Academic literature on the topic 'X-ray imaging, phase contrast, medical imaging, interferometry'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'X-ray imaging, phase contrast, medical imaging, interferometry.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "X-ray imaging, phase contrast, medical imaging, interferometry"

1

Momose, Atsushi. "Phase-contrast X-ray imaging based on interferometry." Journal of Synchrotron Radiation 9, no. 3 (April 25, 2002): 136–42. http://dx.doi.org/10.1107/s0909049502003771.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Diemoz, P. C., M. Endrizzi, A. Bravin, I. K. Robinson, and A. Olivo. "Sensitivity of edge illumination X-ray phase-contrast imaging." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 372, no. 2010 (March 6, 2014): 20130128. http://dx.doi.org/10.1098/rsta.2013.0128.

Full text
Abstract:
Recently, we developed a theoretical model that can predict the signal-to-noise ratio for edge-like features in phase-contrast images. This model was then applied for the estimation of the sensitivity of three different X-ray phase-contrast techniques: propagation-based imaging, analyser-based imaging and grating interferometry. We show here how the same formalism can be used also in the case of the edge illumination (EI) technique, providing results that are consistent with those of a recently developed method for the estimation of noise in the retrieved refraction image. The new model is then applied to calculate, in the case of a given synchrotron radiation set-up, the optimum positions of the pre-sample aperture and detector edge to maximize the sensitivity. Finally, an example of the extremely high angular resolution achievable with the EI technique is presented.
APA, Harvard, Vancouver, ISO, and other styles
3

Arfelli, F., M. Assante, V. Bonvicini, A. Bravin, G. Cantatore, E. Castelli, L. Dalla Palma, et al. "Low-dose phase contrast x-ray medical imaging." Physics in Medicine and Biology 43, no. 10 (October 1, 1998): 2845–52. http://dx.doi.org/10.1088/0031-9155/43/10/013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Yoneyama, Akio, Kazuyuki Hyodo, Rika Baba, Satoshi Takeya, and Tohoru Takeda. "Feasibility study of phase-contrast X-ray laminography using X-ray interferometry." Journal of Synchrotron Radiation 25, no. 6 (October 25, 2018): 1841–46. http://dx.doi.org/10.1107/s1600577518013826.

Full text
Abstract:
For fine observation of laminar samples, phase-contrast X-ray laminography using X-ray interferometry was developed. An imaging system fitted with a two-crystal X-ray interferometer was used to perform the observations, and the sectional images were calculated by a three-dimensional iterative reconstruction method. Obtained images of an old flat slab of limestone from the Carnic Alps depicted fusulinids in the Carboniferous period with 3 mg cm−3 density resolution, and those of carbon paper used for a fuel-cell battery displayed the inner fibrous structures clearly.
APA, Harvard, Vancouver, ISO, and other styles
5

Ruiz-Yaniz, Maite, Irene Zanette, Adrian Sarapata, Lorenz Birnbacher, Mathias Marschner, Michael Chabior, Margie Olbinado, Franz Pfeiffer, and Alexander Rack. "Hard X-ray phase-contrast tomography of non-homogeneous specimens: grating interferometryversuspropagation-based imaging." Journal of Synchrotron Radiation 23, no. 5 (July 26, 2016): 1202–9. http://dx.doi.org/10.1107/s1600577516009164.

Full text
Abstract:
X-ray phase-contrast imaging is an effective approach to drastically increase the contrast and sensitivity of microtomographic techniques. Numerous approaches to depict the real part of the complex-valued refractive index of a specimen are nowadays available. A comparative study using experimental data from grating-based interferometry and propagation-based phase contrast combined with single-distance phase retrieval applied to a non-homogeneous sample is presented (acquired at beamline ID19-ESRF). It is shown that grating-based interferometry can handle density gradients in a superior manner. The study underlines the complementarity of the two techniques for practical applications.
APA, Harvard, Vancouver, ISO, and other styles
6

Diemoz, P. C., A. Bravin, and P. Coan. "Theoretical comparison of three X-ray phase-contrast imaging techniques: propagation-based imaging, analyzer-based imaging and grating interferometry." Optics Express 20, no. 3 (January 23, 2012): 2789. http://dx.doi.org/10.1364/oe.20.002789.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Blinov, N. N., A. Yu Vasil’ev, N. S. Serova, A. Yu Gryaznov, and N. N. Potrakhov. "A Microfocal Method for Phase-Contrast X-Ray Imaging." Biomedical Engineering 43, no. 4 (July 2009): 156–60. http://dx.doi.org/10.1007/s10527-009-9120-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wali, Faiz, Shenghao Wang, Ji Li, Jianheng Huang, Yaohu Lei, Zhao Wu, Peiping Zhu, and Jinyuan Liu. "Image Quality Analysis of X-ray Grating Interferometer Using Integrating-bucket Method." Journal of Imaging Science and Technology 64, no. 2 (March 1, 2020): 20503–1. http://dx.doi.org/10.2352/j.imagingsci.technol.2020.64.2.020503.

Full text
Abstract:
Abstract Grating-based x-ray phase-contrast imaging has the potential to enhance image quality and provide inner structure details non-destructively. In this work, using grating-based x-ray phase-contrast imaging system and employing integrating-bucket method, the quantitative expressions of signal-to-noise ratios due to photon statistics and mechanical error are analyzed in detail. Photon statistical noise and mechanical error are the main sources affecting the image noise in x-ray grating interferometry. Integrating-bucket method is a new phase extraction method translated to x-ray grating interferometry; hence, its image quality analysis would be of great importance to get high-quality phase image. The authors’ conclusions provide an alternate method to get high-quality refraction signal using grating interferometer, and hence increases applicability of grating interferometry in preclinical and clinical usage.
APA, Harvard, Vancouver, ISO, and other styles
9

Lewis, R. A. "Medical phase contrast x-ray imaging: current status and future prospects." Physics in Medicine and Biology 49, no. 16 (July 31, 2004): 3573–83. http://dx.doi.org/10.1088/0031-9155/49/16/005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gasilov, S. V., I. V. Gasilova, and S. V. Dyachenko. "Modeling the phase-contrast X-ray tomography imaging of medical samples." Mathematical Models and Computer Simulations 4, no. 6 (November 2012): 560–67. http://dx.doi.org/10.1134/s2070048212060063.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "X-ray imaging, phase contrast, medical imaging, interferometry"

1

Chabior, Michael. "Contributions to the characterization of grating-based x-ray phase-contrast imaging." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2011. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-81705.

Full text
Abstract:
In this work, a characterization and optimization of the grating-based x-ray imaging technique is presented. The investigations are introduced by analytical considerations, are underpinned with numerical simulations and validated using exemplary experiments. A detailed examination of the image formation in a grating interferometer is given, highlighting the dependence of the measured signal on the profile of the gratings. Subsequently, it is shown analytically and in experiments that grating-based imaging can be performed using three basic grating arrangements, which differ in their requirements on grating fabrication and experimental implementation. By a characterization of the measurement signal for each arrangement, a dependence of the signal strength on the sample position within the interferometer is identified. The consecutive evaluation of the impact of this position dependence on radiographic and tomographic data leads to the derivation of optimized reconstruction algorithms and to a correction of resulting image artifacts. Additionally, it is shown that the simultaneous measurement of attenuation and phase images allows the determination of the atomic number of the sample, opening new possibilities for material discrimination. Apart from these investigations on the contrast formation, various imperfections of the technique are investigated: The properties of the image noise are examined in a detailed statistical analysis, yielding a fundamental understanding of the signal-to-noise behavior of the three available contrast channels. Additionally, beam-hardening artifacts at polychromatic x-ray sources are investigated and their correction by a linearization approach is resented. By a subsequent analysis of the influence of various different grating imperfections on the image quality, tolerance limits for grating fabrication are specified. Furthermore, analytical considerations show that gratings with a duty cycle of 1/3 are advantageous with respect to the signal-to-noise ratio in comparison to common gratings with a duty cycle of 1/2. In conclusion, the results, concepts and methods developed in this work broaden the understanding of grating-based x-ray imaging and constitute a step forward towards the practical implementations of the technique in imaging applications.
APA, Harvard, Vancouver, ISO, and other styles
2

Sadek, Ahmad, and Ruben Pozzi. "Iterative Reconstruction Algorithm for Phase-Contrast X-Ray Imaging." Thesis, KTH, Medicinteknik och hälsosystem, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-277802.

Full text
Abstract:
Phase-contrast imaging (PCI) is a modality of medical x-ray imaging that can solve one of the main limitations with conventional attenuation-based imaging: the imaging of materials with low attenuation coefficients, such as soft tissues. A modality of PCI, Propagation-based phase-contrast imaging (PBI), was used in this project. This method does not require any optical elements than those used in the conventional imaging; it does, however, require more processing compared to other kinds of PCI. In addition to the reduced image quality, the required image reconstruction process, with PCI, also requires several manual adjustments, which in turn results in a lot of time consuming. In order to achieve that, a simple iterative image reconstruction method that combines Simultaneous Iterative Reconstruction Technique (SIRT) and propagation-based phase-contrast imaging was developed. The proposed method was compared with another commonly used phase-retrieval method, Paganin's algorithm. The obtained results showed higher resolution and reduced blur artefacts compared with Paganin's method. The developed method also appeared to be less sensitive to error in the input parameters, such as the attenuation coefficient, but also more time-consumption than the non-iterative Paganin's method, due to the higher data processing.
Faskontrastavbildning är en ny medicinsk röntgenavbildningsteknik, som har utvecklats för att ge bättre kontrast än konventionell röntgenavbildning, särskilt för objekt med låg attenuationskoefficient, såsom mjuk vävnad. I detta projekt användes s.k. propagationsbaserad faskonstrantavbildning, som är en av de enkla metoder som möjliggör faskontrastavbildningen, utan extra optiska element än det som ingår i en konventionell avbildning. Metoden kräver dock mer avancerad bildbehandling. Två av de huvudsakliga problemen som oftast uppstår vid faskontrastavbildning är minskad bildkvalité efter den väsentliga bildrekonstruktionen, samt att den är tidskrävande p.g.a. manuella justeringar som måste göras. I det här projektet implementerades en enkel metod baserad på en kombination av den iterativa algoritmen för bildrekonstruktion, Simultaneous Iterative Reconstruction Technique (SIRT), med propagationsbaserad faskonstrantavbildning. Resultaten jämfördes med en annan fasåterhämtningsmetod, som är välkänd och ofta används inom detta område, Paganinsmetod. Efter jämförelsen konstaterades att upplösningen blev högre och artefakter som suddighet reducerades. Det noterades också att den utvecklade metoden var mindre känslig för manuell inmatning av parametern för attenuationskoefficient. Metoden visade sig dock vara mer tidskrävande än Paganin-metoden.
APA, Harvard, Vancouver, ISO, and other styles
3

Mittone, Alberto [Verfasser], and Paola [Akademischer Betreuer] Coan. "Development of X-ray phase-contrast imaging techniques for medical diagnostics : towards clinical application / Alberto Mittone. Betreuer: Paola Coan." München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2015. http://d-nb.info/1076242901/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zanette, Irène. "Interférométrie X à réseaux pour l'imagerie et l'analyse de front d'ondes au synchrotron." Thesis, Grenoble, 2011. http://www.theses.fr/2011GRENY058/document.

Full text
Abstract:
Le sujet de cette thèse est l'interférométrie X à réseaux: une technique d’imagerie développée pour la première fois il y a quelques années et qui donne des images de phase et de diffusion (small angle X-ray scattering) de haute sensibilité. Cette technique a un potentiel considérable pour la visualisation du structures qui absorbent faiblement les rayons X, et pour la détection de détails plus petits que la résolution du détecteur, par exemple les fissures et les fibres. Des structures de ce type ne peuvent pas être visualisées avec l’imagerie conventionnelle à rayons X en absorption. Dans le cadre des travaux sur cette thèse, un interféromètre à réseau à rayons X pour radiographie et tomographie multimodale a été installé à la ligne de lumière ID19 de l‘European Synchrotron Radiation Facility à Grenoble, France. L’excellente performance de cet instrument a été démontrée sur une grande variété d'échantillons de tissus biologiques mous, sur des échantillons paléontologiques, et sur des tissus osseux. Une autre partie des ce travail porte sur des améliorations de la technique d’imagerie elle-même. La première des ces améliorations consiste en un développement de méthodes avancées pour la tomographie avec réseaux. Ces méthodes peuvent réduire considérablement la dose livrée à l’échantillon durant les mesures nécessaires pour la reconstruction tomographique tout en préservant la qualité d’image. Un autre résultat majeur dans le cadre de ce travail est la conception, la mise en oeuvre et la démonstration d’un interféromètre à réseau à deux dimensions (2D). Cet appareil utilise des réseaux bidimentionnels au lieu de réseaux linéaires. L’interféromètre 2D produit des cartes d'angles de réfraction et des images de type champ sombre dans plusieurs directions du plan d’image et améliore considérablement la qualité des radiographies à réseau. Le champ d’application de l’interféromètre 2D n’est pas limité à l'imagerie par rayons X, puisque le nouveau dispositif peut aussi être particulièrement utile pour la caractérisation de composantes optiques de haute précision, tel que démontré par des expériences de métrologie à la longueur d'onde d'utilisationsur des lentilles réfractives pour rayons X
The subject of this thesis is X-ray grating interferometry: an imaging technique first demonstrated a few years ago, which yields high-sensitivity phase and dark-field (small angle X-ray scattering) images of the investigated specimen. It bears tremendous potential for the visualization of low-absorbing features, and for the detection of details smaller than the resolution of the imaging system, such as cracks and fibers. Structures of this type cannot be visualized with conventional absorption X-ray imaging. As a part of this thesis work, an X-ray grating interferometer for multimodal radiography and tomography was installed at the beamline ID19 of the European Synchrotron Radiation Facility in Grenoble, France. The excellent performance of this instrument has been demonstrated on a large variety of soft-tissue biological samples, on paleontological specimens, and on osseous tissues. Another part of the present work concerns improvements of the imaging technique itself. The first of these improvements consists in the development of advanced schemes for grating-based tomography. These schemes can substantially reduce the dose delivered to the sample during a grating-based tomography scan, while preserving the image quality. Another major achievement of this thesis is the design, implementation and demonstration of a two-dimensional (2D) grating interferometer. This device uses gratings structured in two dimensions rather than line gratings. The 2D interferometer gives refraction angle and dark-field signals in multiple directions of the image plane and significantly improves the quality of the grating-based radiographies. The application range of the 2D interferometer is not restricted to X-ray imaging; the new device may also be particularly useful for high-precision optics characterization, as is shown by in-situ at-wavelength investigations of X-ray refractive lenses
APA, Harvard, Vancouver, ISO, and other styles
5

Weber, Loriane. "Iterative tomographic X-Ray phase reconstruction." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSEI085/document.

Full text
Abstract:
L’imagerie par contraste de phase suscite un intérêt croissant dans le domaine biomédical, puisqu’il offre un contraste amélioré par rapport à l’imagerie d’atténuation conventionnelle. En effet, le décalage en phase induit par les tissus mous, dans la gamme d’énergie utilisée en imagerie, est environ mille fois plus important que leur atténuation. Le contraste de phase peut être obtenu, entre autres, en laissant un faisceau de rayons X cohérent se propager librement après avoir traversé un échantillon. Dans ce cas, les signaux obtenus peuvent être modélisés par la diffraction de Fresnel. Le défi de l’imagerie de phase quantitative est de retrouver l’atténuation et l’information de phase de l’objet observé, à partir des motifs diffractés enregistrés à une ou plusieurs distances. Ces deux quantités d’atténuation et de phase, sont entremêlées de manière non-linéaire dans le signal acquis. Dans ces travaux, nous considérons les développements et les applications de la micro- et nanotomographie de phase. D’abord, nous nous sommes intéressés à la reconstruction quantitative de biomatériaux à partir d’une acquisition multi-distance. L’estimation de la phase a été effectuée via une approche mixte, basée sur la linéarisation du modèle de contraste. Elle a été suivie d’une étape de reconstruction tomographique. Nous avons automatisé le processus de reconstruction de phase, permettant ainsi l’analyse d’un grand nombre d’échantillons. Cette méthode a été utilisée pour étudier l’influence de différentes cellules osseuses sur la croissance de l’os. Ensuite, des échantillons d’os humains ont été observés en nanotomographie de phase. Nous avons montré le potentiel d’une telle technique sur l’observation et l’analyse du réseau lacuno-canaliculaire de l’os. Nous avons appliqué des outils existants pour caractériser de manière plus approfondie la minéralisation et les l’orientation des fibres de collagènes de certains échantillons. L’estimation de phase, est, néanmoins, un problème inverse mal posé. Il n’existe pas de méthode de reconstruction générale. Les méthodes existantes sont soit sensibles au bruit basse fréquence, soit exigent des conditions strictes sur l’objet observé. Ainsi, nous considérons le problème inverse joint, qui combine l’estimation de phase et la reconstruction tomographique en une seule étape. Nous avons proposé des algorithmes itératifs innovants qui couplent ces deux étapes dans une seule boucle régularisée. Nous avons considéré un modèle de contraste linéarisé, couplé à un algorithme algébrique de reconstruction tomographique. Ces algorithmes sont testés sur des données simulées
Phase contrast imaging has been of growing interest in the biomedical field, since it provides an enhanced contrast compared to attenuation-based imaging. Actually, the phase shift of the incoming X-ray beam induced by an object can be up to three orders of magnitude higher than its attenuation, particularly for soft tissues in the imaging energy range. Phase contrast can be, among others existing techniques, achieved by letting a coherent X-ray beam freely propagate after the sample. In this case, the obtained and recorded signals can be modeled as Fresnel diffraction patterns. The challenge of quantitative phase imaging is to retrieve, from these diffraction patterns, both the attenuation and the phase information of the imaged object, quantities that are non-linearly entangled in the recorded signal. In this work we consider developments and applications of X-ray phase micro and nano-CT. First, we investigated the reconstruction of seeded bone scaffolds using sed multiple distance phase acquisitions. Phase retrieval is here performed using the mixed approach, based on a linearization of the contrast model, and followed by filtered-back projection. We implemented an automatic version of the phase reconstruction process, to allow for the reconstruction of large sets of samples. The method was applied to bone scaffold data in order to study the influence of different bone cells cultures on bone formation. Then, human bone samples were imaged using phase nano-CT, and the potential of phase nano-imaging to analyze the morphology of the lacuno-canalicular network is shown. We applied existing tools to further characterize the mineralization and the collagen orientation of these samples. Phase retrieval, however, is an ill-posed inverse problem. A general reconstruction method does not exist. Existing methods are either sensitive to low frequency noise, or put stringent requirements on the imaged object. Therefore, we considered the joint inverse problem of combining both phase retrieval and tomographic reconstruction. We proposed an innovative algorithm for this problem, which combines phase retrieval and tomographic reconstruction into a single iterative regularized loop, where a linear phase contrast model is coupled with an algebraic tomographic reconstruction algorithm. This algorithm is applied to numerical simulated data
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "X-ray imaging, phase contrast, medical imaging, interferometry"

1

Centre, Bhabha Atomic Research. Development of phase-contrast imaging technique for material science and medical science applications. Mumbai: Bhabha Atomic Research Centre, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "X-ray imaging, phase contrast, medical imaging, interferometry"

1

Zdora, Marie-Christine. "X-ray Single-Grating Interferometry." In X-ray Phase-Contrast Imaging Using Near-Field Speckles, 69–111. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-66329-2_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gao, Dachao, Tim E. Gureyev, Andrew Pogany, Andrew W. Stevenson, and Stephen W. Wilkins. "New Methods of X-Ray Imaging based on Phase Contrast." In Medical Applications of Synchrotron Radiation, 63–71. Tokyo: Springer Japan, 1998. http://dx.doi.org/10.1007/978-4-431-68485-5_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Momose, Atsushi, Tohoru Takeda, Yuji Itai, Akio Yoneyama, and Keiichi Hirano. "Perspective for Medical Applications of Phase-Contrast X-Ray Imaging." In Medical Applications of Synchrotron Radiation, 54–62. Tokyo: Springer Japan, 1998. http://dx.doi.org/10.1007/978-4-431-68485-5_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Coan, P., P. C. Diemoz, A. Bravin, T. Schlossbauer, M. Reiser, D. Habs, T. Schneider, and C. Glaser. "Phase contrast imaging for medical diagnostics: towards clinical application with compact laser-based X-ray sources." In IFMBE Proceedings, 200–203. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03895-2_58.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

"Grating-Based Phase-Contrast X-Ray Imaging Technique." In Radiation Detectors for Medical Imaging, 272–85. CRC Press, 2015. http://dx.doi.org/10.1201/b18957-14.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "X-ray imaging, phase contrast, medical imaging, interferometry"

1

Thüring, T., S. Hämmerle, S. Weiss, J. Nüesch, J. Meiser, J. Mohr, C. David, and M. Stampanoni. "Compact hard X-ray grating interferometry for table top phase contrast micro CT." In SPIE Medical Imaging, edited by Robert M. Nishikawa and Bruce R. Whiting. SPIE, 2013. http://dx.doi.org/10.1117/12.2006865.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bartl, P., J. Durst, W. Haas, T. Michel, A. Ritter, T. Weber, and G. Anton. "Simulation of X-ray phase-contrast imaging using grating-interferometry." In 2009 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC 2009). IEEE, 2009. http://dx.doi.org/10.1109/nssmic.2009.5401821.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Stutman, D., J. W. Stayman, M. Finkenthal, and J. H. Siewerdsen. "High energy x-ray phase-contrast imaging using glancing angle grating interferometers." In SPIE Medical Imaging, edited by Robert M. Nishikawa and Bruce R. Whiting. SPIE, 2013. http://dx.doi.org/10.1117/12.2007930.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ge, Yongshuai, Ran Zhang, Ke Li, and Guang-Hong Chen. "X-ray differential phase contrast imaging using a grating interferometer and a single photon counting detector." In SPIE Medical Imaging, edited by Despina Kontos, Thomas G. Flohr, and Joseph Y. Lo. SPIE, 2016. http://dx.doi.org/10.1117/12.2216321.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Dey, Joyoni, Jingzhu Xu, and Bryce Smith. "Investigation of artifacts due to large-area grating defects and correction using Short Window Fourier Transform and Convolution Neural Networks for phase-contrast X-ray Interferometry." In Physics of Medical Imaging, edited by Hilde Bosmans and Guang-Hong Chen. SPIE, 2020. http://dx.doi.org/10.1117/12.2549409.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Haas, W., P. Bartl, F. Bayer, J. Durst, T. Grund, J. Kenntner, T. Michel, et al. "Performance analysis of X-Ray phase-contrast interferometers with respect to grating layouts." In 2010 IEEE Nuclear Science Symposium and Medical Imaging Conference (2010 NSS/MIC). IEEE, 2010. http://dx.doi.org/10.1109/nssmic.2010.5874388.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lundström, Ulf, Daniel H. Larsson, Per A. C. Takman, Lena Scott, Anna Burvall, and Hans M. Hertz. "X-ray phase contrast angiography using CO2as contrast agent." In SPIE Medical Imaging, edited by Norbert J. Pelc, Robert M. Nishikawa, and Bruce R. Whiting. SPIE, 2012. http://dx.doi.org/10.1117/12.911408.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Qi, Zhihua, Pascal Thériault-Lauzier, Nicholas Bevins, Joseph Zambelli, Ke Li, and Guang-Hong Chen. "Helical x-ray differential phase contrast computed tomography." In SPIE Medical Imaging, edited by Norbert J. Pelc, Ehsan Samei, and Robert M. Nishikawa. SPIE, 2011. http://dx.doi.org/10.1117/12.878494.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gureyev, Timur E., Carsten Raven, Anatoly A. Snigirev, Irina Snigireva, and Stephen W. Wilkins. "Hard x-ray quantitative noninterferometric phase-contrast imaging." In Medical Imaging '99, edited by John M. Boone and James T. Dobbins III. SPIE, 1999. http://dx.doi.org/10.1117/12.349510.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Zambelli, Joseph, Ke Li, Nicholas Bevins, Zhihua Qi, and Guang-Hong Chen. "Noise characteristics of x-ray differential phase contrast CT." In SPIE Medical Imaging, edited by Norbert J. Pelc, Ehsan Samei, and Robert M. Nishikawa. SPIE, 2011. http://dx.doi.org/10.1117/12.878497.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography