Academic literature on the topic 'WRF Modeling'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'WRF Modeling.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "WRF Modeling"
Mandel, J., J. D. Beezley, and A. K. Kochanski. "Coupled atmosphere-wildland fire modeling with WRF-Fire version 3.3." Geoscientific Model Development Discussions 4, no. 1 (March 9, 2011): 497–545. http://dx.doi.org/10.5194/gmdd-4-497-2011.
Full textWang, Jian, Weimin Bao, Qianyu Gao, Wei Si, and Yiqun Sun. "Coupling the Xinanjiang model and wavelet-based random forests method for improved daily streamflow simulation." Journal of Hydroinformatics 23, no. 3 (March 22, 2021): 589–604. http://dx.doi.org/10.2166/hydro.2021.111.
Full textPleim, Jonathan E. "Comment on “Simulation of Surface Ozone Pollution in the Central Gulf Coast Region Using WRF/Chem Model: Sensitivity to PBL and Land Surface Physics”." Advances in Meteorology 2011 (2011): 1–3. http://dx.doi.org/10.1155/2011/464753.
Full textHammerberg, Kristopher, Milena Vuckovic, and Ardeshir Mahdavi. "Approaches to Urban Weather Modeling: A Vienna Case Study." Applied Mechanics and Materials 887 (January 2019): 344–52. http://dx.doi.org/10.4028/www.scientific.net/amm.887.344.
Full textKochanski, A. K., E. R. Pardyjak, R. Stoll, A. Gowardhan, M. J. Brown, and W. J. Steenburgh. "One-Way Coupling of the WRF–QUIC Urban Dispersion Modeling System." Journal of Applied Meteorology and Climatology 54, no. 10 (October 2015): 2119–39. http://dx.doi.org/10.1175/jamc-d-15-0020.1.
Full textMandel, J., J. D. Beezley, and A. K. Kochanski. "Coupled atmosphere-wildland fire modeling with WRF 3.3 and SFIRE 2011." Geoscientific Model Development 4, no. 3 (July 7, 2011): 591–610. http://dx.doi.org/10.5194/gmd-4-591-2011.
Full textWang, Wei, Jia Liu, Chuanzhe Li, Yuchen Liu, Fuliang Yu, and Entao Yu. "An Evaluation Study of the Fully Coupled WRF/WRF-Hydro Modeling System for Simulation of Storm Events with Different Rainfall Evenness in Space and Time." Water 12, no. 4 (April 24, 2020): 1209. http://dx.doi.org/10.3390/w12041209.
Full textEidhammer, Trude, Adam Booth, Sven Decker, Lu Li, Michael Barlage, David Gochis, Roy Rasmussen, Kjetil Melvold, Atle Nesje, and Stefan Sobolowski. "Mass balance and hydrological modeling of the Hardangerjøkulen ice cap in south-central Norway." Hydrology and Earth System Sciences 25, no. 8 (August 3, 2021): 4275–97. http://dx.doi.org/10.5194/hess-25-4275-2021.
Full textGivati, Amir, Barry Lynn, Yubao Liu, and Alon Rimmer. "Using the WRF Model in an Operational Streamflow Forecast System for the Jordan River." Journal of Applied Meteorology and Climatology 51, no. 2 (February 2011): 285–99. http://dx.doi.org/10.1175/jamc-d-11-082.1.
Full textLiu, Zheng, Axel Schweiger, and Ron Lindsay. "Observations and Modeling of Atmospheric Profiles in the Arctic Seasonal Ice Zone." Monthly Weather Review 143, no. 1 (January 1, 2015): 39–53. http://dx.doi.org/10.1175/mwr-d-14-00118.1.
Full textDissertations / Theses on the topic "WRF Modeling"
Melo, Camylla Maria Narciso de. "Using the WRF numerical model for the purpose of generation eolioelÃtrica: case study for MaracanaÃ, CearÃ." Universidade Federal do CearÃ, 2013. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=14606.
Full textThis paper analyzes the mesoscale model WRF (Weather Research And Forecast) to verify its reliability in use as a research tool in areas with potential for eolioeletric generation. The area chosen for study was a farm located in Maracanaà in the state of CearÃ. On the farm was installed an anemometer tower of 80 meters high with three anemometers, 1 windsock, 1 temperature sensor and a pyranometer, all sensors connected to a datalogger. The data collected in this tower were used for comparison with the data obtained through simulations in WRF. In the simulations the model was evaluated for two different climatic conditions in the region, the rainy and the dry seasons. The periods chosen to perform the simulations are: March/2012 (representing the rainy season) and November/2011 (representing the dry season). Was performed five sensitivity tests, which were exchanged in the parameterizations of the Planetary Boundary Layer (PBL), Surface Layer (CS) and Ground Surface Model (GSM). The simulation results were evaluated according to the Pearson's correlation method, that one has parameter values from -1 to 1 which presents an index of correlations ranging from bad (-1) to great (1). The simulation with the best performance in the dry and rainy periods presented values for correlations of 0.76 and 0.58, respectively, considered good and fair to the Pearson's parameters. The model was able to satisfactorily represent the local wind behavior for the dry season of the year, and more research is needed in the area to analyze how the model behaves in the representation of the rainy season. Thus, this model provides satisfactory results to be used as a tool for evaluate areas with potential for eolioeletric generation, more research is needed to fit better.
O presente trabalho analisa o modelo de mesoescala WRF (Weather Research and Forecast) para verificar a sua confiabilidade na utilizaÃÃo como ferramenta de investigaÃÃo de Ãreas com potencial para geraÃÃo eolioelÃtrica. A regiÃo escolhida para estudo foi uma fazenda localizada no municÃpio de MaracanaÃ, no estado do CearÃ. Na fazenda foi instalada uma torre anemomÃtrica de 80 metros de altura com 3 anemÃmetros, 1 biruta, 1 sensor de temperatura e um piranÃmetro, todos os sensores conectados a um datalogger. Os dados coletados nesta torre foram utilizados para comparaÃÃo com os dados obtidos atravÃs das simulaÃÃes no WRF. Nas simulaÃÃes o modelo foi avaliado para duas situaÃÃes climatolÃgicas distintas na regiÃo, o perÃodo chuvoso e o seco. Os perÃodos escolhidos para realizar as simulaÃÃes sÃo: marÃo/2012 (representando o perÃodo chuvoso) e novembro/2011 (representando o perÃodo seco). Foram realizados cinco testes de sensibilidade, nos quais foram permutadas as parametrizaÃÃes da Camada Limite PlanetÃria (CLP), Camada de SuperfÃcie (CS) e o Modelo de Solo SuperfÃcie (MSS). Os resultados das simulaÃÃes foram avaliados segundo o mÃtodo de correlaÃÃo de Pearson, mÃtodo este que possui parÃmetros de valores de -1 a 1 onde apresenta um indicativo de correlaÃÃes que vÃo de pÃssimas (-1) a Ãtimas (1). A simulaÃÃo com o melhor desempenho no perÃodo seco e chuvoso apresentaram valores de correlaÃÃes de 0,76 e 0,58, consideradas forte e moderada, para os parÃmetros de Pearson, respectivamente. O modelo conseguiu representar de forma satisfatÃria o regime de vento local para a estaÃÃo seca do ano, sendo necessÃrias mais pesquisas na Ãrea para analisar como o modelo se comporta na representaÃÃo do perÃodo chuvoso. Assim este modelo apresenta resultados satisfatÃrios para ser utilizado como ferramenta para avaliaÃÃo de regiÃes com potencial em geraÃÃo eolioelÃtrica, sendo necessÃrias mais pesquisas para ajustÃ-lo melhor.
Yu, Man. "An assessment of urbanization impact in China by using WRF-Chem and configuration optimization." Diss., University of Iowa, 2014. https://ir.uiowa.edu/etd/1814.
Full textIotti, Marcello. "Urban boundary layer modeling with WRF: assessment of different urban parameterizations over the city of Bologna." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019.
Find full textTastula, Esa-Matti. "Insights into the Challenges of Modeling the Atmospheric Boundary Layer." Scholar Commons, 2015. http://scholarcommons.usf.edu/etd/5782.
Full textWille, Jonathan D. "Analysis of the AMPS-Polar WRF Boundary Layer at the Alexander Tall Tower! site on the Ross Ice Shelf." The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1437500291.
Full textMARTINS, Rafael Castelo Guedes. "Estudo da sensibilidade do modelo WRF às parametrizações de microfísica de nuvens e à assimilação de dados observados." Universidade Federal de Campina Grande, 2014. http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/1466.
Full textMade available in DSpace on 2018-08-15T19:02:39Z (GMT). No. of bitstreams: 1 RAFAEL CASTELO GUEDES MARTINS – TESE (PPGMet) 2014.pdf: 3362803 bytes, checksum: 5a99c28e73f6a95fef76f82f96d2edc4 (MD5) Previous issue date: 2014-12-12
Um dos principais desafios atuais da modelagem numérica da atmosfera trata da previsão quantitativa da precipitação e do posicionamento das nuvens de chuva. Este trabalho tem com o principal objetivo avaliar o desempenho das arametrizações de microfísicas na modelagem regional com ênfase no papel da informação de grande escala e sua influência sobre as simulações, e no uso de dados observados de radiossondagens como forma de acrescentar informação à modelagem . Inicialmente, duas reanálises (NCEP2 e ERAI) foram estatisticamente comparadas com dados de PCDs do Estado do Ceará. Verificou - se qu e a ERAI apresentou maior semelhança com as observações, principalmente para as variáveis diretamente ligadas à convecção. Em seguida, a ERAI foi utilizada como forçamento de grande escala em simulações com o modelo WRF. Observou- se que o uso de microfísica detalhada não melhora necessariamente a previsão do modelo, caso não sejam utilizados dados observados no local de estudo. Por último, duas simulações de alta resolução foram realizadas. Uma forçada pela reanálise sem modificação e outra forçada pela reanálise modificada utilizando o método de análise objetiva do WRF, para incluir as séries temporais de radiossondagens coletadas durante campanha experimental do Projeto CHUVA, em Fortaleza- CE. As duas simulações foram comparadas com dados observados pelo radiômetro para o mesmo local e período das radiossondagens . Observou - se que a inclusão das observações de sondagens na modelagem possibilita melhor modelagem de um sistema convectivo ocorrido em abril de 2011, principalmente para as variáveis ligadas à convecção. Este trabalho aponta, utilizando análises comparativas e estatísticas, que a utilização de uma maior densidade de dados observacionais válidos no modelo pode melhorar de forma muito mais eficiente o resultado da modelagem, do que mesmo a utilização do downscaling dinâmico do dado de grande escala ou a utilização de esquemas de microfísica detalhada, que, em algumas situações, pode inclusive inserir mais erros nos sistema s modelados.
The quantitative prediction of precipitation and the positioning of the rain clouds is one of the main challenges of numerical modeling of the atmosphere in present days. This work aims to evaluate the performance of the microphysical parameterizations in regional modeling, with emphasis on the role of large- scale information and its influence on the simulations, and the use of observational data from radiosondes as a way to add information to modeling. Initially, two reanalysis (NCEP2 and ERAI) were statistically compared with data from PCDs from the Ceará State. It was found that the ERAI showed similarity to the observations, especially for variables directly linked to convection. Then, the ERAI is used as large scale forcing in simulations with the WRF model. It was observed that the use of detailed microphysics does not necessarily improve the model performance, if in situ data were not used. Finally, two high resolution simulations were performed. The first f orced by reanalysis without modification and other forced by reanalysis using the modified method of objective analysis of the WRF, to include the time series of radiosonde observations collected during the experimental campaign of the CHUVA Project in Fortaleza- CE. The two simulations were compared with data observed by the radiometer to the same place and period of the radiosonde. It was observed that the inclusion of radiosonde observations in to the model leads to a better simulation of a convective system that occurred in April 2011, mostly for the variables related to convection. Using comparative statistical analysis, t his work points that the use of a higher density of valid observational data in the model can improve much more efficiently the model results than the use of a dynamic downscal ing of large- scale data or the use of schemes with detailed microphysics, which in some circumstances may even introduce more errors into the modeled system s.
Lawless, Zachary David. "Modeling Current and Future Windblown Utah Dust Events Using CMAQ 5.3.1." BYU ScholarsArchive, 2021. https://scholarsarchive.byu.edu/etd/9165.
Full textSantoni, Gregory Winn. "Fluxes of Atmospheric Methane Using Novel Instruments, Field Measurements, and Inverse Modeling." Thesis, Harvard University, 2013. http://dissertations.umi.com/gsas.harvard:10941.
Full textEarth and Planetary Sciences
Darmenov, Anton. "Developing and testing a coupled regional modeling system for establishing an integrated modeling and observational framework for dust aerosol." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/28217.
Full textCommittee Chair: Sokolik, Irina; Committee Member: Curry, Judith; Committee Member: Kalashnikova, Olga; Committee Member: Nenes, Athanasios; Committee Member: Stieglitz, Marc.
Silva, Natália Pillar da. "Estudo dos Mecanismos Vinculados ao Estabelecimento de um Evento de ZCAS Através de Simulações com o Modelo WRF." Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/14/14133/tde-03082018-101530/.
Full textIn the present study, the mechanisms and formation of an intense South Atlantic Convergence Zone (SACZ) event were investigated. For this, an observational analysis was performed to identify this system for the implementation of a numerical study on a sub-seasonal scale. Since the SACZ activity is predominantly concentrated over one of the most socioeconomically important regions of South America, predictability studies for this system are extremely valuable. The SACZ event chosen by the observational analysis was supported by a large-scale structure that featured a cyclonic vortex in the coastal region of southeastern Brazil. The numerical representation of a SACZ case in this context was particularly challenging since the SACZ is a very complex system and its development and evolution are closely linked to large-scale atmospheric features. To improve the numerical representation of such event, several spectral nudging applications were tested to ensure the large scale features that support the systems are well represented by the numerical model. Results show that the less restrictive alternative for the spectral nudging application was ideal for maintaining important features in large scales while still allowing the physical components of the model to contribute the representation of the atmosphere on smaller scales. From this, numerical experiments were conducted for an evaluation of how different convective parametrizations and microphysics represent the precipitation band associated to the system. The results show that, when used together, both WRF Single Moment 6-Class (WSM6) microphysics option and Kain-Fritsch (KF) cumulus option contributed to the formation of convective band associated with the SACZ. Results also show that it is possible to use a simpler microphysics scheme (WSM3) for the representation of the system, since the performances between different tests in microphysics were similar.
Books on the topic "WRF Modeling"
Methods for Wastewater Characterization in Activated Sludge Modelling: Werf Report Project 99-wwf-3 (Werf Report). Water Environment Research Foundation, 2005.
Find full textBook chapters on the topic "WRF Modeling"
Werner, Małgorzata, Maciej Kryza, Kinga Wałaszek, Massimo Vieno, and Anthony J. Dore. "EMEP4PL and WRF-Chem—Evaluation of the Modelling Results." In Air Pollution Modeling and its Application XXV, 117–22. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57645-9_18.
Full textBalzarini, A., L. Honzak, G. Pirovano, G. M. Riva, and R. Zabkar. "WRF-Chem Model Sensitivity Analysis to Chemical Mechanism Choice." In Air Pollution Modeling and its Application XXIII, 557–61. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04379-1_92.
Full textKumar, S., A. Routray, G. Tiwari, R. Chauhan, and I. Jain. "Simulation of Tropical Cyclone ‘Phailin’ Using WRF Modeling System." In Tropical Cyclone Activity over the North Indian Ocean, 307–16. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-40576-6_21.
Full textTuccella, Paolo, Gabriele Curci, Suzanne Crumeyrolle, and Guido Visconti. "Modeling of Aerosol Indirect Effects with WRF/Chem over Europe." In Air Pollution Modeling and its Application XXIII, 91–95. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04379-1_15.
Full textBalzarini, A., F. Angelini, L. Ferrero, M. Moscatelli, G. Pirovano, G. M. Riva, A. Toppetti, and E. Bolzacchini. "Comparing WRF PBL Schemes with Experimental Data over Northern Italy." In Air Pollution Modeling and its Application XXIII, 545–49. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04379-1_90.
Full textZhang, Yang, Xin Zhang, Changjie Cai, Kai Wang, and Litao Wang. "Studying Aerosol-Cloud-Climate Interactions over East Asia Using WRF/Chem." In Air Pollution Modeling and its Application XXIII, 61–66. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04379-1_10.
Full textHogrefe, Christian, Stefano Galmarini, Shawn Roselle, and Rohit Mathur. "AQMEII Phase 2: Overview and WRF-CMAQ Application Over North America." In Air Pollution Modeling and its Application XXIII, 463–66. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04379-1_76.
Full textGašparac, Goran, Amela Jeričević, and Branko Grisogono. "Influence of WRF Parameterization on Coupled Air Quality Modeling Systems." In Springer Proceedings in Complexity, 557–61. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-24478-5_90.
Full textFallmann, Joachim, Stefan Emeis, and Peter Suppan. "Modeling of the Urban Heat Island and its effect on Air Quality using WRF/WRF-Chem – Assessment of mitigation strategies for a Central European city." In Air Pollution Modeling and its Application XXIII, 373–77. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04379-1_60.
Full textKnote, Christoph, Alma Hodzic, Jose L. Jimenez, Rainer Volkamer, John J. Orlando, Sunil Baidar, Jerome Brioude, et al. "Novel Pathways to Form Secondary Organic Aerosols: Glyoxal SOA in WRF/Chem." In Air Pollution Modeling and its Application XXIII, 149–54. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04379-1_24.
Full textConference papers on the topic "WRF Modeling"
Elmer, Nicholas, Christopher Hain, James McCreight, and David Gochis. "SWOT Applications for WRF-Hydro Modeling in Alaska." In IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2020. http://dx.doi.org/10.1109/igarss39084.2020.9323136.
Full textLi, X., W. Zheng, and D. Shen. "SAR Observations and WRF Modeling of Marine Atmospheric Phenomena." In 2018 Progress in Electromagnetics Research Symposium (PIERS-Toyama). IEEE, 2018. http://dx.doi.org/10.23919/piers.2018.8597982.
Full textHe, Wenying. "Comparisons of radiative transfer models for GMI assimilation in WRF." In Remote Sensing and Modeling of the Atmosphere, Oceans, and Interactions VII, edited by Guosheng Liu and Ziad S. Haddad. SPIE, 2018. http://dx.doi.org/10.1117/12.2324674.
Full textPolezhayeva, Antonina, and Antonina Polezhayeva. "NUMERICAL MODELING OF POLAR LOWS OVER THE BARENTS SEA: IMPACT OF WRF PARAMETRIZATIONS ON THE QUALITY OF FORECAST." In Managing risks to coastal regions and communities in a changing world. Academus Publishing, 2017. http://dx.doi.org/10.21610/conferencearticle_58b43155456a5.
Full textPolezhayeva, Antonina, and Antonina Polezhayeva. "NUMERICAL MODELING OF POLAR LOWS OVER THE BARENTS SEA: IMPACT OF WRF PARAMETRIZATIONS ON THE QUALITY OF FORECAST." In Managing risks to coastal regions and communities in a changing world. Academus Publishing, 2017. http://dx.doi.org/10.31519/conferencearticle_5b1b9387834ac4.45240165.
Full textLuna, Marco Guevara, Luis Carlos Belalcazar Ceron, and Alain Clappier. "Implementation and validation of the performance of meteorological modeling with WRF in Colombian cities." In 2019 Congreso Colombiano y Conferencia Internacional de Calidad de Aire y Salud Pública (CASP). IEEE, 2019. http://dx.doi.org/10.1109/casap48673.2019.9364068.
Full textMall, Martin, Ulo Suursaar, Tomoya Shibayama, and Ryota Nakamura. "Modeling Cyclone-Related Precipitation Changes in Future Climates Using WRF Model and CMIP5 Output Data." In IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2019. http://dx.doi.org/10.1109/igarss.2019.8900309.
Full textGonzález, Jorge E., and Estatio Gutierrez. "On the Environmental Sensible/Latent Heat Fluxes From A/C Systems in Urban Dense Environments: A New Modeling Approach and Case Study." In ASME 2015 9th International Conference on Energy Sustainability collocated with the ASME 2015 Power Conference, the ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2015 Nuclear Forum. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/es2015-49583.
Full textFomin, Vladimir, Vladimir Fomin, Dmitrii Alekseev, Dmitrii Alekseev, Dmitrii Lazorenko, and Dmitrii Lazorenko. "NUMERICAL MODELING OF STORM SURGES, WIND WAVES AND FLOODING IN THE TAGANROG BAY." In Managing risks to coastal regions and communities in a changing world. Academus Publishing, 2017. http://dx.doi.org/10.21610/conferencearticle_58b43153f04bb.
Full textFomin, Vladimir, Vladimir Fomin, Dmitrii Alekseev, Dmitrii Alekseev, Dmitrii Lazorenko, and Dmitrii Lazorenko. "NUMERICAL MODELING OF STORM SURGES, WIND WAVES AND FLOODING IN THE TAGANROG BAY." In Managing risks to coastal regions and communities in a changing world. Academus Publishing, 2017. http://dx.doi.org/10.31519/conferencearticle_5b1b936e654216.92483473.
Full textReports on the topic "WRF Modeling"
LeGrand, Sandra, Christopher Polashenski, Theodore Letcher, Glenn Creighton, Steven Peckham, and Jeffrey Cetola. The AFWA dust emission scheme for the GOCART aerosol model in WRF-Chem v3.8.1. Engineer Research and Development Center (U.S.), August 2021. http://dx.doi.org/10.21079/11681/41560.
Full text