Academic literature on the topic 'X-ray Instrumentation'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'X-ray Instrumentation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "X-ray Instrumentation"

1

Ramsey, Brian D., Robert A. Austin, and Rudolf Decher. "Instrumentation for X-ray astronomy." Space Science Reviews 69, no. 1-2 (July 1994): 139–204. http://dx.doi.org/10.1007/bf00756035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Li, C. K., R. D. Petrasso, K. W. Wenzel, D. H. Lo, and M. C. Borrás. "Comparative study of x‐ray sources characterizing x‐ray instrumentation." Review of Scientific Instruments 66, no. 1 (January 1995): 697–99. http://dx.doi.org/10.1063/1.1146261.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kovalchuk, M. V., Yu N. Shilin, S. I. Zheludeva, O. P. Aleshko-Ozhevsky, E. H. Arutynyan, D. M. Kheiker, A. Ya Kreines, et al. "X-ray instrumentation for SR beamlines." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 448, no. 1-2 (June 2000): 112–19. http://dx.doi.org/10.1016/s0168-9002(00)00207-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bunaciu, Andrei A., Elena gabriela Udriştioiu, and Hassan Y. Aboul-Enein. "X-Ray Diffraction: Instrumentation and Applications." Critical Reviews in Analytical Chemistry 45, no. 4 (April 2015): 289–99. http://dx.doi.org/10.1080/10408347.2014.949616.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Molodtsov, S. L. "European XFEL: Soft X-Ray instrumentation." Crystallography Reports 56, no. 7 (November 19, 2011): 1217–23. http://dx.doi.org/10.1134/s1063774511070212.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Parrish, W., M. Hart, C. G. Erickson, N. Masciocchi, and T. C. Huang. "Instrumentation for Synchrotron X-Ray Powder Diffractometry." Advances in X-ray Analysis 29 (1985): 243–50. http://dx.doi.org/10.1154/s0376030800010326.

Full text
Abstract:
AbstractThe instrumentation developed for poly crystalline diffractometry using the storage ring at the Stanford Synchrotron Radiation Laboratory is described. A pair of automated vertical scan diffractometers was used for a Si (111) channel monochromator and the powder specimens. The parallel beam powder diffraction was defined by horizontal parallel slits which had several times higher intensity than a receiving slit at the same resolution. The patterns were obtained with 2:1 scanning with’ a selected monochromatic beam, and an energy dispersive diffraction method in which the monochromator is step-scanned, and the specimen and scintillation counter are fixed. Both methods use the same instrumentation.
APA, Harvard, Vancouver, ISO, and other styles
7

Chatzisotiriou, V., I. Christofis, N. Dimitriou, Ch Dre, N. Haralabidis, S. Karvelas, A. G. Karydas, et al. "X-ray powder crystallography with vertex instrumentation." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 418, no. 1 (November 1998): 173–85. http://dx.doi.org/10.1016/s0168-9002(98)00731-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Nordgren, Joseph, and Jinghua Guo. "Instrumentation for soft X-ray emission spectroscopy." Journal of Electron Spectroscopy and Related Phenomena 110-111 (October 2000): 1–13. http://dx.doi.org/10.1016/s0368-2048(00)00154-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Espinosa, G. "Instrumentation for X- and gamma-ray spectrometry." Journal of Radioanalytical and Nuclear Chemistry 264, no. 1 (March 2005): 107–11. http://dx.doi.org/10.1007/s10967-005-0682-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Baronova, E. O., M. M. Stepanenko, and A. M. Stepanenko. "X-ray spectropolarimeter." Review of Scientific Instruments 79, no. 8 (August 2008): 083105. http://dx.doi.org/10.1063/1.2964121.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "X-ray Instrumentation"

1

Martindale, Adrian. "Novel X-ray instrumentation for astronomy." Thesis, University of Leicester, 2008. http://hdl.handle.net/2381/3964.

Full text
Abstract:
This thesis describes experimental and theoretical work and technology development directed towards the next generation of X-ray astronomical instrumentation. A great heritage exists of instruments which are sensitive to X-rays which operate on board space based observatories. The next generation of such telescopes will take advantage of the rapid technology advancement of the last four decades of more accurately observe the universe and give greater insight into the objects within it, how they formed and how they will evolve. Chapters 2 and 3 describe the investigation of extremely high speed microchannel plate detectors capable of counting individual photons with a timing accuracy of a few tens of picoseconds (1 ps = 10-12s)at extremely high spatial resolution. Although many early X-ray astronomical instruments were based on MCP detectors, it is only recent manufacturing improvements which have enabled the production of such small pore diameters, enabling the unparalleled temporal and spatial resolution. Prospects for future application exist in fields as diverse as X-ray and ultraviolet astronomy and the life sciences. Chapters 4 and 5 report the testing of Microchannel plates as low mass X-ray optics where the development of square pore geometrics has made true imaging MCP telescopes possible. Two flight programs are identified as areas where such optics will provide tangible benefits: These are BepiColombo, a European mission to the planet Mercury which will contain the first ever imaging X-raytelescope on a planetary science mission and Lobster-ISS, a wide field of view telescope for X-ray astronomy which will provide coverage of, almost, the whole sky every 90 minute orbit. Testing reported herein finds that the manufacturing techniques are maturing to a point where they can exceed the <5 arcmin resolution required for these missions. Chapters 6 and 7 comprise a description of a completely novel X-ray polarimeter. For the past three decades, little or now progress has been made in the field of X-ray astrophysical polarimetry owing to the lack of suitable instrumentation, this is despite intense scientific interest in such measurements. A simple optical design for a polarimeter is made possible using highly ordered materials which exhibit dichroism at fixed, narrow energy bands, for the first time allowing simultaneous measurement of ALL astronomically pertinent observables. The areas of science influenced by these three areas of instrument development are shown to be very broad, including; astrophysics and cosmology, planetary science, life sciences, nano-science and even fundamental chemistry.
APA, Harvard, Vancouver, ISO, and other styles
2

Salcin, Esen, and Esen Salcin. "Fisher Information in X-ray/Gamma-ray Imaging Instrumentation Design." Diss., The University of Arizona, 2015. http://hdl.handle.net/10150/556861.

Full text
Abstract:
Signal formation in a photon-counting x-ray/gamma-ray imaging detector is a complex process resulting in detector signals governed by multiple random effects. Recovering maximum possible information about event attributes of interest requires a systematic collection of calibration data and analysis provided by estimation theory. In this context, a likelihood model provides a description of the connection between the observed signals and the event attributes. A quantitative measure of how well the measured signals can be used to produce an estimate of the parameters is given by Fisher Information analysis. In this work, we demonstrate several applications of the Fisher Information Matrix (FIM) as a powerful and practical tool for investigating and optimizing potential next-generation x-ray/gamma-ray detector designs, with an emphasis on medical-imaging applications. Using FIM as a design tool means to explore the physical detector design choices that have a relationship with the FIM through the likelihood function, how are they interrelated, and determining whether it is possible to modify any of these choices to yield or retain higher values for Fisher Information. We begin by testing these ideas by investigating a new type of a semiconductor detector, a Cadmium Telluride (CdTe) detector with double-sided-strip geometry developed by our collaborators at the Japan Aerospace Exploration Agency (JAXA). The statistical properties of the detector signals as a function of interaction positions in 3D (x, y, z) are presented with mathematical expressions as well as experimental data from measurements using synchrotron radiation at the Advanced Photon Source at Argonne National Laboratory. We show the computation of FIM for evaluating positioning performance and discuss how various detector parameters, that are identified to affect FIM, can be used in detector optimization. Next, we show the application of FIM analysis in a detector system based on multi-anode photomultiplier tubes coupled to a monolithic scintillator in the design of smart electronic read-out strategies. We conclude by arguing that a detector system is expected to perform the best when the hardware is optimized jointly with the estimation algorithm (simply referred to as the "software" in this context) that will be used with it. The results of this work lead to the idea of a detector development approach where the detector hardware platform is developed concurrently with the software and firmware in order to achieve optimal performance.
APA, Harvard, Vancouver, ISO, and other styles
3

Takman, Per. "Compact Soft X-Ray Microscopy : Sources, Optics and Instrumentation." Doctoral thesis, Stockholm : Tillämpad fysik, Kungliga Tekniska högskolan, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4342.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Stollberg, Heide. "Compact Soft X-Ray Microscopy: Image Processing and Instrumentation." Doctoral thesis, Stockholm, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4128.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zhang, Shuang Nan. "Instrumentation and data analysis for hard X-ray astronomy." Thesis, University of Southampton, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.252689.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Selin, Mårten. "3D X-ray microscopy: image formation, tomography and instrumentation." Doctoral thesis, KTH, Biomedicinsk fysik och röntgenfysik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-184095.

Full text
Abstract:
Tomography in soft X-ray microscopy is an emerging technique for obtaining quantitative 3D structural information about cells. One of its strengths, compared with other techniques, is that it can image intact cells in their near-native state at a few 10 nm’s resolution, without staining. However, the methods for reconstructing 3D-data rely on algorithms that assume projection data, which the images are generally not due to the imaging systems’ limited depth of focus. To bring out the full potential of tomography in soft X-ray microscopy an improved understanding of the image formation is desired. This Thesis reviews zone plate-based X-ray microscopy for biological imaging and the theory necessary for a numerical implementation of a 3D image formation model. Furthermore, a novel reconstruction approach is proposed that improves the overall resolution in a reconstruction of a tomographically imaged object. This is demonstrated by simulations and experiments. Finally, this Thesis covers work on the Stockholm X-ray microscope, including an upgrade of the X-ray source yielding unprecedented brightness for a compact system. With this upgrade it was possible to do high-quality imaging of cells in their near-native state with only 10 second exposures.
Tomografi i mjukröntgenmikroskopi är en ny teknik för att få ut kvantitativ strukturell 3D information om celler. Dess styrka jämfört med andra tekniker är att den kan avbilda intakta celler i deras nära naturliga tillstånd med ett par 10 nm upplösning, utan omfattande preparering. Dock är metoderna för att rekonstruera 3D-data beroende av algoritmer som antar projektionsdata, vilket bilderna i allmänhet inte är på grund av avbildningsystemens begränsade skärpedjup. För att få ut den fulla potentialen av tomografi i röntgenmikroskopi behövs en ökad förståelse för avbildningsprocessen. Denna avhandling behandlar zonplatte-baserad röntgenmikroskopi för biologisk avbildning och den nödvändiga teorin för en numerisk implementering av en avbildningsmodell i 3D. En ny rekonstruktionsmetod föreslås som förbättrar upplösningen i rekonstruktionen för ett tomografiskt avbildat objekt. Detta visas i simuleringar och experiment. Slutligen omfattar denna avhandling arbete på Stockholms mjukröntgenmikroskop, inklusive en uppgradering av röntgenkällan som ger oöverträffad ljusstyrka för ett kompakt system. Denna uppgradering möjliggör högkvalitativ avbildning av celler i deras nästan naturliga tillstånd med endast 10 sekunders exponering.

QC 20160324

APA, Harvard, Vancouver, ISO, and other styles
7

Müller, Oliver [Verfasser]. "Hard X-ray Synchrotron Beamline Instrumentation for Millisecond Quick Extended X-ray Absorption Spectroscopy / Oliver Müller." Wuppertal : Universitätsbibliothek Wuppertal, 2016. http://d-nb.info/1120339022/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Marlowe, Hannah Rebecca. "Polarimetric and spectrographic instrumentation to enable next generation x-ray observatories." Diss., University of Iowa, 2016. https://ir.uiowa.edu/etd/3136.

Full text
Abstract:
Ultraluminous X-ray (ULX) sources are non-nuclear extragalactic accreting compact objects whose X-ray luminosities exceed the Eddington limit for stellar mass black hole binaries (BHB). Their high luminosities suggest they are either intermediate mass black holes, that their emission is beamed, or that they are emitting at super-Eddington rates. We observed the ULX IC 342 X-1 simultaneously in X-ray and radio with Chandra and the VLA to investigate previously reported unresolved radio emission coincident with the ULX. The Chandra spectrum appears to be consistent with an accretion disc-dominated thermal state and suggests a mass of the black hole using the modeled inner disc temperature to be 157Mʘ ≤ M √ (cosi) ≤ 200 Mʘ. No significant radio emission was observed, consistent with the source being in a thermal disc-dominated state. Reanalysis of previous X-ray observations of the source shows that high energy curvature often interpreted as evidence for supercritical accretion cannot confidently be identified using the 2-10 keV energy band. Black hole systems such as BHBs, ULXs, and AGN represent the greatest test labs in the universe for the study of extreme gravity. Emission from the accretion disk and scattering from the surrounding corona allow study of the ultra-strong gravity and magnetic fields very near the central BH engine. However, many of these effects are imprinted as polarization of the emission and are invisible to spectral and timing studies alone. The outflows from AGN are also thought to play a key role in galaxy shaping and cluster formation. High efficiency and spectral resolution are required to measure ionization-velocities and density parameters from these sources to constrain the outflow structure. Beamline studies and theoretical modeling were carried out to characterize the throughput and spectral resolving power of off-plane gratings for use in future x-ray observatories which will make these measurements. Additionally, synchrotron measurements were carried out to test theoretical predictions of strong polarization response for off-plane diffraction gratings. The empirical results of this study are the first to demonstrate a lack of polarization sensitivity for grazing-incidence off-plane gratings and support more complex modeling results than used previously.
APA, Harvard, Vancouver, ISO, and other styles
9

Barnsley, Robin. "X-ray spectroscopic diagnostics of magnetically confined plasmas : instrumentation and techniques." Thesis, University of Leicester, 1993. http://hdl.handle.net/2381/35789.

Full text
Abstract:
This thesis reports several advances in x-ray crystal spectroscopic techniques for the diagnosis of high-temperature magnetically confined plasmas. Two complementary spectrometers have been developed, and have been demonstrated in a wide range of experiments on the Culham Laboratory DITE and COMPASS tokamaks, and on the Joint European JET tokamak. A Bragg rotor' spectrometer uses a combination of crystals and multilayers to give complete coverage of the spectrum between 1 A and 100 A. Developments were made to extend the coverage from 25 A to 100 A, using multilayer mirrors and organic crystals. The success of the instrument depends largely on the development of a high-rate ( 107 count/s) gas proportional counter system, capable of covering the energy range from 100 eV to 10 keV. A Johann spectrometer uses a novel four-pillar jig to bend' crystals to typically 1 m radius. A large-area cooled x-ray CCD array is used in the focus, resulting in a compact high-resolution instrument. This allows line profile and ratio measurements with a time resolution of ~1 ms. Observations using the Bragg rotor spectrometer include impurity monitoring under various plasma and limiter configurations. Temperature and density sensitive line ratios were measured under known plasma conditions and compared with theory, adding confidence to their use for less well diagnosed plasmas such as those observed in astrophysics. A major application has been the study of a switch (controlled by the refuelling rate) between long and short impurity confinement times in the DITE tokamak. Trace impurities were injected by laser ablation, and their subsequent temporal and spatial behavour studied spectroscopically. Weak lines, due to radiative recombination into excited states of H- and He-like ions, were observed in the outer plasma. The radial profiles of these "radiative recombination lines" were governed by a balance between transport and, recombination, and allowed the effective diffusion coefficient to be measured locally. It was shown that the transport changes occurred in the outer half of the plasma, and that conditions in the core were unchanged. The suitability of Bragg spectroscopy for a reactor-relevant plasma was demonstrated during the JET preliminary tritium experiment (PTE). A double- reflection instrument was used, with a tritium-compatible radiation-shielded beamline. Based on this operational experience, a soft x-ray spectroscopy system for a next-step device such as ITER is proposed.
APA, Harvard, Vancouver, ISO, and other styles
10

Debnath, Sree Bash Chandra. "New generation X-ray detector for radiation therapy and instrumentation for surface physics." Thesis, Aix-Marseille, 2020. http://www.theses.fr/2020AIXM0252.

Full text
Abstract:
Le traitement moderne par radiothérapie est motivé par la demande constante d'un détecteur dosimétrique approprié. Plus récemment, seuls quelques détecteurs se sont montrés prometteurs dans ce sens, mais ils présentent plusieurs obstacles lors de leur mise en œuvre, tant pour les applications à forte dose de rayonnement que pour celles à faible dose. Les dosimètres à rayons X développés industriellement sont encore limités par l'exigence de taille importante, l'effet de moyennage de volume, le manque de sensibilité et le faible rapport signal/bruit, etc. Dans ce contexte, ce travail de thèse est consacré à la conception et à la fabrication d'un nouveau détecteur de rayons X extrêmement compact, en temps réel et très sensible. Le principe du dispositif est basé sur des clusters scintillantes qui sont greffées à l'extrémité d'une petite fibre centrale. Sous irradiation aux rayons X, les clusters émettent de la lumière visible qui est collectée par un compteur de photons à travers la fibre optique. Le détecteur développé a été testé pour la caractérisation de petits champs (inférieurs à 0,5 x 0,5 cm²) en radiothérapie et également en brachythérapie. Dans les deux cas, le détecteur présente d'excellentes performances.En outre, un détecteur similaire à tête nanométrique a été mis en œuvre pour la physique des surfaces au moyen d'une nouvelle technique à double sonde (STM/Fibre). Ainsi, les résultats de cette recherche explorent la dosimétrie des rayonnements miniaturisés avec l'amélioration des traitements des tumeurs de stade précoce. En outre, dans le domaine de l'imagerie des surfaces, une nouvelle technique de caractérisation des matériaux sera mise au point
The modern radiation therapy treatment is driven by the everlasting demand of a suitable dosimetric detector. Most recently, only a few detectors have shown promise in this direction, but exhibiting several barriers while implementing both in high and low radiation dose applications. The industrially developed X-ray dosimeters/detectors are still limited by the significant size requirement, volume averaging effect, lack of sensitivity, and low signal-to-noise ratio, etc. In this context, this thesis work is devoted to the design and fabrication of a novel extremely compact, small-scale, real-time, dynamic, and highly sensitive X-ray detector. The device principle is based on scintillating clusters that are grafted at the extremity of a small core fiber. Under X-ray irradiation, clusters emit visible light that is collected by a photon counter through the optical fiber. The developed detector was tested for small (lower than 0.5 x 0.5 cm²) field characterization in radiotherapy. It also allows characterizing radiation dosimetry in brachytherapy. In both cases, the detector demonstrates excellent performances when compared to the existing dosimeters and MC simulation.In addition, a similar detector with nano-metric head was implemented for the application in surface physics by means of a novel dual-probe (STM/Fiber) technique. Thus, the outcomes of this research explore miniaturized radiation dosimetry and will disclose the path of enhancing early-stage tumor treatments through real-time dosimetry. Moreover, the performance of the probe in surface imaging will open the path of novel material characterization technique allowing simultaneous sample imaging
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "X-ray Instrumentation"

1

Aslanov, L. A. Crystallographic instrumentation. [Chester, England]: International Union of Crystallography, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Cheng, Ping-chin. X-ray Microscopy: Instrumentation and Biological Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Tschentscher, Thomas, and Daniele Cocco. Advances in x-ray free electron lasers: Radiation schemes, x-ray optics and instrumentation. Edited by SPIE (Society). Bellingham, Wash: SPIE, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

X-ray imaging equipment: An introduction. Springfield, Ill., U.S.A: Thomas, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

(Society), SPIE, ed. Computed tomography: Principles, design, artifacts, and recent advances. 2nd ed. Bellingham, Wash: SPIE, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hsieh, Jiang. Computed tomography: Principles, design, artifacts, and recent advances. Bellingham, Washington: SPIE, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rene, Benattar, European Physical Society, European Federation for Applied Optics., and Society of Photo-optical Instrumentation Engineers., eds. X-ray instrumentation in medicine and biology, plasma physics, astrophysics, and synchrotron radiation: Proceedings, ECO2, 25-28 April 1989, Paris, France. Bellingham, Wash: SPIE-the International Society for Optical Engineering, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Den Herder, Jan Willem A. and SPIE (Society), eds. Space telescopes and instrumentation 2012: Ultraviolet to gamma ray : 1-6 July 2012, Amsterdam, Netherlands. Bellingham, Washington: SPIE, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

(Society), SPIE, ed. UV, X-ray, and gamma-ray space instrumentation for astronomy XVI: 3 August 2009, San Diego, California, United States. Bellingham, Wash: SPIE, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Society of Photo-optical Instrumentation Engineers, ed. UV, X-ray, and gamma-ray space instrumentation for astronomy XV: 26-27 August, 2007, San Diego, California, USA. Bellingham, Wash: SPIE, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "X-ray Instrumentation"

1

Hurford, G. J. "X-ray Instrumentation." In The Sun: A Laboratory for Astrophysics, 435–45. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2765-3_21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gabriel, A. H. "Soft X-ray Instrumentation." In The Sun: A Laboratory for Astrophysics, 423–34. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2765-3_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Suzuki, Yoshio, and Yasuko Terada. "Space-Resolved XAFS, Instrumentation and Applications." In X-Ray Absorption and X-Ray Emission Spectroscopy, 251–79. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781118844243.ch10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Variankaval, Narayan. "X-Ray Methods." In Ewing’s Analytical Instrumentation Handbook, Fourth Edition, 233–48. Fourth edition / [edited by] Nelu Grinberg, Sonia Rodriguez. | Boca Raton : CRC Press, Taylor & Francis Group, 2019.: CRC Press, 2019. http://dx.doi.org/10.1201/9781315118024-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Fraser, George W. "Instrumentation for X-ray Spectroscopy." In X-Ray Spectroscopy in Astrophysics, 477–510. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-540-49199-6_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Feigin, L. A., D. I. Svergun, and George W. Taylor. "X-Ray and Neutron Instrumentation." In Structure Analysis by Small-Angle X-Ray and Neutron Scattering, 249–74. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4757-6624-0_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Glatzel, Pieter, Roberto Alonso-Mori, and Dimosthenis Sokaras. "Hard X-Ray Photon-in/Photon-out Spectroscopy: Instrumentation, Theory and Applications." In X-Ray Absorption and X-Ray Emission Spectroscopy, 125–53. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781118844243.ch6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Potts, Philip J. "Chapter 1. Introduction, Analytical Instrumentation and Application Overview." In Portable X-ray Fluorescence Spectrometry, 1–12. Cambridge: Royal Society of Chemistry, 2008. http://dx.doi.org/10.1039/9781847558640-00001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Utaka, Tadashi, and Tomoya Arai. "Instrumentation for Total Reflection Fluorescent X-Ray Spectrometry." In Advances in X-Ray Analysis, 933–40. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3460-0_27.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Price, B. J., and A. T. Ellis. "The Evolution of XRF Instrumentation Within Oxford Instruments." In Advances in X-Ray Analysis, 53–56. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-5377-9_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "X-ray Instrumentation"

1

Kitamoto, S., K. Sakata, H. Murakami, Y. Yoshida, and H. Seta. "X-ray interferometer with an x-ray beam splitter." In SPIE Astronomical Telescopes + Instrumentation, edited by Tadayuki Takahashi, Stephen S. Murray, and Jan-Willem A. den Herder. SPIE, 2012. http://dx.doi.org/10.1117/12.926058.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Muleri, Fabio, Ronaldo Bellazzini, Enrico Costa, Paolo Soffitta, Francesco Lazzarotto, Marco Feroci, Luigi Pacciani, et al. "An x-ray polarimeter for hard x-ray optics." In SPIE Astronomical Telescopes + Instrumentation, edited by Martin J. L. Turner and Günther Hasinger. SPIE, 2006. http://dx.doi.org/10.1117/12.671975.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Schroer, C. G., O. Kurapova, J. Patommel, P. Boye, J. Feldkamp, B. Lengeler, M. Burghammer, et al. "Hard X-Ray Nanoprobe based on Refractive X-Ray Lenses." In SYNCHROTRON RADIATION INSTRUMENTATION: Ninth International Conference on Synchrotron Radiation Instrumentation. AIP, 2007. http://dx.doi.org/10.1063/1.2436301.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Smith, R. K., M. W. Bautz, J. Bookbinder, M. R. Garcia, M. Guainazzi, and C. A. Kilbourne. "Predicted x-ray backgrounds for the International X-ray Observatory." In SPIE Astronomical Telescopes + Instrumentation, edited by Monique Arnaud, Stephen S. Murray, and Tadayuki Takahashi. SPIE, 2010. http://dx.doi.org/10.1117/12.857529.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Maeda, Yoshitomo, Takayuki Hayashi, Hideyuki Mori, Ryoko Nakamura, Takuro Satoh, Akiko Sekiguchi, Kentaro Someya, et al. "Soft x-ray calibration for the NeXT x-ray telescope." In SPIE Astronomical Telescopes + Instrumentation, edited by Martin J. L. Turner and Kathryn A. Flanagan. SPIE, 2008. http://dx.doi.org/10.1117/12.788652.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mitchell, Lee J., Bernard Phlips, Richard S. Woolf, Theodore T. Finne, Anthony Hutcheson, Neil Johnson, Mary Johnson-Rambert, and Rose Perea. "GAGG Radiation Instrumentation (GARI)." In UV, X-Ray, and Gamma-Ray Space Instrumentation for Astronomy XXII, edited by Oswald H. Siegmund. SPIE, 2021. http://dx.doi.org/10.1117/12.2598588.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Elvis, Martin, R. J. Brissenden, G. Fabbiano, D. A. Schwartz, P. Reid, W. Podgorski, M. Eisenhower, et al. "Active x-ray optics for Generation-X, the next high resolution x-ray observatory." In SPIE Astronomical Telescopes + Instrumentation, edited by Martin J. L. Turner and Günther Hasinger. SPIE, 2006. http://dx.doi.org/10.1117/12.672072.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bautz, M. W., S. E. Kissel, B. J. LaMarr, and G. Y. Prigozhin. "Improved x-ray CCD response at very low x-ray energies." In SPIE Astronomical Telescopes + Instrumentation, edited by Martin J. L. Turner and Günther Hasinger. SPIE, 2006. http://dx.doi.org/10.1117/12.670847.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mitchell, Lee, Bernard Phlips, Emily G. Jackson, Theodore T. Finne, Richard S. Woolf, and Neil Johnson. "Strontium Iodide Radiation Instrumentation (SIRI)." In UV, X-Ray, and Gamma-Ray Space Instrumentation for Astronomy XX, edited by Oswald H. Siegmund. SPIE, 2017. http://dx.doi.org/10.1117/12.2272606.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ohigashi, Takuji. "Combined Imaging System for X-ray Fluorescence and Transmission X-ray Microtomography." In SYNCHROTRON RADIATION INSTRUMENTATION: Eighth International Conference on Synchrotron Radiation Instrumentation. AIP, 2004. http://dx.doi.org/10.1063/1.1758052.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "X-ray Instrumentation"

1

Hill, K. W., P. Beiersdorfer, M. Bitter, E. Fredrickson, S. Von Goeler, H. Hsuan, L. C. Johnson, S. L. Liew, K. McGuire, and V. Pare. Tokamak x ray diagnostic instrumentation. Office of Scientific and Technical Information (OSTI), January 1987. http://dx.doi.org/10.2172/6921033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Knight, L. V. Software for x-ray optics research instrumentation. Final report, 1991. Office of Scientific and Technical Information (OSTI), March 1992. http://dx.doi.org/10.2172/10178223.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

VerMeulen, Holly, Jay Clausen, Ashley Mossell, Michael Morgan, Komi Messan, and Samuel Beal. Application of laser induced breakdown spectroscopy (LIBS) for environmental, chemical, and biological sensing. Engineer Research and Development Center (U.S.), June 2021. http://dx.doi.org/10.21079/11681/40986.

Full text
Abstract:
The Army is interested in sensors capable of characterizing/monitoring the environment (battlefield or military training ranges) at proximal distances. Recently, we evaluated laser induced breakdown spectroscopy (LIBS) systems (hand-held, proximal, and bench top) for the characterization of metals (antimony, copper, lead, tungsten, and zinc) in soils obtained from military training ranges. We then compared the results to findings obtained with standard field and laboratory instrumentation for metals analysis -X-ray Fluorescence (XRF) and Inductively Couple Plasma- Optical Emission Spectroscopy (ICP-OES).
APA, Harvard, Vancouver, ISO, and other styles
4

Schneider, Dieter H., and Reinhard Bruch. Development of New Types of X-Ray and Extreme Ultraviolet Optical Devices for Diagnostics and Instrumentation for Various EBIT Applications Final Report CRADA No. TC-1378-97. Office of Scientific and Technical Information (OSTI), May 2000. http://dx.doi.org/10.2172/1424616.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Nazaretski, E., H. Yan, K. Lauer, X. Huang, W. Xu, S. Kalbfleisch, Hui Yan, et al. Nm-scale spatial resolution x-ray imaging with MLL nanofocusing optics: instrumentational requirements and challenges. Office of Scientific and Technical Information (OSTI), August 2016. http://dx.doi.org/10.2172/1340392.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bowman, Keith J. The Midwest Analytical Team for Research Instrumentation of X-Rays (MATRIX) Beamline X-18A at the National Synchrotron Light Source of Brookhaven National Laboratory. Office of Scientific and Technical Information (OSTI), January 2001. http://dx.doi.org/10.2172/805795.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography