To see the other types of publications on this topic, follow the link: Wood-Ljungdahl metabolic pathway.

Journal articles on the topic 'Wood-Ljungdahl metabolic pathway'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 38 journal articles for your research on the topic 'Wood-Ljungdahl metabolic pathway.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Song, Yoseb, Jin Soo Lee, Jongoh Shin, Gyu Min Lee, Sangrak Jin, Seulgi Kang, Jung-Kul Lee, et al. "Functional cooperation of the glycine synthase-reductase and Wood–Ljungdahl pathways for autotrophic growth of Clostridium drakei." Proceedings of the National Academy of Sciences 117, no. 13 (March 13, 2020): 7516–23. http://dx.doi.org/10.1073/pnas.1912289117.

Full text
Abstract:
Among CO2-fixing metabolic pathways in nature, the linear Wood–Ljungdahl pathway (WLP) in phylogenetically diverse acetate-forming acetogens comprises the most energetically efficient pathway, requires the least number of reactions, and converts CO2 to formate and then into acetyl-CoA. Despite two genes encoding glycine synthase being well-conserved in WLP gene clusters, the functional role of glycine synthase under autotrophic growth conditions has remained uncertain. Here, using the reconstructed genome-scale metabolic model iSL771 based on the completed genome sequence, transcriptomics, 13C isotope-based metabolite-tracing experiments, biochemical assays, and heterologous expression of the pathway in another acetogen, we discovered that the WLP and the glycine synthase pathway are functionally interconnected to fix CO2, subsequently converting CO2 into acetyl-CoA, acetyl-phosphate, and serine. Moreover, the functional cooperation of the pathways enhances CO2 consumption and cellular growth rates via bypassing reducing power required reactions for cellular metabolism during autotrophic growth of acetogens.
APA, Harvard, Vancouver, ISO, and other styles
2

Martin, William, and Michael J. Russell. "On the origin of biochemistry at an alkaline hydrothermal vent." Philosophical Transactions of the Royal Society B: Biological Sciences 362, no. 1486 (November 3, 2006): 1887–926. http://dx.doi.org/10.1098/rstb.2006.1881.

Full text
Abstract:
A model for the origin of biochemistry at an alkaline hydrothermal vent has been developed that focuses on the acetyl-CoA (Wood–Ljungdahl) pathway of CO 2 fixation and central intermediary metabolism leading to the synthesis of the constituents of purines and pyrimidines. The idea that acetogenesis and methanogenesis were the ancestral forms of energy metabolism among the first free-living eubacteria and archaebacteria, respectively, stands in the foreground. The synthesis of formyl pterins, which are essential intermediates of the Wood–Ljungdahl pathway and purine biosynthesis, is found to confront early metabolic systems with steep bioenergetic demands that would appear to link some, but not all, steps of CO 2 reduction to geochemical processes in or on the Earth's crust. Inorganically catalysed prebiotic analogues of the core biochemical reactions involved in pterin-dependent methyl synthesis of the modern acetyl-CoA pathway are considered. The following compounds appear as probable candidates for central involvement in prebiotic chemistry: metal sulphides, formate, carbon monoxide, methyl sulphide, acetate, formyl phosphate, carboxy phosphate, carbamate, carbamoyl phosphate, acetyl thioesters, acetyl phosphate, possibly carbonyl sulphide and eventually pterins. Carbon might have entered early metabolism via reactions hardly different from those in the modern Wood–Ljungdahl pathway, the pyruvate synthase reaction and the incomplete reverse citric acid cycle. The key energy-rich intermediates were perhaps acetyl thioesters, with acetyl phosphate possibly serving as the universal metabolic energy currency prior to the origin of genes. Nitrogen might have entered metabolism as geochemical NH 3 via two routes: the synthesis of carbamoyl phosphate and reductive transaminations of α-keto acids. Together with intermediates of methyl synthesis, these two routes of nitrogen assimilation would directly supply all intermediates of modern purine and pyrimidine biosynthesis. Thermodynamic considerations related to formyl pterin synthesis suggest that the ability to harness a naturally pre-existing proton gradient at the vent–ocean interface via an ATPase is older than the ability to generate a proton gradient with chemistry that is specified by genes.
APA, Harvard, Vancouver, ISO, and other styles
3

Fullerton, Heather, and Craig L. Moyer. "Comparative Single-Cell Genomics of Chloroflexi from the Okinawa Trough Deep-Subsurface Biosphere." Applied and Environmental Microbiology 82, no. 10 (March 11, 2016): 3000–3008. http://dx.doi.org/10.1128/aem.00624-16.

Full text
Abstract:
ABSTRACTChloroflexismall-subunit (SSU) rRNA gene sequences are frequently recovered from subseafloor environments, but the metabolic potential of the phylum is poorly understood. The phylumChloroflexiis represented by isolates with diverse metabolic strategies, including anoxic phototrophy, fermentation, and reductive dehalogenation; therefore, function cannot be attributed to these organisms based solely on phylogeny. Single-cell genomics can provide metabolic insights into uncultured organisms, like the deep-subsurfaceChloroflexi. Nine SSU rRNA gene sequences were identified from single-cell sorts of whole-round core material collected from the Okinawa Trough at Iheya North hydrothermal field as part of Integrated Ocean Drilling Program (IODP) expedition 331 (Deep Hot Biosphere). Previous studies of subsurfaceChloroflexisingle amplified genomes (SAGs) suggested heterotrophic or lithotrophic metabolisms and provided no evidence for growth by reductive dehalogenation. Our nineChloroflexiSAGs (seven of which are from the orderAnaerolineales) indicate that, in addition to genes for the Wood-Ljungdahl pathway, exogenous carbon sources can be actively transported into cells. At least one subunit for pyruvate ferredoxin oxidoreductase was found in four of theChloroflexiSAGs. This protein can provide a link between the Wood-Ljungdahl pathway and other carbon anabolic pathways. Finally, one of the sevenAnaerolinealesSAGs contains a distinct reductive dehalogenase homologous (rdhA) gene.IMPORTANCEThrough the use of single amplified genomes (SAGs), we have extended the metabolic potential of an understudied group of subsurface microbes, theChloroflexi. These microbes are frequently detected in the subsurface biosphere, though their metabolic capabilities have remained elusive. In contrast to previously examinedChloroflexiSAGs, our genomes (several are from the orderAnaerolineales) were recovered from a hydrothermally driven system and therefore provide a unique window into the metabolic potential of this type of habitat. In addition, a reductive dehalogenase gene (rdhA) has been directly linked to marine subsurfaceChloroflexi, suggesting that reductive dehalogenation is not limited to the classDehalococcoidia. This discovery expands the nutrient-cycling and metabolic potential present within the deep subsurface and provides functional gene information relating to this enigmatic group.
APA, Harvard, Vancouver, ISO, and other styles
4

Jin, Sangrak, Jiyun Bae, Yoseb Song, Nicole Pearcy, Jongoh Shin, Seulgi Kang, Nigel P. Minton, Philippe Soucaille, and Byung-Kwan Cho. "Synthetic Biology on Acetogenic Bacteria for Highly Efficient Conversion of C1 Gases to Biochemicals." International Journal of Molecular Sciences 21, no. 20 (October 15, 2020): 7639. http://dx.doi.org/10.3390/ijms21207639.

Full text
Abstract:
Synthesis gas, which is mainly produced from fossil fuels or biomass gasification, consists of C1 gases such as carbon monoxide, carbon dioxide, and methane as well as hydrogen. Acetogenic bacteria (acetogens) have emerged as an alternative solution to recycle C1 gases by converting them into value-added biochemicals using the Wood-Ljungdahl pathway. Despite the advantage of utilizing acetogens as biocatalysts, it is difficult to develop industrial-scale bioprocesses because of their slow growth rates and low productivities. To solve these problems, conventional approaches to metabolic engineering have been applied; however, there are several limitations owing to the lack of required genetic bioparts for regulating their metabolic pathways. Recently, synthetic biology based on genetic parts, modules, and circuit design has been actively exploited to overcome the limitations in acetogen engineering. This review covers synthetic biology applications to design and build industrial platform acetogens.
APA, Harvard, Vancouver, ISO, and other styles
5

Youssef, Noha H., Ibrahim F. Farag, Sydney Rudy, Ace Mulliner, Kara Walker, Ford Caldwell, Malik Miller, Wouter Hoff, and Mostafa Elshahed. "The Wood–Ljungdahl pathway as a key component of metabolic versatility in candidate phylum Bipolaricaulota (Acetothermia, OP1)." Environmental Microbiology Reports 11, no. 4 (April 2, 2019): 538–47. http://dx.doi.org/10.1111/1758-2229.12753.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Cárdenas, Juan Pablo, Verónica Martínez, P. Covarrubias, David S. Holmes, and Raquel Quatrini. "Predicted CO/CO2 Fixation in Ferroplasma spp. via a Novel Chimaeric Pathway." Advanced Materials Research 71-73 (May 2009): 219–22. http://dx.doi.org/10.4028/www.scientific.net/amr.71-73.219.

Full text
Abstract:
Previous physiological studies of the genus Ferroplasma have indicated that these microorganisms are capable of fixing CO2 in the presence of ferrous iron and low concentrations of yeast extract. Analysis of the gene complement of Ferroplasma acidarmanus fer1 and two partial genomes of Ferroplasma type I and II derived from the Iron Mountain acid mine drainage metagenome revealed the absence of several functional marker genes encoding key enzymes of three know alternative CO2 fixation routes present in archaea, i.e. the 3-hydroxypropionate cycle, the Ljungdahl–Wood pathway and the reverse TCA cycle. It is thus intriguing how these chemoautotrophic archaeal species deal with their requirements for carbon and suggests that they might have a distinct CO2 fixation route, as yet unreported. Using comparative genomics and metabolic reconstruction strategies, a putative pathway was detected for C1 fixation consisting of four main steps: 1) conversion of carbon monoxide to carbon dioxide with gain of energy and/or 2) reduction of carbon dioxide to formate, 3) incorporation of formate to tetrahydrofolate and 4) donation of the carbon moiety of tetrahydrofolate to glycine to produce serine. Steps 1 to 3 involve enzymes that correspond to some of the Ljungdahl–Wood pathway proteins, whereas step 4 resembles the well known “serine cycle”, utilized by methylotrophic microorganisms for formaldehyde fixation. Thus, this chimaeric pathway might represent the missing carbon fixation route in Ferroplasmatales. Herein, we discuss the implications of these findings in the context of central carbon metabolism requirements for biomass production in acidic environments.
APA, Harvard, Vancouver, ISO, and other styles
7

Rupakula, Aamani, Thomas Kruse, Sjef Boeren, Christof Holliger, Hauke Smidt, and Julien Maillard. "The restricted metabolism of the obligate organohalide respiring bacterium Dehalobacter restrictus: lessons from tiered functional genomics." Philosophical Transactions of the Royal Society B: Biological Sciences 368, no. 1616 (April 19, 2013): 20120325. http://dx.doi.org/10.1098/rstb.2012.0325.

Full text
Abstract:
Dehalobacter restrictus strain PER-K23 is an obligate organohalide respiring bacterium, which displays extremely narrow metabolic capabilities. It grows only via coupling energy conservation to anaerobic respiration of tetra- and trichloroethene with hydrogen as sole electron donor. Dehalobacter restrictus represents the paradigmatic member of the genus Dehalobacter , which in recent years has turned out to be a major player in the bioremediation of an increasing number of organohalides, both in situ and in laboratory studies. The recent elucidation of the D. restrictus genome revealed a rather elaborate genome with predicted pathways that were not suspected from its restricted metabolism, such as a complete corrinoid biosynthetic pathway, the Wood–Ljungdahl (WL) pathway for CO 2 fixation, abundant transcriptional regulators and several types of hydrogenases. However, one important feature of the genome is the presence of 25 reductive dehalogenase genes, from which so far only one, pceA , has been characterized on genetic and biochemical levels. This study describes a multi-level functional genomics approach on D. restrictus across three different growth phases. A global proteomic analysis allowed consideration of general metabolic pathways relevant to organohalide respiration, whereas the dedicated genomic and transcriptomic analysis focused on the diversity, composition and expression of genes associated with reductive dehalogenases.
APA, Harvard, Vancouver, ISO, and other styles
8

Prat, Laure, Julien Maillard, Régis Grimaud, and Christof Holliger. "Physiological Adaptation of Desulfitobacterium hafniense Strain TCE1 to Tetrachloroethene Respiration." Applied and Environmental Microbiology 77, no. 11 (April 8, 2011): 3853–59. http://dx.doi.org/10.1128/aem.02471-10.

Full text
Abstract:
ABSTRACTDesulfitobacteriumspp. are ubiquitous organisms with a broad metabolic versatility, and some isolates have the ability to use tetrachloroethene (PCE) as terminal electron acceptor. In order to identify proteins involved in this organohalide respiration process, a comparative proteomic analysis was performed. Soluble and membrane-associated proteins obtained from cells ofDesulfitobacterium hafniensestrain TCE1 that were growing on different combinations of the electron donors lactate and hydrogen and the electron acceptors PCE and fumarate were analyzed. Among proteins increasingly expressed in the presence of PCE compared to fumarate as electron acceptor, a total of 57 proteins were identified by mass spectrometry analysis, revealing proteins involved in stress response and associated regulation pathways, such as PspA, GroEL, and CodY, and also proteins potentially participating in carbon and energy metabolism, such as proteins of the Wood-Ljungdahl pathway and electron transfer flavoproteins. These proteomic results suggest thatD. hafniensestrain TCE1 adapts its physiology to face the relative unfavorable growth conditions during an apparent opportunistic organohalide respiration.
APA, Harvard, Vancouver, ISO, and other styles
9

Bomberg, Malin, Tiina Lamminmäki, and Merja Itävaara. "Microbial communities and their predicted metabolic characteristics in deep fracture groundwaters of the crystalline bedrock at Olkiluoto, Finland." Biogeosciences 13, no. 21 (November 3, 2016): 6031–47. http://dx.doi.org/10.5194/bg-13-6031-2016.

Full text
Abstract:
Abstract. The microbial diversity in oligotrophic isolated crystalline Fennoscandian Shield bedrock fracture groundwaters is high, but the core community has not been identified. Here we characterized the bacterial and archaeal communities in 12 water conductive fractures situated at depths between 296 and 798 m by high throughput amplicon sequencing using the Illumina HiSeq platform. Between 1.7 × 104 and 1.2 × 106 bacterial or archaeal sequence reads per sample were obtained. These sequences revealed that up to 95 and 99 % of the bacterial and archaeal sequences obtained from the 12 samples, respectively, belonged to only a few common species, i.e. the core microbiome. However, the remaining rare microbiome contained over 3- and 6-fold more bacterial and archaeal taxa. The metabolic properties of the microbial communities were predicted using PICRUSt. The approximate estimation showed that the metabolic pathways commonly included fermentation, fatty acid oxidation, glycolysis/gluconeogenesis, oxidative phosphorylation, and methanogenesis/anaerobic methane oxidation, but carbon fixation through the Calvin cycle, reductive TCA cycle, and the Wood–Ljungdahl pathway was also predicted. The rare microbiome is an unlimited source of genomic functionality in all ecosystems. It may consist of remnants of microbial communities prevailing in earlier environmental conditions, but could also be induced again if changes in their living conditions occur.
APA, Harvard, Vancouver, ISO, and other styles
10

Schuchmann, Kai, and Volker Müller. "Energetics and Application of Heterotrophy in Acetogenic Bacteria." Applied and Environmental Microbiology 82, no. 14 (May 13, 2016): 4056–69. http://dx.doi.org/10.1128/aem.00882-16.

Full text
Abstract:
ABSTRACTAcetogenic bacteria are a diverse group of strictly anaerobic bacteria that utilize the Wood-Ljungdahl pathway for CO2fixation and energy conservation. These microorganisms play an important part in the global carbon cycle and are a key component of the anaerobic food web. Their most prominent metabolic feature is autotrophic growth with molecular hydrogen and carbon dioxide as the substrates. However, most members also show an outstanding metabolic flexibility for utilizing a vast variety of different substrates. In contrast to autotrophic growth, which is hardly competitive, metabolic flexibility is seen as a key ability of acetogens to compete in ecosystems and might explain the almost-ubiquitous distribution of acetogenic bacteria in anoxic environments. This review covers the latest findings with respect to the heterotrophic metabolism of acetogenic bacteria, including utilization of carbohydrates, lactate, and different alcohols, especially in the model acetogenAcetobacterium woodii. Modularity of metabolism, a key concept of pathway design in synthetic biology, together with electron bifurcation, to overcome energetic barriers, appears to be the basis for the amazing substrate spectrum. At the same time, acetogens depend on only a relatively small number of enzymes to expand the substrate spectrum. We will discuss the energetic advantages of coupling CO2reduction to fermentations that exploit otherwise-inaccessible substrates and the ecological advantages, as well as the biotechnological applications of the heterotrophic metabolism of acetogens.
APA, Harvard, Vancouver, ISO, and other styles
11

Mardanov, Andrey V., Galina B. Slododkina, Alexander I. Slobodkin, Alexey V. Beletsky, Sergey N. Gavrilov, Ilya V. Kublanov, Elizaveta A. Bonch-Osmolovskaya, Konstantin G. Skryabin, and Nikolai V. Ravin. "The Geoglobus acetivorans Genome: Fe(III) Reduction, Acetate Utilization, Autotrophic Growth, and Degradation of Aromatic Compounds in a Hyperthermophilic Archaeon." Applied and Environmental Microbiology 81, no. 3 (November 21, 2014): 1003–12. http://dx.doi.org/10.1128/aem.02705-14.

Full text
Abstract:
ABSTRACTGeoglobus acetivoransis a hyperthermophilic anaerobic euryarchaeon of the orderArchaeoglobalesisolated from deep-sea hydrothermal vents. A unique physiological feature of the members of the genusGeoglobusis their obligate dependence on Fe(III) reduction, which plays an important role in the geochemistry of hydrothermal systems. The features of this organism and its complete 1,860,815-bp genome sequence are described in this report. Genome analysis revealed pathways enabling oxidation of molecular hydrogen, proteinaceous substrates, fatty acids, aromatic compounds,n-alkanes, and organic acids, including acetate, through anaerobic respiration linked to Fe(III) reduction. Consistent with the inability ofG. acetivoransto grow on carbohydrates, the modified Embden-Meyerhof pathway encoded by the genome is incomplete. Autotrophic CO2fixation is enabled by the Wood-Ljungdahl pathway. Reduction of insoluble poorly crystalline Fe(III) oxide depends on the transfer of electrons from the quinone pool to multihemec-type cytochromes exposed on the cell surface. Direct contact of the cells and Fe(III) oxide particles could be facilitated by pilus-like appendages. Genome analysis indicated the presence of metabolic pathways for anaerobic degradation of aromatic compounds andn-alkanes, although an ability ofG. acetivoransto grow on these substrates was not observed in laboratory experiments. Overall, our results suggest thatGeoglobusspecies could play an important role in microbial communities of deep-sea hydrothermal vents as lithoautotrophic producers. An additional role as decomposers would close the biogeochemical cycle of carbon through complete mineralization of various organic compounds via Fe(III) respiration.
APA, Harvard, Vancouver, ISO, and other styles
12

Ragsdale, Stephen W., Li Yi, Güneş Bender, Nirupama Gupta, Yan Kung, Lifen Yan, Troy A. Stich, et al. "Redox, haem and CO in enzymatic catalysis and regulation." Biochemical Society Transactions 40, no. 3 (May 22, 2012): 501–7. http://dx.doi.org/10.1042/bst20120083.

Full text
Abstract:
The present paper describes general principles of redox catalysis and redox regulation in two diverse systems. The first is microbial metabolism of CO by the Wood–Ljungdahl pathway, which involves the conversion of CO or H2/CO2 into acetyl-CoA, which then serves as a source of ATP and cell carbon. The focus is on two enzymes that make and utilize CO, CODH (carbon monoxide dehydrogenase) and ACS (acetyl-CoA synthase). In this pathway, CODH converts CO2 into CO and ACS generates acetyl-CoA in a reaction involving Ni·CO, methyl-Ni and acetyl-Ni as catalytic intermediates. A 70 Å (1 Å=0.1 nm) channel guides CO, generated at the active site of CODH, to a CO ‘cage’ near the ACS active site to sequester this reactive species and assure its rapid availability to participate in a kinetically coupled reaction with an unstable Ni(I) state that was recently trapped by photolytic, rapid kinetic and spectroscopic studies. The present paper also describes studies of two haem-regulated systems that involve a principle of metabolic regulation interlinking redox, haem and CO. Recent studies with HO2 (haem oxygenase-2), a K+ ion channel (the BK channel) and a nuclear receptor (Rev-Erb) demonstrate that this mode of regulation involves a thiol–disulfide redox switch that regulates haem binding and that gas signalling molecules (CO and NO) modulate the effect of haem.
APA, Harvard, Vancouver, ISO, and other styles
13

Bomberg, M., T. Lamminmäki, and M. Itävaara. "Estimation of microbial metabolism and co-occurrence patterns in fracture groundwaters of deep crystalline bedrock at Olkiluoto, Finland." Biogeosciences Discussions 12, no. 16 (August 26, 2015): 13819–57. http://dx.doi.org/10.5194/bgd-12-13819-2015.

Full text
Abstract:
Abstract. The microbial diversity in oligotrophic isolated crystalline Fennoscandian Shield bedrock fracture groundwaters is great but the core community has not been identified. Here we characterized the bacterial and archaeal communities in 12 water conductive fractures situated at depths between 296 and 798 m by high throughput amplicon sequencing using the Illumina HiSeq platform. The great sequencing depth revealed that up to 95 and 99 % of the bacterial and archaeal communities, respectively, were composed of only a few common species, i.e. the core microbiome. However, the remaining rare microbiome contained over 3 and 6 fold more bacterial and archaeal taxa. Several clusters of co-occurring rare taxa were identified, which correlated significantly with physicochemical parameters, such as salinity, concentration of inorganic or organic carbon, sulphur, pH and depth. The metabolic properties of the microbial communities were predicted using PICRUSt. The rough prediction showed that the metabolic pathways included commonly fermentation, fatty acid oxidation, glycolysis/gluconeogenesis, oxidative phosphorylation and methanogenesis/anaerobic methane oxidation, but carbon fixation through the Calvin cycle, reductive TCA cycle and the Wood-Ljungdahl pathway was also predicted. The rare microbiome is an unlimited source of genomic functionality in all ecosystems. It may consist of remnants of microbial communities prevailing in earlier conditions on Earth, but could also be induced again if changes in their living conditions occur. In this study only the rare taxa correlated with any physicochemical parameters. Thus these microorganisms can respond to environmental change caused by physical or biological factors that may lead to alterations in the diversity and function of the microbial communities in crystalline bedrock environments.
APA, Harvard, Vancouver, ISO, and other styles
14

Ciliberti, Cosetta, Antonino Biundo, Roberto Albergo, Gennaro Agrimi, Giacobbe Braccio, Isabella de Bari, and Isabella Pisano. "Syngas Derived from Lignocellulosic Biomass Gasification as an Alternative Resource for Innovative Bioprocesses." Processes 8, no. 12 (November 28, 2020): 1567. http://dx.doi.org/10.3390/pr8121567.

Full text
Abstract:
A hybrid system based on lignocellulosic biomass gasification and syngas fermentation represents a second-generation biorefinery approach that is currently in the development phase. Lignocellulosic biomass can be gasified to produce syngas, which is a gas mixture consisting mainly of H2, CO, and CO2. The major challenge of biomass gasification is the syngas’s final quality. Consequently, the development of effective syngas clean-up technologies has gained increased interest in recent years. Furthermore, the bioconversion of syngas components has been intensively studied using acetogenic bacteria and their Wood–Ljungdahl pathway to produce, among others, acetate, ethanol, butyrate, butanol, caproate, hexanol, 2,3-butanediol, and lactate. Nowadays, syngas fermentation appears to be a promising alternative for producing commodity chemicals in comparison to fossil-based processes. Research studies on syngas fermentation have been focused on process design and optimization, investigating the medium composition, operating parameters, and bioreactor design. Moreover, metabolic engineering efforts have been made to develop genetically modified strains with improved production. In 2018, for the first time, a syngas fermentation pilot plant from biomass gasification was built by LanzaTech Inc. in cooperation with Aemetis, Inc. Future research will focus on coupling syngas fermentation with additional bioprocesses and/or on identifying new non-acetogenic microorganisms to produce high-value chemicals beyond acetate and ethanol.
APA, Harvard, Vancouver, ISO, and other styles
15

Gies, Esther A., Kishori M. Konwar, J. Thomas Beatty, and Steven J. Hallam. "Illuminating Microbial Dark Matter in Meromictic Sakinaw Lake." Applied and Environmental Microbiology 80, no. 21 (August 29, 2014): 6807–18. http://dx.doi.org/10.1128/aem.01774-14.

Full text
Abstract:
ABSTRACTDespite recent advances in metagenomic and single-cell genomic sequencing to investigate uncultivated microbial diversity and metabolic potential, fundamental questions related to population structure, interactions, and biogeochemical roles of candidate divisions remain. Numerous molecular surveys suggest that stratified ecosystems manifesting anoxic, sulfidic, and/or methane-rich conditions are enriched in these enigmatic microbes. Here we describe diversity, abundance, and cooccurrence patterns of uncultivated microbial communities inhabiting the permanently stratified waters of meromictic Sakinaw Lake, British Columbia, Canada, using 454 sequencing of the small-subunit rRNA gene with three-domain resolution. Operational taxonomic units (OTUs) were affiliated with 64 phyla, including more than 25 candidate divisions. Pronounced trends in community structure were observed for all three domains with eukaryotic sequences vanishing almost completely below the mixolimnion, followed by a rapid and sustained increase in methanogen-affiliated (∼10%) and unassigned (∼60%) archaeal sequences as well as bacterial OTUs affiliated withChloroflexi(∼22%) and candidate divisions (∼28%). Network analysis revealed highly correlated, depth-dependent cooccurrence patterns betweenChloroflexi, candidate divisions WWE1, OP9/JS1, OP8, and OD1, methanogens, and unassigned archaeal OTUs indicating niche partitioning and putative syntrophic growth modes. Indeed, pathway reconstruction using recently published Sakinaw Lake single-cell genomes affiliated with OP9/JS1 and OP8 revealed complete coverage of the Wood-Ljungdahl pathway with potential to drive syntrophic acetate oxidation to hydrogen and carbon dioxide under methanogenic conditions. Taken together, these observations point to previously unrecognized syntrophic networks in meromictic lake ecosystems with the potential to inform design and operation of anaerobic methanogenic bioreactors.
APA, Harvard, Vancouver, ISO, and other styles
16

Williams, Tom A., Gergely J. Szöllősi, Anja Spang, Peter G. Foster, Sarah E. Heaps, Bastien Boussau, Thijs J. G. Ettema, and T. Martin Embley. "Integrative modeling of gene and genome evolution roots the archaeal tree of life." Proceedings of the National Academy of Sciences 114, no. 23 (May 22, 2017): E4602—E4611. http://dx.doi.org/10.1073/pnas.1618463114.

Full text
Abstract:
A root for the archaeal tree is essential for reconstructing the metabolism and ecology of early cells and for testing hypotheses that propose that the eukaryotic nuclear lineage originated from within the Archaea; however, published studies based on outgroup rooting disagree regarding the position of the archaeal root. Here we constructed a consensus unrooted archaeal topology using protein concatenation and a multigene supertree method based on 3,242 single gene trees, and then rooted this tree using a recently developed model of genome evolution. This model uses evidence from gene duplications, horizontal transfers, and gene losses contained in 31,236 archaeal gene families to identify the most likely root for the tree. Our analyses support the monophyly of DPANN (Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota, Nanohaloarchaea), a recently discovered cosmopolitan and genetically diverse lineage, and, in contrast to previous work, place the tree root between DPANN and all other Archaea. The sister group to DPANN comprises the Euryarchaeota and the TACK Archaea, including Lokiarchaeum, which our analyses suggest are monophyletic sister lineages. Metabolic reconstructions on the rooted tree suggest that early Archaea were anaerobes that may have had the ability to reduce CO2 to acetate via the Wood–Ljungdahl pathway. In contrast to proposals suggesting that genome reduction has been the predominant mode of archaeal evolution, our analyses infer a relatively small-genomed archaeal ancestor that subsequently increased in complexity via gene duplication and horizontal gene transfer.
APA, Harvard, Vancouver, ISO, and other styles
17

Mock, Johanna, Yanning Zheng, Alexander P. Mueller, San Ly, Loan Tran, Simon Segovia, Shilpa Nagaraju, Michael Köpke, Peter Dürre, and Rudolf K. Thauer. "Energy Conservation Associated with Ethanol Formation from H2and CO2in Clostridium autoethanogenum Involving Electron Bifurcation." Journal of Bacteriology 197, no. 18 (July 6, 2015): 2965–80. http://dx.doi.org/10.1128/jb.00399-15.

Full text
Abstract:
ABSTRACTMost acetogens can reduce CO2with H2to acetic acid via the Wood-Ljungdahl pathway, in which the ATP required for formate activation is regenerated in the acetate kinase reaction. However, a few acetogens, such asClostridium autoethanogenum,Clostridium ljungdahlii, andClostridium ragsdalei, also form large amounts of ethanol from CO2and H2. How these anaerobes with a growth pH optimum near 5 conserve energy has remained elusive. We investigated this question by determining the specific activities and cofactor specificities of all relevant oxidoreductases in cell extracts of H2/CO2-grownC. autoethanogenum. The activity studies were backed up by transcriptional and mutational analyses. Most notably, despite the presence of six hydrogenase systems of various types encoded in the genome, the cells appear to contain only one active hydrogenase. The active [FeFe]-hydrogenase is electron bifurcating, with ferredoxin and NADP as the two electron acceptors. Consistently, most of the other active oxidoreductases rely on either reduced ferredoxin and/or NADPH as the electron donor. An exception is ethanol dehydrogenase, which was found to be NAD specific. Methylenetetrahydrofolate reductase activity could only be demonstrated with artificial electron donors. Key to the understanding of this energy metabolism is the presence of membrane-associated reduced ferredoxin:NAD+oxidoreductase (Rnf), of electron-bifurcating and ferredoxin-dependent transhydrogenase (Nfn), and of acetaldehyde:ferredoxin oxidoreductase, which is present with very high specific activities in H2/CO2-grown cells. Based on these findings and on thermodynamic considerations, we propose metabolic schemes that allow, depending on the H2partial pressure, the chemiosmotic synthesis of 0.14 to 1.5 mol ATP per mol ethanol synthesized from CO2and H2.IMPORTANCEEthanol formation from syngas (H2, CO, and CO2) and from H2and CO2that is catalyzed by bacteria is presently a much-discussed process for sustainable production of biofuels. Although the process is already in use, its biochemistry is only incompletely understood. The most pertinent question is how the bacteria conserve energy for growth during ethanol formation from H2and CO2, considering that acetyl coenzyme A (acetyl-CoA), is an intermediate. Can reduction of the activated acetic acid to ethanol with H2be coupled with the phosphorylation of ADP? Evidence is presented that this is indeed possible, via both substrate-level phosphorylation and electron transport phosphorylation. In the case of substrate-level phosphorylation, acetyl-CoA reduction to ethanol proceeds via free acetic acid involving acetaldehyde:ferredoxin oxidoreductase (carboxylate reductase).
APA, Harvard, Vancouver, ISO, and other styles
18

Yao, Ye, Bo Fu, Dongfei Han, Yan Zhang, and He Liu. "Formate-Dependent Acetogenic Utilization of Glucose by the Fecal Acetogen Clostridium bovifaecis." Applied and Environmental Microbiology 86, no. 23 (September 18, 2020). http://dx.doi.org/10.1128/aem.01870-20.

Full text
Abstract:
ABSTRACT Acetogenic bacteria are a diverse group of anaerobes that use the reductive acetyl coenzyme A (acetyl-CoA) (Wood-Ljungdahl) pathway for CO2 fixation and energy conservation. The conversion of 2 mol CO2 into acetyl-CoA by using the Wood-Ljungdahl pathway as the terminal electron accepting process is the most prominent metabolic feature for these microorganisms. However, here, we describe that the fecal acetogen Clostridium bovifaecis strain BXX displayed poor metabolic capabilities of autotrophic acetogenesis, and acetogenic utilization of glucose occurred only with the supplementation of formate. Genome analysis of Clostridium bovifaecis revealed that it contains almost the complete genes of the Wood-Ljungdahl pathway but lacks the gene encoding formate dehydrogenase, which catalyzes the reduction of CO2 to formate as the first step of the methyl branch of the Wood-Ljungdahl pathway. The lack of a gene encoding formate dehydrogenase was verified by PCR, reverse transcription-PCR analysis, enzyme activity assay, and its formate-dependent acetogenic utilization of glucose on DNA, RNA, protein, and phenotype level, respectively. The lack of a formate dehydrogenase gene may be associated with the adaption to a formate-rich intestinal environment, considering the isolating source of strain BXX. The formate-dependent acetogenic growth of Clostridium bovifaecis provides insight into a unique metabolic feature of fecal acetogens. IMPORTANCE The acetyl-CoA pathway is an ancient pathway of CO2 fixation, which converts 2 mol of CO2 into acetyl-CoA. Autotrophic growth with H2 and CO2 via the acetyl-CoA pathway as the terminal electron accepting process is the most unique feature of acetogenic bacteria. However, the fecal acetogen Clostridium bovifaecis strain BXX displayed poor metabolic capabilities of autotrophic acetogenesis, and acetogenic utilization of glucose occurred only with the supplementation of formate. The formate-dependent acetogenic growth of Clostridium bovifaecis was associated with its lack of a gene encoding formate dehydrogenase, which may result from adaption to a formate-rich intestinal environment. This study gave insight into a unique metabolic feature of fecal acetogens. Because of the requirement of formate for the acetogenic growth of certain acetogens, the ecological impact of acetogens could be more complex and important in the formate-rich environment due to their trophic interactions with other microbes.
APA, Harvard, Vancouver, ISO, and other styles
19

Ross, Daniel E., Christopher W. Marshall, Djuna Gulliver, Harold D. May, and R. Sean Norman. "Defining Genomic and Predicted Metabolic Features of the Acetobacterium Genus." mSystems 5, no. 5 (September 15, 2020). http://dx.doi.org/10.1128/msystems.00277-20.

Full text
Abstract:
Acetogens are anaerobic bacteria capable of fixing CO2 or CO to produce acetyl-CoA and ultimately acetate using the Wood-Ljungdahl pathway (WLP). This autotrophic metabolism plays a major role in the global carbon cycle and, if harnessed, can help reduce greenhouse gas emissions. Overall, the data presented here provide a framework for examining the ecology and evolution of the Acetobacterium genus and highlight the potential of these species as a source for production of fuels and chemicals from CO2 feedstocks.
APA, Harvard, Vancouver, ISO, and other styles
20

Loh, Hui Qi, Vincent Hervé, and Andreas Brune. "Metabolic Potential for Reductive Acetogenesis and a Novel Energy-Converting [NiFe] Hydrogenase in Bathyarchaeia From Termite Guts – A Genome-Centric Analysis." Frontiers in Microbiology 11 (February 3, 2021). http://dx.doi.org/10.3389/fmicb.2020.635786.

Full text
Abstract:
Symbiotic digestion of lignocellulose in the hindgut of higher termites is mediated by a diverse assemblage of bacteria and archaea. During a large-scale metagenomic study, we reconstructed 15 metagenome-assembled genomes of Bathyarchaeia that represent two distinct lineages in subgroup 6 (formerly MCG-6) unique to termite guts. One lineage (TB2; Candidatus Termitimicrobium) encodes all enzymes required for reductive acetogenesis from CO2 via an archaeal variant of the Wood–Ljungdahl pathway, involving tetrahydromethanopterin as C1 carrier and an (ADP-forming) acetyl-CoA synthase. This includes a novel 11-subunit hydrogenase, which possesses the genomic architecture of the respiratory Fpo-complex of other archaea but whose catalytic subunit is phylogenetically related to and shares the conserved [NiFe] cofactor-binding motif with [NiFe] hydrogenases of subgroup 4 g. We propose that this novel Fpo-like hydrogenase provides part of the reduced ferredoxin required for CO2 reduction and is driven by the electrochemical membrane potential generated from the ATP conserved by substrate-level phosphorylation; the other part may require the oxidation of organic electron donors, which would make members of TB2 mixotrophic acetogens. Members of the other lineage (TB1; Candidatus Termiticorpusculum) are definitely organotrophic because they consistently lack hydrogenases and/or methylene-tetrahydromethanopterin reductase, a key enzyme of the archaeal Wood–Ljungdahl pathway. Both lineages have the genomic capacity to reduce ferredoxin by oxidizing amino acids and might conduct methylotrophic acetogenesis using unidentified methylated compound(s). Our results indicate that Bathyarchaeia of subgroup 6 contribute to acetate formation in the guts of higher termites and substantiate the genomic evidence for reductive acetogenesis from organic substrates, possibly including methylated compounds, in other uncultured representatives of the phylum.
APA, Harvard, Vancouver, ISO, and other styles
21

Rosenbaum, Florian P., and Volker Müller. "Energy conservation under extreme energy limitation: the role of cytochromes and quinones in acetogenic bacteria." Extremophiles, September 4, 2021. http://dx.doi.org/10.1007/s00792-021-01241-0.

Full text
Abstract:
AbstractAcetogenic bacteria are a polyphyletic group of organisms that fix carbon dioxide under anaerobic, non-phototrophic conditions by reduction of two mol of CO2 to acetyl-CoA via the Wood–Ljungdahl pathway. This pathway also allows for lithotrophic growth with H2 as electron donor and this pathway is considered to be one of the oldest, if not the oldest metabolic pathway on Earth for CO2 reduction, since it is coupled to the synthesis of ATP. How ATP is synthesized has been an enigma for decades, but in the last decade two ferredoxin-dependent respiratory chains were discovered. Those respiratory chains comprise of a cytochrome-free, ferredoxin-dependent respiratory enzyme complex, which is either the Rnf or Ech complex. However, it was discovered already 50 years ago that some acetogens contain cytochromes and quinones, but their role had only a shadowy existence. Here, we review the literature on the characterization of cytochromes and quinones in acetogens and present a hypothesis that they may function in electron transport chains in addition to Rnf and Ech.
APA, Harvard, Vancouver, ISO, and other styles
22

Kato, Junya, Kaisei Takemura, Setsu Kato, Tatsuya Fujii, Keisuke Wada, Yuki Iwasaki, Yoshiteru Aoi, Akinori Matsushika, Katsuji Murakami, and Yutaka Nakashimada. "Metabolic engineering of Moorella thermoacetica for thermophilic bioconversion of gaseous substrates to a volatile chemical." AMB Express 11, no. 1 (April 23, 2021). http://dx.doi.org/10.1186/s13568-021-01220-w.

Full text
Abstract:
AbstractGas fermentation is one of the promising bioprocesses to convert CO2 or syngas to important chemicals. Thermophilic gas fermentation of volatile chemicals has the potential for the development of consolidated bioprocesses that can simultaneously separate products during fermentation. This study reports the production of acetone from CO2 and H2, CO, or syngas by introducing the acetone production pathway using acetyl–coenzyme A (Ac-CoA) and acetate produced via the Wood–Ljungdahl pathway in Moorella thermoacetica. Reducing the carbon flux from Ac-CoA to acetate through genetic engineering successfully enhanced acetone productivity, which varied on the basis of the gas composition. The highest acetone productivity was obtained with CO–H2, while autotrophic growth collapsed with CO2–H2. By adding H2 to CO, the acetone productivity from the same amount of carbon source increased compared to CO gas only, and the maximum specific acetone production rate also increased from 0.04 to 0.09 g-acetone/g-dry cell/h. Our development of the engineered thermophilic acetogen M. thermoacetica, which grows at a temperature higher than the boiling point of acetone (58 °C), would pave the way for developing a consolidated process with simplified and cost-effective recovery via condensation following gas fermentation.
APA, Harvard, Vancouver, ISO, and other styles
23

De Anda, Valerie, Lin-Xing Chen, Nina Dombrowski, Zheng-Shuang Hua, Hong-Chen Jiang, Jillian F. Banfield, Wen-Jun Li, and Brett J. Baker. "Brockarchaeota, a novel archaeal phylum with unique and versatile carbon cycling pathways." Nature Communications 12, no. 1 (April 23, 2021). http://dx.doi.org/10.1038/s41467-021-22736-6.

Full text
Abstract:
AbstractGeothermal environments, such as hot springs and hydrothermal vents, are hotspots for carbon cycling and contain many poorly described microbial taxa. Here, we reconstructed 15 archaeal metagenome-assembled genomes (MAGs) from terrestrial hot spring sediments in China and deep-sea hydrothermal vent sediments in Guaymas Basin, Gulf of California. Phylogenetic analyses of these MAGs indicate that they form a distinct group within the TACK superphylum, and thus we propose their classification as a new phylum, ‘Brockarchaeota’, named after Thomas Brock for his seminal research in hot springs. Based on the MAG sequence information, we infer that some Brockarchaeota are uniquely capable of mediating non-methanogenic anaerobic methylotrophy, via the tetrahydrofolate methyl branch of the Wood-Ljungdahl pathway and reductive glycine pathway. The hydrothermal vent genotypes appear to be obligate fermenters of plant-derived polysaccharides that rely mostly on substrate-level phosphorylation, as they seem to lack most respiratory complexes. In contrast, hot spring lineages have alternate pathways to increase their ATP yield, including anaerobic methylotrophy of methanol and trimethylamine, and potentially use geothermally derived mercury, arsenic, or hydrogen. Their broad distribution and their apparent anaerobic metabolic versatility indicate that Brockarchaeota may occupy previously overlooked roles in anaerobic carbon cycling.
APA, Harvard, Vancouver, ISO, and other styles
24

Lawson, Christopher E., Guylaine H. L. Nuijten, Rob M. de Graaf, Tyler B. Jacobson, Martin Pabst, David M. Stevenson, Mike S. M. Jetten, et al. "Autotrophic and mixotrophic metabolism of an anammox bacterium revealed by in vivo 13C and 2H metabolic network mapping." ISME Journal, October 20, 2020. http://dx.doi.org/10.1038/s41396-020-00805-w.

Full text
Abstract:
Abstract Anaerobic ammonium-oxidizing (anammox) bacteria mediate a key step in the biogeochemical nitrogen cycle and have been applied worldwide for the energy-efficient removal of nitrogen from wastewater. However, outside their core energy metabolism, little is known about the metabolic networks driving anammox bacterial anabolism and use of different carbon and energy substrates beyond genome-based predictions. Here, we experimentally resolved the central carbon metabolism of the anammox bacterium Candidatus ‘Kuenenia stuttgartiensis’ using time-series 13C and 2H isotope tracing, metabolomics, and isotopically nonstationary metabolic flux analysis. Our findings confirm predicted metabolic pathways used for CO2 fixation, central metabolism, and amino acid biosynthesis in K. stuttgartiensis, and reveal several instances where genomic predictions are not supported by in vivo metabolic fluxes. This includes the use of the oxidative branch of an incomplete tricarboxylic acid cycle for alpha-ketoglutarate biosynthesis, despite the genome not having an annotated citrate synthase. We also demonstrate that K. stuttgartiensis is able to directly assimilate extracellular formate via the Wood–Ljungdahl pathway instead of oxidizing it completely to CO2 followed by reassimilation. In contrast, our data suggest that K. stuttgartiensis is not capable of using acetate as a carbon or energy source in situ and that acetate oxidation occurred via the metabolic activity of a low-abundance microorganism in the bioreactor’s side population. Together, these findings provide a foundation for understanding the carbon metabolism of anammox bacteria at a systems-level and will inform future studies aimed at elucidating factors governing their function and niche differentiation in natural and engineered ecosystems.
APA, Harvard, Vancouver, ISO, and other styles
25

Jiang, Lijing, Xuewen Liu, Chunming Dong, Zhaobin Huang, Marie-Anne Cambon-Bonavita, Karine Alain, Li Gu, Shasha Wang, and Zongze Shao. "“Candidatus Desulfobulbus rimicarensis,” an Uncultivated Deltaproteobacterial Epibiont from the Deep-Sea Hydrothermal Vent Shrimp Rimicaris exoculata." Applied and Environmental Microbiology 86, no. 8 (February 14, 2020). http://dx.doi.org/10.1128/aem.02549-19.

Full text
Abstract:
ABSTRACT The deep-sea hydrothermal vent shrimp Rimicaris exoculata largely depends on a dense epibiotic chemoautotrophic bacterial community within its enlarged cephalothoracic chamber. However, our understanding of shrimp-bacterium interactions is limited. In this report, we focused on the deltaproteobacterial epibiont of R. exoculata from the relatively unexplored South Mid-Atlantic Ridge. A nearly complete genome of a Deltaproteobacteria epibiont was binned from the assembled metagenome. Whole-genome phylogenetic analysis reveals that it is affiliated with the genus Desulfobulbus, representing a potential novel species for which the name “Candidatus Desulfobulbus rimicarensis” is proposed. Genomic and transcriptomic analyses reveal that this bacterium utilizes the Wood-Ljungdahl pathway for carbon assimilation and harvests energy via sulfur disproportionation, which is significantly different from other shrimp epibionts. Additionally, this epibiont has putative nitrogen fixation activity, but it is extremely active in directly taking up ammonia and urea from the host or vent environments. Moreover, the epibiont could be distinguished from its free-living relatives by various features, such as the lack of chemotaxis and motility traits, a dramatic reduction in biosynthesis genes for capsular and extracellular polysaccharides, enrichment of genes required for carbon fixation and sulfur metabolism, and resistance to environmental toxins. Our study highlights the unique role and symbiotic adaptation of Deltaproteobacteria in deep-sea hydrothermal vent shrimps. IMPORTANCE The shrimp Rimicaris exoculata represents the dominant faunal biomass at many deep-sea hydrothermal vent ecosystems along the Mid-Atlantic Ridge. This organism harbors dense bacterial epibiont communities in its enlarged cephalothoracic chamber that play an important nutritional role. Deltaproteobacteria are ubiquitous in epibiotic communities of R. exoculata, and their functional roles as epibionts are based solely on the presence of functional genes. Here, we describe “Candidatus Desulfobulbus rimicarensis,” an uncultivated deltaproteobacterial epibiont. Compared to campylobacterial and gammaproteobacterial epibionts of R. exoculata, this bacterium possessed unique metabolic pathways, such as the Wood-Ljungdahl pathway, as well as sulfur disproportionation and nitrogen fixation pathways. Furthermore, this epibiont can be distinguished from closely related free-living Desulfobulbus strains by its reduced genetic content and potential loss of functions, suggesting unique adaptations to the shrimp host. This study is a genomic and transcriptomic analysis of a deltaproteobacterial epibiont and largely expands the understanding of its metabolism and adaptation to the R. exoculata host.
APA, Harvard, Vancouver, ISO, and other styles
26

Bourgade, Barbara, Nigel P. Minton, and M. Ahsanul Islam. "Genetic and metabolic engineering challenges of C1-gas fermenting acetogenic chassis organisms." FEMS Microbiology Reviews 45, no. 2 (February 17, 2021). http://dx.doi.org/10.1093/femsre/fuab008.

Full text
Abstract:
ABSTRACT Unabated mining and utilisation of petroleum and petroleum resources and their conversion to essential fuels and chemicals have drastic environmental consequences, contributing to global warming and climate change. In addition, fossil fuels are finite resources, with a fast-approaching shortage. Accordingly, research efforts are increasingly focusing on developing sustainable alternatives for chemicals and fuels production. In this context, bioprocesses, relying on microorganisms, have gained particular interest. For example, acetogens use the Wood-Ljungdahl pathway to grow on single carbon C1-gases (CO2 and CO) as their sole carbon source and produce valuable products such as acetate or ethanol. These autotrophs can, therefore, be exploited for large-scale fermentation processes to produce industrially relevant chemicals from abundant greenhouse gases. In addition, genetic tools have recently been developed to improve these chassis organisms through synthetic biology approaches. This review will focus on the challenges of genetically and metabolically modifying acetogens. It will first discuss the physical and biochemical obstacles complicating successful DNA transfer in these organisms. Current genetic tools developed for several acetogens, crucial for strain engineering to consolidate and expand their catalogue of products, will then be described. Recent tool applications for metabolic engineering purposes to allow redirection of metabolic fluxes or production of non-native compounds will lastly be covered.
APA, Harvard, Vancouver, ISO, and other styles
27

Hagen, Live H., Jeremy A. Frank, Mirzaman Zamanzadeh, Vincent G. H. Eijsink, Phillip B. Pope, Svein J. Horn, and Magnus Ø. Arntzen. "Quantitative Metaproteomics Highlight the Metabolic Contributions of Uncultured Phylotypes in a Thermophilic Anaerobic Digester." Applied and Environmental Microbiology 83, no. 2 (November 4, 2016). http://dx.doi.org/10.1128/aem.01955-16.

Full text
Abstract:
ABSTRACT In this study, we used multiple meta-omic approaches to characterize the microbial community and the active metabolic pathways of a stable industrial biogas reactor with food waste as the dominant feedstock, operating at thermophilic temperatures (60°C) and elevated levels of free ammonia (367 mg/liter NH3-N). The microbial community was strongly dominated (76% of all 16S rRNA amplicon sequences) by populations closely related to the proteolytic bacterium Coprothermobacter proteolyticus. Multiple Coprothermobacter-affiliated strains were detected, introducing an additional level of complexity seldom explored in biogas studies. Genome reconstructions provided metabolic insight into the microbes that performed biomass deconstruction and fermentation, including the deeply branching phyla Dictyoglomi and Planctomycetes and the candidate phylum “Atribacteria.” These biomass degraders were complemented by a synergistic network of microorganisms that convert key fermentation intermediates (fatty acids) via syntrophic interactions with hydrogenotrophic methanogens to ultimately produce methane. Interpretation of the proteomics data also suggested activity of a Methanosaeta phylotype acclimatized to high ammonia levels. In particular, we report multiple novel phylotypes proposed as syntrophic acetate oxidizers, which also exert expression of enzymes needed for both the Wood-Ljungdahl pathway and β-oxidation of fatty acids to acetyl coenzyme A. Such an arrangement differs from known syntrophic oxidizing bacteria and presents an interesting hypothesis for future studies. Collectively, these findings provide increased insight into active metabolic roles of uncultured phylotypes and presents new synergistic relationships, both of which may contribute to the stability of the biogas reactor. IMPORTANCE Biogas production through anaerobic digestion of organic waste provides an attractive source of renewable energy and a sustainable waste management strategy. A comprehensive understanding of the microbial community that drives anaerobic digesters is essential to ensure stable and efficient energy production. Here, we characterize the intricate microbial networks and metabolic pathways in a thermophilic biogas reactor. We discuss the impact of frequently encountered microbial populations as well as the metabolism of newly discovered novel phylotypes that seem to play distinct roles within key microbial stages of anaerobic digestion in this stable high-temperature system. In particular, we draft a metabolic scenario whereby multiple uncultured syntrophic acetate-oxidizing bacteria are capable of syntrophically oxidizing acetate as well as longer-chain fatty acids (via the β-oxidation and Wood-Ljundahl pathways) to hydrogen and carbon dioxide, which methanogens subsequently convert to methane.
APA, Harvard, Vancouver, ISO, and other styles
28

Vuillemin, Aurèle, Zak Kerrigan, Steven D'Hondt, and William D. Orsi. "Exploring the abundance, metabolic potential and gene expression of subseafloor Chloroflexi in million-year-old oxic and anoxic abyssal clay." FEMS Microbiology Ecology 96, no. 12 (November 2020). http://dx.doi.org/10.1093/femsec/fiaa223.

Full text
Abstract:
ABSTRACT Chloroflexi are widespread in subsurface environments, and recent studies indicate that they represent a major fraction of the communities in subseafloor sediment. Here, we compare the abundance, diversity, metabolic potential and gene expression of Chloroflexi from three abyssal sediment cores from the western North Atlantic Gyre (water depth >5400 m) covering up to 15 million years of sediment deposition, where Chloroflexi were found to represent major components of the community at all sites. Chloroflexi communities die off in oxic red clay over 10–15 million years, and gene expression was below detection. In contrast, Chloroflexi abundance and gene expression at the anoxic abyssal clay site increase below the seafloor and peak in 2–3 million-year-old sediment, indicating a comparably higher activity. Metatranscriptomes from the anoxic site reveal increased expression of Chloroflexi genes involved in cell wall biogenesis, protein turnover, inorganic ion transport, defense mechanisms and prophages. Phylogenetic analysis shows that these Chloroflexi are closely related to homoacetogenic subseafloor clades and actively transcribe genes involved in sugar fermentations, gluconeogenesis and Wood–Ljungdahl pathway in the subseafloor. Concomitant expression of cell division genes indicates that these putative homoacetogenic Chloroflexi are actively growing in these million-year-old anoxic abyssal sediments.
APA, Harvard, Vancouver, ISO, and other styles
29

Dyksma, Stefan, Lukas Jansen, and Claudia Gallert. "Syntrophic acetate oxidation replaces acetoclastic methanogenesis during thermophilic digestion of biowaste." Microbiome 8, no. 1 (July 3, 2020). http://dx.doi.org/10.1186/s40168-020-00862-5.

Full text
Abstract:
Abstract Background Anaerobic digestion (AD) is a globally important technology for effective waste and wastewater management. In AD, microorganisms interact in a complex food web for the production of biogas. Here, acetoclastic methanogens and syntrophic acetate-oxidizing bacteria (SAOB) compete for acetate, a major intermediate in the mineralization of organic matter. Although evidence is emerging that syntrophic acetate oxidation is an important pathway for methane production, knowledge about the SAOB is still very limited. Results A metabolic reconstruction of metagenome-assembled genomes (MAGs) from a thermophilic solid state biowaste digester covered the basic functions of the biogas microbial community. Firmicutes was the most abundant phylum in the metagenome (53%) harboring species that take place in various functions ranging from the hydrolysis of polymers to syntrophic acetate oxidation. The Wood-Ljungdahl pathway for syntrophic acetate oxidation and corresponding genes for energy conservation were identified in a Dethiobacteraceae MAG that is phylogenetically related to known SAOB. 16S rRNA gene amplicon sequencing and enrichment cultivation consistently identified the uncultured Dethiobacteraceae together with Syntrophaceticus, Tepidanaerobacter, and unclassified Clostridia as members of a potential acetate-oxidizing core community in nine full-scare digesters, whereas acetoclastic methanogens were barely detected. Conclusions Results presented here provide new insights into a remarkable anaerobic digestion ecosystem where acetate catabolism is mainly realized by Bacteria. Metagenomics and enrichment cultivation revealed a core community of diverse and novel uncultured acetate-oxidizing bacteria and point to a particular niche for them in dry fermentation of biowaste. Their genomic repertoire suggests metabolic plasticity besides the potential for syntrophic acetate oxidation.
APA, Harvard, Vancouver, ISO, and other styles
30

Katsyv, Alexander, and Volker Müller. "Overcoming Energetic Barriers in Acetogenic C1 Conversion." Frontiers in Bioengineering and Biotechnology 8 (December 23, 2020). http://dx.doi.org/10.3389/fbioe.2020.621166.

Full text
Abstract:
Currently one of the biggest challenges for society is to combat global warming. A solution to this global threat is the implementation of a CO2-based bioeconomy and a H2-based bioenergy economy. Anaerobic lithotrophic bacteria such as the acetogenic bacteria are key players in the global carbon and H2 cycle and thus prime candidates as driving forces in a H2- and CO2-bioeconomy. Naturally, they convert two molecules of CO2via the Wood-Ljungdahl pathway (WLP) to one molecule of acetyl-CoA which can be converted to different C2-products (acetate or ethanol) or elongated to C4 (butyrate) or C5-products (caproate). Since there is no net ATP generation from acetate formation, an electron-transport phosphorylation (ETP) module is hooked up to the WLP. ETP provides the cell with additional ATP, but the ATP gain is very low, only a fraction of an ATP per mol of acetate. Since acetogens live at the thermodynamic edge of life, metabolic engineering to obtain high-value products is currently limited by the low energy status of the cells that allows for the production of only a few compounds with rather low specificity. To set the stage for acetogens as production platforms for a wide range of bioproducts from CO2, the energetic barriers have to be overcome. This review summarizes the pathway, the energetics of the pathway and describes ways to overcome energetic barriers in acetogenic C1 conversion.
APA, Harvard, Vancouver, ISO, and other styles
31

Huang, Jiao-Mei, Brett J. Baker, Jiang-Tao Li, and Yong Wang. "New Microbial Lineages Capable of Carbon Fixation and Nutrient Cycling in Deep-Sea Sediments of the Northern South China Sea." Applied and Environmental Microbiology 85, no. 15 (May 24, 2019). http://dx.doi.org/10.1128/aem.00523-19.

Full text
Abstract:
ABSTRACTMetagenomics of marine sediments has uncovered a broad diversity of new uncultured taxa and provided insights into their metabolic capabilities. Here, we detected microbial lineages from a sediment core near the Jiulong methane reef of the northern South China Sea (at 1,100-m depth). Assembly and binning of the metagenomes resulted in 11 genomes (>85% complete) that represented nine distinct phyla, including candidate phyla TA06 and LCP-89,Lokiarchaeota,Heimdallarchaeota, and a newly described globally distributed phylum (B38). The genome of LCP-89 has pathways for nitrate, selenate, and sulfate reduction, suggesting that they may be involved in mediating these important processes. B38 are able to participate in the cycling of hydrogen and selenocompounds. Many of these uncultured microbes may also be capable of autotrophic CO2fixation, as exemplified by identification of the Wood-Ljungdahl (W-L) pathway. Genes encoding carbohydrate degradation, W-L pathway, Rnf-dependent energy conservation, and Ni/Fe hydrogenases were detected in the transcriptomes of these novel members. Characterization of these new lineages provides insight to the undescribed branches in the tree of life.IMPORTANCESedimentary microorganisms in the South China Sea (SCS) remain largely unknown due to the complexity of sediment communities impacted by continent rifting and extension. Distinct geochemical environments may breed special microbial communities including microbes that are still enigmatic. Functional inference of their metabolisms and transcriptional activity provides insight in the ecological roles and substrate-based interactivity of these unculturedArchaeaandBacteria. These microorganisms play different roles in utilizing inorganic carbon and scavenging diverse organic compounds involved in the deep-sea carbon cycle. The genomes recovered here contributed undescribed species to the tree of life and laid the foundation for future study on these novel phyla persisting in marginal sediments of the SCS.
APA, Harvard, Vancouver, ISO, and other styles
32

Dönig, Judith, and Volker Müller. "Alanine, a Novel Growth Substrate for the Acetogenic BacteriumAcetobacterium woodii." Applied and Environmental Microbiology 84, no. 23 (September 21, 2018). http://dx.doi.org/10.1128/aem.02023-18.

Full text
Abstract:
ABSTRACTAcetogenic bacteria are an ecophysiologically important group of strictly anaerobic bacteria that grow lithotrophically on H2plus CO2or on CO or heterotrophically on different substrates such as sugars, alcohols, aldehydes, or acids. Amino acids are rarely used. Here, we describe that the model acetogenAcetobacterium woodiican use alanine as the sole carbon and energy source, which is in contrast to the description of the type strain. The alanine degradation genes have been identified and characterized. A key to alanine degradation is an alanine dehydrogenase which has been characterized biochemically. The resulting pyruvate is further degraded to acetate by the known pathways involving the Wood-Ljungdahl pathway. Our studies culminate in a metabolic and bioenergetic scheme for alanine-dependent acetogenesis inA. woodii.IMPORTANCEPeptides and amino acids are widespread in nature, but there are only a few reports that demonstrated use of amino acids as carbon and energy sources by acetogenic bacteria, a central and important group in the anaerobic food web. Our finding thatA. woodiican perform alanine oxidation coupled to reduction of carbon dioxide not only increases the number of substrates that can be used by this model acetogen but also raises the possibility that other acetogens may also be able to use alanine. Indeed, the alanine genes are also present in at least two more acetogens, for which growth on alanine has not been reported so far. Alanine may be a promising substrate for industrial fermentations, since acid formation goes along with the production of a base (NH3) and pH regulation is a minor issue.
APA, Harvard, Vancouver, ISO, and other styles
33

Sewell, Holly L., Anne-Kristin Kaster, and Alfred M. Spormann. "Homoacetogenesis in Deep-SeaChloroflexi, as Inferred by Single-Cell Genomics, Provides a Link to Reductive Dehalogenation in TerrestrialDehalococcoidetes." mBio 8, no. 6 (December 19, 2017). http://dx.doi.org/10.1128/mbio.02022-17.

Full text
Abstract:
ABSTRACTThe deep marine subsurface is one of the largest unexplored biospheres on Earth and is widely inhabited by members of the phylumChloroflexi. In this report, we investigated genomes of single cells obtained from deep-sea sediments of the Peruvian Margin, which are enriched in suchChloroflexi. 16S rRNA gene sequence analysis placed two of these single-cell-derived genomes (DscP3 and Dsc4) in a clade of subphylum IChloroflexiwhich were previously recovered from deep-sea sediment in the Okinawa Trough and a third (DscP2-2) as a member of the previously reported DscP2 population from Peruvian Margin site 1230. The presence of genes encoding enzymes of a complete Wood-Ljungdahl pathway, glycolysis/gluconeogenesis, aRhodobacternitrogen fixation (Rnf) complex, glyosyltransferases, and formate dehydrogenases in the single-cell genomes of DscP3 and Dsc4 and the presence of an NADH-dependent reduced ferredoxin:NADP oxidoreductase (Nfn) and Rnf in the genome of DscP2-2 imply a homoacetogenic lifestyle of these abundant marineChloroflexi. We also report here the first complete pathway for anaerobic benzoate oxidation to acetyl coenzyme A (CoA) in the phylumChloroflexi(DscP3 and Dsc4), including a class I benzoyl-CoA reductase. Of remarkable evolutionary significance, we discovered a gene encoding a formate dehydrogenase (FdnI) with reciprocal closest identity to the formate dehydrogenase-like protein (complex iron-sulfur molybdoenzyme [CISM], DET0187) of terrestrialDehalococcoides/Dehalogenimonasspp. This formate dehydrogenase-like protein has been shown to lack formate dehydrogenase activity inDehalococcoides/Dehalogenimonasspp. and is instead hypothesized to couple HupL hydrogenase to a reductive dehalogenase in the catabolic reductive dehalogenation pathway. This finding of a close functional homologue provides an important missing link for understanding the origin and the metabolic core of terrestrialDehalococcoides/Dehalogenimonasspp. and of reductive dehalogenation, as well as the biology of abundant deep-seaChloroflexi.IMPORTANCEThe deep marine subsurface is one of the largest unexplored biospheres on Earth and is widely inhabited by members of the phylumChloroflexi. In this report, we investigated genomes of single cells obtained from deep-sea sediments and provide evidence for a homacetogenic lifestyle of these abundant marineChloroflexi. Moreover, genome signature and key metabolic genes indicate an evolutionary relationship between these deep-sea sediment microbes and terrestrial, reductively dehalogenatingDehalococcoides.
APA, Harvard, Vancouver, ISO, and other styles
34

Diner, Bruce A., Janine Fan, Miles C. Scotcher, Derek H. Wells, and Gregory M. Whited. "Synthesis of Heterologous Mevalonic Acid Pathway Enzymes in Clostridium ljungdahlii for the Conversion of Fructose and of Syngas to Mevalonate and Isoprene." Applied and Environmental Microbiology 84, no. 1 (October 20, 2017). http://dx.doi.org/10.1128/aem.01723-17.

Full text
Abstract:
ABSTRACTThere is a growing interest in the use of microbial fermentation for the generation of high-demand, high-purity chemicals using cheap feedstocks in an environmentally friendly manner. One example explored here is the production of isoprene (C5H8), a hemiterpene, which is primarily polymerized to polyisoprene in synthetic rubber in tires but which can also be converted to C10and C15biofuels. The strictly anaerobic, acetogenic bacteriumClostridium ljungdahlii, used in all of the work described here, is capable of glycolysis using the Embden-Meyerhof-Parnas pathway and of carbon fixation using the Wood-Ljungdahl pathway.Clostridium-Escherichia colishuttle plasmids, each bearing either 2 or 3 different heterologous genes of the eukaryotic mevalonic acid (MVA) pathway or eukaryotic isopentenyl pyrophosphate isomerase (Idi) and isoprene synthase (IspS), were constructed and electroporated intoC. ljungdahlii. These plasmids, one or two of which were introduced into the host cells, enabled the synthesis of mevalonate and of isoprene from fructose and from syngas (H2, CO2, and CO) and the conversion of mevalonate to isoprene. All of the heterologous enzymes of the MVA pathway, as well as Idi and IspS, were shown to be synthesized at high levels inC. ljungdahlii, as demonstrated by Western blotting, and were enzymatically active, as demonstrated byin vivoproduct synthesis. The quantities of mevalonate and isoprene produced here are far below what would be required of a commercial production strain. However, proposals are made that could enable a substantial increase in the mass yield of product formation.IMPORTANCEThis study demonstrates the ability to synthesize a heterologous metabolic pathway inC. ljungdahlii, an organism capable of metabolizing either simple sugars or syngas or both together (mixotrophy). Syngas, an inexpensive source of carbon and reducing equivalents, is produced as a major component of some industrial waste gas, and it can be generated by gasification of cellulosic biowaste and of municipal solid waste. Its conversion to useful products therefore offers potential cost and environmental benefits. The ability ofC. ljungdahliito grow mixotrophically also enables the recapture, should there be sufficient reducing equivalents available, of the CO2released upon glycolysis, potentially increasing the mass yield of product formation. Isoprene is the simplest of the terpenoids, and so the demonstration of its production is a first step toward the synthesis of higher-value products of the terpenoid pathway.
APA, Harvard, Vancouver, ISO, and other styles
35

Zhou, Zhichao, Yang Liu, Wei Xu, Jie Pan, Zhu-Hua Luo, and Meng Li. "Genome- and Community-Level Interaction Insights into Carbon Utilization and Element Cycling Functions of Hydrothermarchaeota in Hydrothermal Sediment." mSystems 5, no. 1 (January 7, 2020). http://dx.doi.org/10.1128/msystems.00795-19.

Full text
Abstract:
ABSTRACT Hydrothermal vents release reduced compounds and small organic carbon compounds into the surrounding seawater, providing essential substrates for microbial growth and bioenergy transformations. Despite the wide distribution of the marine benthic group E archaea (referred to as Hydrothermarchaeota) in the hydrothermal environment, little is known about their genomic repertoires and biogeochemical significance. Here, we studied four highly complete (>80%) metagenome-assembled genomes (MAGs) from a black smoker chimney and the surrounding sulfur-rich sediments on the South Atlantic Mid-Ocean Ridge and publicly available data sets (the Integrated Microbial Genomes system of the U.S. Department of Energy-Joint Genome Institute and NCBI SRA data sets). Genomic analysis suggested a wide carbon metabolic diversity of Hydrothermarchaeota members, including the utilization of proteins, lactate, and acetate; the anaerobic degradation of aromatics; the oxidation of C1 compounds (CO, formate, and formaldehyde); the utilization of methyl compounds; CO2 incorporation by the tetrahydromethanopterin-based Wood-Ljungdahl pathway; and participation in the type III ribulose-1,5-bisphosphate carboxylase/oxygenase-based Calvin-Benson-Bassham cycle. These microbes also potentially oxidize sulfur, arsenic, and hydrogen and engage in anaerobic respiration based on sulfate reduction and denitrification. Among the 140 MAGs reconstructed from the black smoker chimney microbial community (including Hydrothermarchaeota MAGs), community-level metabolic predictions suggested a redundancy of carbon utilization and element cycling functions and interactive syntrophic and sequential utilization of substrates. These processes might make various carbon and energy sources widely accessible to the microorganisms. Further, the analysis suggested that Hydrothermarchaeota members contained important functional components obtained from the community via lateral gene transfer, becoming a distinctive clade. This might serve as a niche-adaptive strategy for metabolizing heavy metals, C1 compounds, and reduced sulfur compounds. Collectively, the analysis provides comprehensive metabolic insights into the Hydrothermarchaeota. IMPORTANCE This study provides comprehensive metabolic insights into the Hydrothermarchaeota from comparative genomics, evolution, and community-level perspectives. Members of the Hydrothermarchaeota synergistically participate in a wide range of carbon-utilizing and element cycling processes with other microorganisms in the community. We expand the current understanding of community interactions within the hydrothermal sediment and chimney, suggesting that microbial interactions based on sequential substrate metabolism are essential to nutrient and element cycling.
APA, Harvard, Vancouver, ISO, and other styles
36

Yuan, Yang, Jun Liu, Tao-Tao Yang, Shao-Ming Gao, Bin Liao, and Li-Nan Huang. "Genomic insights into the ecological role and evolution of a novel Thermoplasmata order, “ Candidatus Sysuiplasmatales”." Applied and Environmental Microbiology, September 15, 2021. http://dx.doi.org/10.1128/aem.01065-21.

Full text
Abstract:
Recent omics studies have provided invaluable insights into the metabolic potential, adaptation and evolution of novel archaeal lineages from a variety of extreme environments. We have utilized a genome-resolved metagenomic approach to recover eight medium- to high-quality metagenome-assembled genomes (MAGs) that likely represent a new order (“ Candidatus Sysuiplasmatales”) within Thermoplasmata from mine tailings and acid mine drainage (AMD) sediments sampled from two copper mines in South China. 16S rRNA gene based analyses revealed a narrow habitat range for these uncultured archaea limiting to AMD and hot spring-related environments. Metabolic reconstruction indicated a facultatively anaerobic heterotrophic lifestyle. This may allow the archaea to adapt to oxygen fluctuations and is thus in marked contrast to the majority of lineages in the domain Archaea which typically show obligately anaerobic metabolisms. Notably, “ Ca. Sysuiplasmatales” could conserve energy through degradation of fatty acids, amino acid metabolism and oxidation of reduced inorganic sulfur compounds (RISCs), suggesting that they may contribute to acid generation in the extreme mine environments. Unlike its closely related Methanomassiliicoccales and “ Ca. Gimiplasmatales”, “ Ca. Sysuiplasmatales” lack the capacity to perform methanogenesis and carbon fixation. Ancestral state reconstruction indicated that “ Ca. Sysuiplasmatales” and its closely related Methanomassiliicoccales, “ Ca. Gimiplasmatales”, and the SG8-5 and the RBG-16-68-12 orders originated from a facultatively anaerobic ancestor capable of carbon fixation via the bacterial-type H 4 F Wood–Ljungdahl pathway (WLP). Their metabolic divergence might be attributed to different evolutionary paths. Importance A wide array of archaea populate Earth’s extreme environments thereby they may play important roles in mediating biogeochemical processes such as iron and sulfur cycling. However, our knowledge of archaeal biology and evolution is still limited considering the uncultured majority of archaeal diversity. For instance, most order-level lineages except Thermoplasmatales, Aciduliprofundales and Methanomassiliicoccales within Thermoplasmata do not have cultured representatives. Here, we report the discovery and genomic characterization of a novel order, namely “ Ca . Sysuiplasmatales”, within Thermoplasmata in the extremely acidic mine environments. “ Ca . Sysuiplasmatales” are inferred to be facultatively anaerobic heterotrophs and likely contribute to acid generation through the oxidation of RISCs. The physiological divergence between “ Ca . Sysuiplasmatales” and its closely related Thermoplasmata lineages may be attributed to different evolutionary paths. These results expand our knowledge of archaea in the extreme mine ecosystem.
APA, Harvard, Vancouver, ISO, and other styles
37

Picone, Nunzia, Carmen Hogendoorn, Geert Cremers, Lianna Poghosyan, Arjan Pol, Theo A. van Alen, Antonina L. Gagliano, et al. "Geothermal Gases Shape the Microbial Community of the Volcanic Soil of Pantelleria, Italy." mSystems 5, no. 6 (November 3, 2020). http://dx.doi.org/10.1128/msystems.00517-20.

Full text
Abstract:
ABSTRACT Volcanic and geothermal environments are characterized by low pH, high temperatures, and gas emissions consisting of mainly CO2 and varied CH4, H2S, and H2 contents which allow the formation of chemolithoautotrophic microbial communities. To determine the link between the emitted gases and the microbial community composition, geochemical and metagenomic analysis were performed. Soil samples of the geothermic region Favara Grande (Pantelleria, Italy) were taken at various depths (1 to 50 cm). Analysis of the gas composition revealed that CH4 and H2 have the potential to serve as the driving forces for the microbial community. Our metagenomic analysis revealed a high relative abundance of Bacteria in the top layer (1 to 10 cm), but the relative abundance of Archaea increased with depth from 32% to 70%. In particular, a putative hydrogenotrophic methanogenic archaeon, related to Methanocella conradii, appeared to have a high relative abundance (63%) in deeper layers. A variety of [NiFe]-hydrogenase genes were detected, showing that H2 was an important electron donor for microaerobic microorganisms in the upper layers. Furthermore, the bacterial population included verrucomicrobial and proteobacterial methanotrophs, the former showing an up to 7.8 times higher relative abundance. Analysis of the metabolic potential of this microbial community showed a clear capacity to oxidize CH4 aerobically, as several genes for distinct particulate methane monooxygenases and lanthanide-dependent methanol dehydrogenases (XoxF-type) were retrieved. Analysis of the CO2 fixation pathways showed the presence of the Calvin-Benson-Bassham cycle, the Wood-Ljungdahl pathway, and the (reverse) tricarboxylic acid (TCA) cycle, the latter being the most represented carbon fixation pathway. This study indicates that the methane emissions in the Favara Grande might be a combination of geothermal activity and biological processes and further provides insights into the diversity of the microbial population thriving on CH4 and H2. IMPORTANCE The Favara Grande nature reserve on the volcanic island of Pantelleria (Italy) is known for its geothermal gas emissions and high soil temperatures. These volcanic soil ecosystems represent “hot spots” of greenhouse gas emissions. The unique community might be shaped by the hostile conditions in the ecosystem, and it is involved in the cycling of elements such as carbon, hydrogen, sulfur, and nitrogen. Our metagenome study revealed that most of the microorganisms in this extreme environment are only distantly related to cultivated bacteria. The results obtained profoundly increased the understanding of these natural hot spots of greenhouse gas production/degradation and will help to enrich and isolate the microbial key players. After isolation, it will become possible to unravel the molecular mechanisms by which they adapt to extreme (thermo/acidophilic) conditions, and this may lead to new green enzymatic catalysts and technologies for industry.
APA, Harvard, Vancouver, ISO, and other styles
38

Sheik, Cody S., Jonathan P. Badalamenti, Jon Telling, David Hsu, Scott C. Alexander, Daniel R. Bond, Jeffrey A. Gralnick, Barbara Sherwood Lollar, and Brandy M. Toner. "Novel Microbial Groups Drive Productivity in an Archean Iron Formation." Frontiers in Microbiology 12 (March 30, 2021). http://dx.doi.org/10.3389/fmicb.2021.627595.

Full text
Abstract:
Deep subsurface environments are decoupled from Earth’s surface processes yet diverse, active, and abundant microbial communities thrive in these isolated environments. Microbes inhabiting the deep biosphere face unique challenges such as electron donor/acceptor limitations, pore space/fracture network limitations, and isolation from other microbes within the formation. Of the few systems that have been characterized, it is apparent that nutrient limitations likely facilitate diverse microbe-microbe interactions (i.e., syntrophic, symbiotic, or parasitic) and that these interactions drive biogeochemical cycling of major elements. Here we describe microbial communities living in low temperature, chemically reduced brines at the Soudan Underground Mine State Park, United States. The Soudan Iron mine intersects a massive hematite formation at the southern extent of the Canadian Shield. Fractured rock aquifer brines continuously flow from exploratory boreholes drilled circa 1960 and are enriched in deuterium compared to the global meteoric values, indicating brines have had little contact with surface derived waters, and continually degas low molecular weight hydrocarbons C1-C4. Microbial enrichments suggest that once brines exit the boreholes, oxidation of the hydrocarbons occur. Amplicon sequencing show these borehole communities are low in diversity and dominated by Firmicute and Proteobacteria phyla. From the metagenome assemblies, we recovered approximately thirty genomes with estimated completion over 50%. Analysis of genome taxonomy generally followed the amplicon data, and highlights that several of the genomes represent novel families and genera. Metabolic reconstruction shows two carbon-fixation pathways were dominant, the Wood-Ljungdahl (acetogenesis) and Calvin-Benson-Bassham (via RuBisCo), indicating that inorganic carbon likely enters into the microbial foodweb with differing carbon fractionation potentials. Interestingly, methanogenesis is likely driven by Methanolobus and suggests cycling of methylated compounds and not H2/CO2 or acetate. Furthermore, the abundance of sulfate in brines suggests cryptic sulfur cycling may occur, as we detect possible sulfate reducing and thiosulfate oxidizing microorganisms. Finally, a majority of the microorganisms identified contain genes that would allow them to participate in several element cycles, highlighting that in these deep isolated systems metabolic flexibility may be an important life history trait.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography