 46, no. 2 (October 31, 2017): 20150511. http://dx.doi.org/10.1520/jte20150511.
Full textForrer, J. B., and J. W. Funck. "Dielectric properties of defects on wood surfaces." Holz als Roh- und Werkstoff 56, no. 1 (January 1998): 25–29. http://dx.doi.org/10.1007/s001070050259.
Full text