Academic literature on the topic 'X-ray imaging, phase contrast, medical imaging, interferometry'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'X-ray imaging, phase contrast, medical imaging, interferometry.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "X-ray imaging, phase contrast, medical imaging, interferometry"
Momose, Atsushi. "Phase-contrast X-ray imaging based on interferometry." Journal of Synchrotron Radiation 9, no. 3 (April 25, 2002): 136–42. http://dx.doi.org/10.1107/s0909049502003771.
Full textDiemoz, P. C., M. Endrizzi, A. Bravin, I. K. Robinson, and A. Olivo. "Sensitivity of edge illumination X-ray phase-contrast imaging." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 372, no. 2010 (March 6, 2014): 20130128. http://dx.doi.org/10.1098/rsta.2013.0128.
Full textArfelli, F., M. Assante, V. Bonvicini, A. Bravin, G. Cantatore, E. Castelli, L. Dalla Palma, et al. "Low-dose phase contrast x-ray medical imaging." Physics in Medicine and Biology 43, no. 10 (October 1, 1998): 2845–52. http://dx.doi.org/10.1088/0031-9155/43/10/013.
Full textYoneyama, Akio, Kazuyuki Hyodo, Rika Baba, Satoshi Takeya, and Tohoru Takeda. "Feasibility study of phase-contrast X-ray laminography using X-ray interferometry." Journal of Synchrotron Radiation 25, no. 6 (October 25, 2018): 1841–46. http://dx.doi.org/10.1107/s1600577518013826.
Full textRuiz-Yaniz, Maite, Irene Zanette, Adrian Sarapata, Lorenz Birnbacher, Mathias Marschner, Michael Chabior, Margie Olbinado, Franz Pfeiffer, and Alexander Rack. "Hard X-ray phase-contrast tomography of non-homogeneous specimens: grating interferometryversuspropagation-based imaging." Journal of Synchrotron Radiation 23, no. 5 (July 26, 2016): 1202–9. http://dx.doi.org/10.1107/s1600577516009164.
Full textDiemoz, P. C., A. Bravin, and P. Coan. "Theoretical comparison of three X-ray phase-contrast imaging techniques: propagation-based imaging, analyzer-based imaging and grating interferometry." Optics Express 20, no. 3 (January 23, 2012): 2789. http://dx.doi.org/10.1364/oe.20.002789.
Full textBlinov, N. N., A. Yu Vasil’ev, N. S. Serova, A. Yu Gryaznov, and N. N. Potrakhov. "A Microfocal Method for Phase-Contrast X-Ray Imaging." Biomedical Engineering 43, no. 4 (July 2009): 156–60. http://dx.doi.org/10.1007/s10527-009-9120-x.
Full textWali, Faiz, Shenghao Wang, Ji Li, Jianheng Huang, Yaohu Lei, Zhao Wu, Peiping Zhu, and Jinyuan Liu. "Image Quality Analysis of X-ray Grating Interferometer Using Integrating-bucket Method." Journal of Imaging Science and Technology 64, no. 2 (March 1, 2020): 20503–1. http://dx.doi.org/10.2352/j.imagingsci.technol.2020.64.2.020503.
Full textLewis, R. A. "Medical phase contrast x-ray imaging: current status and future prospects." Physics in Medicine and Biology 49, no. 16 (July 31, 2004): 3573–83. http://dx.doi.org/10.1088/0031-9155/49/16/005.
Full textGasilov, S. V., I. V. Gasilova, and S. V. Dyachenko. "Modeling the phase-contrast X-ray tomography imaging of medical samples." Mathematical Models and Computer Simulations 4, no. 6 (November 2012): 560–67. http://dx.doi.org/10.1134/s2070048212060063.
Full textDissertations / Theses on the topic "X-ray imaging, phase contrast, medical imaging, interferometry"
Chabior, Michael. "Contributions to the characterization of grating-based x-ray phase-contrast imaging." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2011. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-81705.
Full textSadek, Ahmad, and Ruben Pozzi. "Iterative Reconstruction Algorithm for Phase-Contrast X-Ray Imaging." Thesis, KTH, Medicinteknik och hälsosystem, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-277802.
Full textFaskontrastavbildning är en ny medicinsk röntgenavbildningsteknik, som har utvecklats för att ge bättre kontrast än konventionell röntgenavbildning, särskilt för objekt med låg attenuationskoefficient, såsom mjuk vävnad. I detta projekt användes s.k. propagationsbaserad faskonstrantavbildning, som är en av de enkla metoder som möjliggör faskontrastavbildningen, utan extra optiska element än det som ingår i en konventionell avbildning. Metoden kräver dock mer avancerad bildbehandling. Två av de huvudsakliga problemen som oftast uppstår vid faskontrastavbildning är minskad bildkvalité efter den väsentliga bildrekonstruktionen, samt att den är tidskrävande p.g.a. manuella justeringar som måste göras. I det här projektet implementerades en enkel metod baserad på en kombination av den iterativa algoritmen för bildrekonstruktion, Simultaneous Iterative Reconstruction Technique (SIRT), med propagationsbaserad faskonstrantavbildning. Resultaten jämfördes med en annan fasåterhämtningsmetod, som är välkänd och ofta används inom detta område, Paganinsmetod. Efter jämförelsen konstaterades att upplösningen blev högre och artefakter som suddighet reducerades. Det noterades också att den utvecklade metoden var mindre känslig för manuell inmatning av parametern för attenuationskoefficient. Metoden visade sig dock vara mer tidskrävande än Paganin-metoden.
Mittone, Alberto [Verfasser], and Paola [Akademischer Betreuer] Coan. "Development of X-ray phase-contrast imaging techniques for medical diagnostics : towards clinical application / Alberto Mittone. Betreuer: Paola Coan." München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2015. http://d-nb.info/1076242901/34.
Full textZanette, Irène. "Interférométrie X à réseaux pour l'imagerie et l'analyse de front d'ondes au synchrotron." Thesis, Grenoble, 2011. http://www.theses.fr/2011GRENY058/document.
Full textThe subject of this thesis is X-ray grating interferometry: an imaging technique first demonstrated a few years ago, which yields high-sensitivity phase and dark-field (small angle X-ray scattering) images of the investigated specimen. It bears tremendous potential for the visualization of low-absorbing features, and for the detection of details smaller than the resolution of the imaging system, such as cracks and fibers. Structures of this type cannot be visualized with conventional absorption X-ray imaging. As a part of this thesis work, an X-ray grating interferometer for multimodal radiography and tomography was installed at the beamline ID19 of the European Synchrotron Radiation Facility in Grenoble, France. The excellent performance of this instrument has been demonstrated on a large variety of soft-tissue biological samples, on paleontological specimens, and on osseous tissues. Another part of the present work concerns improvements of the imaging technique itself. The first of these improvements consists in the development of advanced schemes for grating-based tomography. These schemes can substantially reduce the dose delivered to the sample during a grating-based tomography scan, while preserving the image quality. Another major achievement of this thesis is the design, implementation and demonstration of a two-dimensional (2D) grating interferometer. This device uses gratings structured in two dimensions rather than line gratings. The 2D interferometer gives refraction angle and dark-field signals in multiple directions of the image plane and significantly improves the quality of the grating-based radiographies. The application range of the 2D interferometer is not restricted to X-ray imaging; the new device may also be particularly useful for high-precision optics characterization, as is shown by in-situ at-wavelength investigations of X-ray refractive lenses
Weber, Loriane. "Iterative tomographic X-Ray phase reconstruction." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSEI085/document.
Full textPhase contrast imaging has been of growing interest in the biomedical field, since it provides an enhanced contrast compared to attenuation-based imaging. Actually, the phase shift of the incoming X-ray beam induced by an object can be up to three orders of magnitude higher than its attenuation, particularly for soft tissues in the imaging energy range. Phase contrast can be, among others existing techniques, achieved by letting a coherent X-ray beam freely propagate after the sample. In this case, the obtained and recorded signals can be modeled as Fresnel diffraction patterns. The challenge of quantitative phase imaging is to retrieve, from these diffraction patterns, both the attenuation and the phase information of the imaged object, quantities that are non-linearly entangled in the recorded signal. In this work we consider developments and applications of X-ray phase micro and nano-CT. First, we investigated the reconstruction of seeded bone scaffolds using sed multiple distance phase acquisitions. Phase retrieval is here performed using the mixed approach, based on a linearization of the contrast model, and followed by filtered-back projection. We implemented an automatic version of the phase reconstruction process, to allow for the reconstruction of large sets of samples. The method was applied to bone scaffold data in order to study the influence of different bone cells cultures on bone formation. Then, human bone samples were imaged using phase nano-CT, and the potential of phase nano-imaging to analyze the morphology of the lacuno-canalicular network is shown. We applied existing tools to further characterize the mineralization and the collagen orientation of these samples. Phase retrieval, however, is an ill-posed inverse problem. A general reconstruction method does not exist. Existing methods are either sensitive to low frequency noise, or put stringent requirements on the imaged object. Therefore, we considered the joint inverse problem of combining both phase retrieval and tomographic reconstruction. We proposed an innovative algorithm for this problem, which combines phase retrieval and tomographic reconstruction into a single iterative regularized loop, where a linear phase contrast model is coupled with an algebraic tomographic reconstruction algorithm. This algorithm is applied to numerical simulated data
Books on the topic "X-ray imaging, phase contrast, medical imaging, interferometry"
Centre, Bhabha Atomic Research. Development of phase-contrast imaging technique for material science and medical science applications. Mumbai: Bhabha Atomic Research Centre, 2007.
Find full textBook chapters on the topic "X-ray imaging, phase contrast, medical imaging, interferometry"
Zdora, Marie-Christine. "X-ray Single-Grating Interferometry." In X-ray Phase-Contrast Imaging Using Near-Field Speckles, 69–111. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-66329-2_4.
Full textGao, Dachao, Tim E. Gureyev, Andrew Pogany, Andrew W. Stevenson, and Stephen W. Wilkins. "New Methods of X-Ray Imaging based on Phase Contrast." In Medical Applications of Synchrotron Radiation, 63–71. Tokyo: Springer Japan, 1998. http://dx.doi.org/10.1007/978-4-431-68485-5_10.
Full textMomose, Atsushi, Tohoru Takeda, Yuji Itai, Akio Yoneyama, and Keiichi Hirano. "Perspective for Medical Applications of Phase-Contrast X-Ray Imaging." In Medical Applications of Synchrotron Radiation, 54–62. Tokyo: Springer Japan, 1998. http://dx.doi.org/10.1007/978-4-431-68485-5_9.
Full textCoan, P., P. C. Diemoz, A. Bravin, T. Schlossbauer, M. Reiser, D. Habs, T. Schneider, and C. Glaser. "Phase contrast imaging for medical diagnostics: towards clinical application with compact laser-based X-ray sources." In IFMBE Proceedings, 200–203. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03895-2_58.
Full text"Grating-Based Phase-Contrast X-Ray Imaging Technique." In Radiation Detectors for Medical Imaging, 272–85. CRC Press, 2015. http://dx.doi.org/10.1201/b18957-14.
Full textConference papers on the topic "X-ray imaging, phase contrast, medical imaging, interferometry"
Thüring, T., S. Hämmerle, S. Weiss, J. Nüesch, J. Meiser, J. Mohr, C. David, and M. Stampanoni. "Compact hard X-ray grating interferometry for table top phase contrast micro CT." In SPIE Medical Imaging, edited by Robert M. Nishikawa and Bruce R. Whiting. SPIE, 2013. http://dx.doi.org/10.1117/12.2006865.
Full textBartl, P., J. Durst, W. Haas, T. Michel, A. Ritter, T. Weber, and G. Anton. "Simulation of X-ray phase-contrast imaging using grating-interferometry." In 2009 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC 2009). IEEE, 2009. http://dx.doi.org/10.1109/nssmic.2009.5401821.
Full textStutman, D., J. W. Stayman, M. Finkenthal, and J. H. Siewerdsen. "High energy x-ray phase-contrast imaging using glancing angle grating interferometers." In SPIE Medical Imaging, edited by Robert M. Nishikawa and Bruce R. Whiting. SPIE, 2013. http://dx.doi.org/10.1117/12.2007930.
Full textGe, Yongshuai, Ran Zhang, Ke Li, and Guang-Hong Chen. "X-ray differential phase contrast imaging using a grating interferometer and a single photon counting detector." In SPIE Medical Imaging, edited by Despina Kontos, Thomas G. Flohr, and Joseph Y. Lo. SPIE, 2016. http://dx.doi.org/10.1117/12.2216321.
Full textDey, Joyoni, Jingzhu Xu, and Bryce Smith. "Investigation of artifacts due to large-area grating defects and correction using Short Window Fourier Transform and Convolution Neural Networks for phase-contrast X-ray Interferometry." In Physics of Medical Imaging, edited by Hilde Bosmans and Guang-Hong Chen. SPIE, 2020. http://dx.doi.org/10.1117/12.2549409.
Full textHaas, W., P. Bartl, F. Bayer, J. Durst, T. Grund, J. Kenntner, T. Michel, et al. "Performance analysis of X-Ray phase-contrast interferometers with respect to grating layouts." In 2010 IEEE Nuclear Science Symposium and Medical Imaging Conference (2010 NSS/MIC). IEEE, 2010. http://dx.doi.org/10.1109/nssmic.2010.5874388.
Full textLundström, Ulf, Daniel H. Larsson, Per A. C. Takman, Lena Scott, Anna Burvall, and Hans M. Hertz. "X-ray phase contrast angiography using CO2as contrast agent." In SPIE Medical Imaging, edited by Norbert J. Pelc, Robert M. Nishikawa, and Bruce R. Whiting. SPIE, 2012. http://dx.doi.org/10.1117/12.911408.
Full textQi, Zhihua, Pascal Thériault-Lauzier, Nicholas Bevins, Joseph Zambelli, Ke Li, and Guang-Hong Chen. "Helical x-ray differential phase contrast computed tomography." In SPIE Medical Imaging, edited by Norbert J. Pelc, Ehsan Samei, and Robert M. Nishikawa. SPIE, 2011. http://dx.doi.org/10.1117/12.878494.
Full textGureyev, Timur E., Carsten Raven, Anatoly A. Snigirev, Irina Snigireva, and Stephen W. Wilkins. "Hard x-ray quantitative noninterferometric phase-contrast imaging." In Medical Imaging '99, edited by John M. Boone and James T. Dobbins III. SPIE, 1999. http://dx.doi.org/10.1117/12.349510.
Full textZambelli, Joseph, Ke Li, Nicholas Bevins, Zhihua Qi, and Guang-Hong Chen. "Noise characteristics of x-ray differential phase contrast CT." In SPIE Medical Imaging, edited by Norbert J. Pelc, Ehsan Samei, and Robert M. Nishikawa. SPIE, 2011. http://dx.doi.org/10.1117/12.878497.
Full text