Academic literature on the topic 'X ray unit'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'X ray unit.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "X ray unit"

1

Chandelia, Sudha. "Decisions and Outcomes after Chest X-ray in Pediatric Intensive Care Unit." Indian Journal of Trauma and Emergency Pediatrics 10, no. 4 (2018): Sudha—Chandelia. http://dx.doi.org/10.21088/ijtep.2348.9987.10418.2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pajot, F., D. Barret, T. Lam-Trong, J. W. den Herder, L. Piro, M. Cappi, J. Huovelin, et al. "The Athena X-ray Integral Field Unit (X-IFU)." Journal of Low Temperature Physics 193, no. 5-6 (April 9, 2018): 901–7. http://dx.doi.org/10.1007/s10909-018-1904-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Гунда, Б. М. "Multifunctional X-ray and thermostimulant luminescence unit." Scientific Herald of Uzhhorod University.Series Physics 5 (December 31, 1999): 198–212. http://dx.doi.org/10.24144/2415-8038.1999.5.198-212.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Needham, F., C. E. Crowder, J. W. Reid, T. G. Fawcett, and J. Faber. "X-ray powder diffraction analysis of imipenem monohydrate." Powder Diffraction 27, no. 1 (March 2012): 20–24. http://dx.doi.org/10.1017/s0885715612000048.

Full text
Abstract:
An experimental X-ray powder diffraction pattern was produced and analyzed for imipenem monohydrate, an antimicrobial pharmaceutical agent. Although there are no experimental powder patterns in the ICDD PDF-4/Organics Database, there is one powder pattern calculated with single-crystal X-ray diffraction data from the Cambridge Structural Database. Here, we report the refined experimental powder diffraction data for imipenem monohydrate. These data for imipenem monohydrate are consistent with an orthorhombic crystal system having reduced unit-cell parameters of a = 8.2534(3) Å, b = 11.1293(4) Å, and c = 15.4609(6) Å. The resulting unit-cell volume, 1420.15(15) Å3, indicates four formula units per unit cell. Observed peaks are consistent with the P212121 space group.
APA, Harvard, Vancouver, ISO, and other styles
5

Monger, Gerald, and Peter Varlashkin. "X-ray powder diffraction analysis of abacavir hemisulfate." Powder Diffraction 20, no. 3 (September 2005): 241–45. http://dx.doi.org/10.1154/1.1948390.

Full text
Abstract:
The room temperature powder pattern of abacavir hemisulfate (anti-HIV reverse transcriptase compound) was indexed using 2θ values obtained from a powder pattern spiked with an internal standard. The resulting unit cell values for the monoclinic I2 cell [nonstandard setting of C2 (No. 5)] are a=13.278(1) Å, b=8.437(1) Å, c=14.259(2) Å, β=93.87(1)°. There are two formula units [(C14H16N6O)2.H2SO4] per unit cell and Dx=1.390 g∕cm3.
APA, Harvard, Vancouver, ISO, and other styles
6

KOMBA, TOSHINORI, and EIJI MOGI. "DEVELOPMENT OF FILMCHANGER FOR MOBILE X-RAY UNIT." Japanese Journal of Radiological Technology 42, no. 5 (1986): 620–27. http://dx.doi.org/10.6009/jjrt.kj00001358070.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Chapman, Henry N., and Rod Balhorn. "Coherent soft x-ray single unit-cell diffraction." Proceedings, annual meeting, Electron Microscopy Society of America 51 (August 1, 1993): 646–47. http://dx.doi.org/10.1017/s0424820100149064.

Full text
Abstract:
Following the basic ideas of x-ray structure analysis of single unit-cell specimens by Sayre it should be possible to determine the structure of weakly-scattering non-crystalline material from the radiation scattered from it, at a maximum resolution equal to half the wavelength of the radiation. Therefore, in principle, it should be possible to determine structures to 1 nm resolution by soft x-ray diffraction at 2 nm wavelength. An imaging method based solely on diffraction should be an extremely powerful x-ray microscopy tool.In order to determine the structure of the diffracting object however, the incident beam must be completely temporally and spatially coherent and the complex wave-field must be sampled across some surface at spatial frequency intervals of 1/(2 * Δ), where Δ is the resolution. Thus, a three-dimensional data set (a two-dimensional complex field) must be recorded to obtain the three-dimensional structure of the scatterer. In most cases, an area detector is used to determine the intensity of the wave-field, losing the phase information.
APA, Harvard, Vancouver, ISO, and other styles
8

SAKAKIBARA, TOSHIFUMI. "X-RAY MAMMOGRAPHY UNIT : PERFORMANCE AND QUALITY CONTROL." Japanese Journal of Radiological Technology 51, no. 2 (1995): 172–79. http://dx.doi.org/10.6009/jjrt.kj00001353402.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Buckland-Wright, J. C. "A new high-definition microfocal X-ray unit." British Journal of Radiology 62, no. 735 (March 1989): 201–8. http://dx.doi.org/10.1259/0007-1285-62-735-201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Murali, Ramachandran, and Roger M. Burnett. "X-ray crystallography of very large unit cells." Current Opinion in Structural Biology 1, no. 6 (December 1991): 997–1001. http://dx.doi.org/10.1016/0959-440x(91)90097-d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "X ray unit"

1

Treccani, Matteo. "Qualification of an X-ray unit for dosimetrical application." Doctoral thesis, Universitat Autònoma de Barcelona, 2019. http://hdl.handle.net/10803/669449.

Full text
Abstract:
Este proyecto de doctorado se centra en la evaluación de calidad de una unidad de rayos X para aplicaciones dosimétricas. Esta tesis describe todo el proyecto en tres secciones diferentes. La primera parte puede considerarse una introducción para presentar los conceptos e instrumentos utilizados para este trabajo. La base teórica del principio de funcionamiento de un tubo de rayos X se explica en el Capítulo 1. El Capítulo 2 muestra las magnitudes y el sistema de unidades de Protección Radiológica. Estos dos primeros capítulos representan los antecedentes teóricos de mi tesis. El Capítulo 3 muestra el laboratorio montado durante la primera parte de mi trabajo de doctorado. La unidad de irradiación y el laboratorio relacionado se pusieron a punto en el marco de una colaboración entre los Laboratorios Nacionales de Frascati del INFN (INFN - LNF), la Agencia Espacial Italiana (ASI) y el Consorzio di ricerca Hypatia. El aparato de rayos X funciona entre 40 y 120 kV con corrientes de hasta 5 mA. Se pueden implementar diferentes filtraciones de acuerdo con la calidad de haz deseada. Un banco mecánico permite colocar dispositivos y muestras a diferentes distancias del ánodo del tubo de rayos X. La segunda parte muestra los principales resultados obtenidos con diferentes experimentos y pruebas para calificar la salida de radiación del tubo de rayos X: • diseño y desarrollo de una cámara de ionización para medir la salida dependiente del tiempo de la unidad de rayos X (Capítulo 4); • determinación de la posición del foco del tubo de rayos X, que es un punto de referencia importante de la línea de irradiación (Capítulo 5); • verificación experimental de la calidad del haz a través de mediciones HVL (Espesor de semireducción - Half Value Layer) con la cámara de ionización para la elección de combinaciones adecuadas de kilovoltios-filtración para lograr calidades de radiación bien identificadas, según lo especificado por las Normas Internacionales relevantes (ISO 4037). Los haces de la serie de espectro estrecho (serie ISO 4037 N) se seleccionaron porque su distribución de energía aproximadamente monoenergética es muy adecuada para estudiar la respuesta de los dispositivos en función de la energía del fotón. La concordancia entre los valores ISO y los experimentales es excelente: la discrepancia es inferior a aproximadamente el 5% (Tabla 6-3, Capítulo 6). • estudio sobre la uniformidad del campo de rayos X (Capítulo 7), que es una tarea importante que debe cumplir el haz de rayos X, ya que es importante que todas las áreas de campo sean equivalentes y que la dosis impartida al dispositivo bajo prueba sea independiente de la posición en que se coloque. Se utilizaron dos técnicas de medición diferentes para verificar la uniformidad. La primera se basa en un detector pasivo, película Gafchromica, y la segunda emplea un detector de silicio que funciona en modo corriente. La variabilidad total del campo es aproximadamente del 11% dentro de una región central de 8 cm de radio (párrafo 7.4, Capítulo 7). • medición espectral de los haces de rayos X utilizando espectrómetros de fotones basados en semiconductores (detectores de silicio y de telurato de cadmio). Estas mediciones son básicas para verificar la forma del espectro continuo de radiación de frenado y las energías de punto final de las componentes espectrales, además de las mediciones de calidad de HVL (Capítulo 8). Los espectros confirman lo que se esperaba de las mediciones de HVL: utilizando las combinaciones de kilovoltios-filtración adecuadas (escritas en la Tabla 6-3) es posible lograr las calidades de radiación bien identificadas de la serie N, la serie estrecha de ISO 4037, útil como referencia de calibración La actividad de la última parte de mi tesis doctoral se centró en un innovador detector activo para dosimetría de cristalino (Capítulo 9). Durante los últimos años se ha puesto de manifiesto la necesidad de una reevaluación detallada de la radiosensibilidad del cristalino. Varios estudios epidemiológicos han destacado una mayor incidencia de cataratas que la prevista previamente. Por estas razones, la ICRP redujo el límite de exposición para los trabajadores de 150 mSv por año a 20 mSv en un año promedio durante períodos definidos de cinco años consecutivos, sin que en ningún año se excedan los 50 mSv (ICRP 2011). Por lo tanto, el gran interés en este tema es la evaluación esencial de la dosis ocupacional en cristalino y la protección del ojo. Gracias a la calificación física del tubo de rayos X bajo un punto de vista metrológico, fue posible utilizar esta instalación de irradiación como banco de pruebas para el desarrollo y pruebas de tipo (estudio sobre energía y respuesta angular) de un prototipo de un dosímetro de cristalino basado en semiconductores y desarrollado dentro del equipo de trabajo. Esta parte innovadora de mi trabajo de doctorado representa un estudio de I + D sobre la necesidad de dosimetría operativa.
This PhD project is focused on the qualification of an X-ray unit for dosimetrical applications. This thesis describes all the project in three different sections. The first part can be considered an introduction for depicting concepts and instruments used for this work. The theorical basis of the working principle of an X-ray tube is explained in Chapter 1. Chapter 2 shows the quantities and units system on Radiation Protection. These first two chapters represent the theoretical background of my thesis. Chapter 3 depicts the laboratory assembled during the first part of my PhD work. The irradiation unit and the related laboratory were set up in the framework of a collaboration between INFN - Frascati National Laboratories (INFN - LNF), the Italian Space Agency (ASI) and Consorzio di ricerca Hypatia. The X-ray apparatus operates from 40 to 120 kV with currents up to 5 mA. Different filtrations can be implemented according to the desired beam quality. A mechanical bench allows positioning devices and samples at different distances from the anode of the X-ray tube. The second part shows the main results obtained with different experiments and tests to qualify the radiation output of the X-ray tube: • design and development of a monitor ion-chamber to measure the time-dependant output of the X-ray unit (Chapter 4); • determination the X-ray tube focus position, which is an important reference point of the irradiation line (Chapter 5); • experimental verification of the beam quality through HVL (Half Value Layer) measurements with ion-chamber for the best choice of adequate kilovolt-filtration combinations in order to achieve well-identified radiation qualities, as specified by relevant International Standards (ISO 4037). The beams from the narrow spectrum series (ISO 4037 N-series) were selected because their roughly mono-energetic energy distribution is well suited to study the response of devices as a function of the photon energy. The accordance between ISO values and experimental ones is excellent: the discrepancy is less than about 5% (Table 6-3, Chapter 6) . • study on the X-ray field uniformity (Chapter 7), which is an important task that the X-ray beam must comply with, because it is important that all the field areas are equivalent and wherever the device under test is placed, it is exposed to the same dose. Two different measurements techniques were involved to verify the uniformity. The first is based on a passive detector, Gafchromic film, and the second employs a silicon detector operating in current mode. The total field variability is about 11% within a central region of 8 cm radius (paragraph 7.4, Chapter 7). • spectral measurement of the X-ray beams using semiconductor-based photon spectrometers (Silicon and Cadmium-Telluride detector). These measurements lead a role for checking the continuum shape of bremsstrahlung spectrum and the endpoint energies of the spectral components in addition to the quality measurements of HVLs (Chapter 8). The spectra confirm what expected from HVL measurements: using the proper kilovolt-filtration combinations (written in the Table 6-3) is possible to achieve the well-identified radiation qualities of the N-series, the narrow series of ISO 4037, useful as calibrating reference. The activity for the last part of my PhD thesis was focused on an innovative active detector for eye-lens dosimetry (Chapter 9). During the last years the need of a detailed re-evaluation of the eye lens radio-sensitivity was put in evidence. Various epidemiological studies highlighted a higher incidence of cataracts than previously foreseen. For these reasons the ICRP reduced the exposure limit for workers from 150 mSv per year to 20 mSv in a year averaged over defined periods of five consecutive years, with no single year exceeding 50 mSv (ICRP 2011). Therefore, the keen interest on this topic is for the essential evaluation of the occupational eye dose and eye protection. Thanks to the physical qualification of the X-ray tube under a metrological point of view, it was possible to use this irradiation facility as test bench for the development and type testing (study on energy and angular response) of a semiconductor-based prototype of an eye-lens dosimeter developed within the work team. This innovative part of my PhD work represents a R&D study on a need for operational dosimetry.
APA, Harvard, Vancouver, ISO, and other styles
2

Hudson, Liam. "Ultrastructure of the A-band unit cell in relaxed muscle." Thesis, Imperial College London, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.310340.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Napolitano, Mary Elizabeth. "Mammographic x-ray unit peak kilovoltage and spectral quality determination using film densitometry." Diss., Georgia Institute of Technology, 1997. http://hdl.handle.net/1853/15840.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Peille, Philippe. "Développement d'un simulateur pour le X-ray integral field unit : du signal astrophysique à la performance instrumentale." Thesis, Toulouse 3, 2016. http://www.theses.fr/2016TOU30236/document.

Full text
Abstract:
Cette thèse est consacrée au développement d'un modèle End-to-End pour le spectrocalorimètre X-IFU qui observera à partir de 2028 l'Univers en rayons X avec une précision jamais atteinte auparavant. Ce travail s'est essentiellement organisé en deux parties. J'ai dans un premier temps étudié la dynamique des parties les plus internes des binaires X de faible masse à l'aide de deux sondes particulières que sont les sursauts X et les oscillations quasi-périodiques au kHz (kHz QPOs). En me basant sur les données d'archive du satellite Rossi X-ray Timing Explorer et sur des méthodes d'analyse spécifiquement développées dans ce but, j'ai notamment pu mettre en évidence pour la première fois une réaction du premier sur le second, confirmant le lien très étroit entre ces oscillations et les parties les plus internes du système. Le temps de rétablissement du système suite aux sursauts entre également en conflit dans la plupart des cas avec l'augmentation supposée du taux d'accrétion suite à ces explosions. Au travers d'une analyse spectro-temporelle complète des deux kHz QPOs de 4U 1728-34, j'ai également pu confirmer l'incompatibilité des spectres de retard des deux QPOs qui suggère une origine différente de ces deux oscillations. L'étude de leurs spectres de covariance, obtenus pour la première fois dans cette thèse, a quant à elle mis en évidence le rôle central de la couche de Comptonisation et potentiellement celui d'une zone particulièrement compacte de la couche limite pour l'émission des QPOs. Dans le second volet de ma thèse, j'ai développé un simulateur End-to-End pour l'instrument X-IFU permettant de représenter l'ensemble du processus menant à une observation scientifique en rayons X, de l'émission des photons par une source jusqu'à leur mesure finale à bord du satellite. J'ai notamment mis en place des outils permettant la comparaison précise de plusieurs matrices de détecteurs en prenant en compte les effets de la reconstruction du signal brut issu des électroniques de lecture. Cette étude a mis en évidence l'intérêt de configurations hybrides, contenant une sous-matrice de petits pixels capables d'améliorer par un ordre de grandeur la capacité de comptage de l'instrument. Une solution alternative consisterait à défocaliser le miroir lors de l'observation de sources ponctuelles brillantes. Situées au coeur de la performance du X-IFU, j'ai également comparé de manière exhaustive différentes méthodes de reconstruction des signaux bruts issus des détecteurs X-IFU. Ceci a permis de montrer qu'à faible coût en termes de puissance de calcul embarquée, une amélioration significative de la résolution en énergie finale de l'instrument pouvait être obtenue à l'aide d'algorithmes plus sophistiqués. En tenant compte des contraintes de calibration, le candidat le plus prometteur apparaît aujourd'hui être l'analyse dans l'espace de résistance. En me servant de la caractérisation des performances des différents types de pixels, j'ai également mis en place une méthode de simulation rapide et modulable de l'ensemble de l'instrument permettant d'obtenir des observations synthétiques à long temps d'exposition de sources X très complexes, représentatives des futures capacités du X-IFU. Cet outil m'a notamment permis d'étudier la sensibilité de cet instrument aux effets de temps mort et de confusion, mais également d'estimer sa future capacité à distinguer différents régimes de turbulence dans les amas de galaxies et de mesurer leur profil d'abondance et de température. A plus long terme ce simulateur pourra servir à l'étude d'autres cas scientifiques, ainsi qu'à l'analyse d'effets à l'échelle de l'ensemble du plan de détection tels que la diaphonie entre pixels
This thesis is dedicated to the development of an End-ta-End model for the X-IFU spectrocalorimeter scheduled for launch in 2028 on board the Athena mission and which will observe the X-ray universe with unprecedented precision. This work has been mainly organized in two parts. I studied first the dynamics of the innermost parts of low mass X-ray binaries using two specific probes of the accretion flow: type I X-ray bursts and kHz quasi-periodic oscillations (kHz QPOs). Starting from the archivai data of the Rossi X-ray Timing Explorer mission and using specific data analysis techniques, I notably highlighted for the first time a reaction of the latter to the former, confirming the tight link between this oscillation and the inner parts of the system. The measured recovery time was also found in conflict with recent claims of an enhancement of the accretion rate following these thermonuclear explosions. From the exhaustive spectral timing analysis of both kHz QPOs in 4U 1728-34, I further confirmed the inconsistancy of their lag energy spectra, pointing towards a different origin for these two oscillations. The study of their covariance spectra, obtained here for the first time, has revealed the key role of the Comptonization layer, and potentially of a more compact part of it, in the emission of the QPOs. In the second part of my thesis, I focused on the development of an End-to-:End simulator for the X-IFU capable of depicting the full process leading to an X-ray observation, from the photon emission by the astrophysical source to their on-board detection. I notably implemented tools allowing the precise comparison of different potential pixel array configurations taking into account the effects of the event reconstruction from the raw data coming from the readout electronics. This study highlighted the advantage of using hybrid arrays containing a small pixel sub-array capable of improving by an order of magnitude the count rate capability of the instrument. An alternative solution would consist in defocusing the mirror during the observation of bright point sources. Being a key component of the overall X-IFU performance, I also thoroughly compared different reconstruction methods of the pixel raw signal. This showed that with a minimal impact on the required on-board processing power, a significant improvement of the final energy resolution could be obtained from more sophisticated reconstruction methods. Taking into account the calibration constraints, the most promising candidate currently appears to be the so-called "resistance space analysis". Taking advantage of the obtained performance characterization of the different foreseen pixel types, I also developed a fast and modular simulation method of the complete instrument providing representative synthetic observations with long exposure times of complex astrophysical sources suffinguish different turbulence regimes in galaxy clusters and to measure abundance and temperature profiles. In the longer run, this simulator will be useful for the study of other scientific cases as well as the analysis of instrumental effects at the full detection plane level such as pixel crosstalk
APA, Harvard, Vancouver, ISO, and other styles
5

Sundman, Tobias. "Noise Reduction in Flash X-ray Imaging Using Deep Learning." Thesis, Uppsala universitet, Avdelningen för beräkningsvetenskap, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-355731.

Full text
Abstract:
Recent improvements in deep learning architectures, combined with the strength of modern computing hardware such as graphics processing units, has lead to significant results in the field of image analysis. In this thesis work, locally connected architectures are employed to reduce noise in flash X-ray diffraction images. The layers in these architectures use convolutional kernels, but without shared weights. This combines the benefits of lower model memory footprint in convolutional networks with the higher model capacity of fully connected networks. Since the camera used to capture the diffraction images has pixelwise unique characteristics, and thus lacks equivariance, this compromise can be beneficial. The background images of this thesis work were generated with an active laser but without injected samples. Artificial diffraction patterns were then added to these background images allowing for training U-Net architectures to separate them. Architecture A achieved a performance of 0.187 on the test set, roughly translating to 35 fewer photon errors than a model similar to state of the art. After smoothing the photon errors this performance increased to 0.285, since the U-Net architectures managed to remove flares where state of the art could not. This could be taken as a proof of concept that locally connected networks are able to separate diffraction from background in flash X-Ray imaging.
APA, Harvard, Vancouver, ISO, and other styles
6

Cucchetti, Edoardo. "De l'astrophysique des amas de galaxies à la physique des microcalorimètres en rayons X : performances scientifiques et calibration du X-ray integral field unit de la mission Athena." Thesis, Toulouse 3, 2019. http://www.theses.fr/2019TOU30162.

Full text
Abstract:
Des découvertes inédites dans le domaine de l'astronomie en rayons X nécessitent une nouvelle génération d'instruments, pouvant observer le ciel en combinant des hautes résolutions spatiales et spectrales. Ce besoin constitue le fondement du X-ray Integral Field Unit (X-IFU) de la mission Athena de l'ESA, dont le lancement est prévu en 2031. La complexité de la chaîne de détection du X-IFU nécessite un suivi de ses perturbations instrumentales. Des simulations bout-à-bout, reproduisant les observations en rayons X de l'émission des photons d'une source représentative à leur détection, sont un outil de choix pour ces études. Dans la première partie de cette thèse, j'utilise ces simulateurs pour quantifier l'effet de la diaphonie entre les pixels, pour dériver une spécification sur la connaissance du bruit de fond instrumental, ou encore pour estimer la sensibilité spectrale de l'instrument. Mes résultats confirment que le X-IFU atteindra ses exigences en taux de comptage pour des sources étendues brillantes. Ils démontrent aussi qu'une bonne connaissance des raies spectrales, ainsi que du niveau bruit de fond instrumental (à mieux que 2%) est indispensable pour éviter des erreurs systématiques dans le traitement des données. L'analyse des performances doit cependant être couplée à des études de faisabilité des objectifs scientifiques du X-IFU. Cela concerne particulièrement les observations de sources étendues, qui feront appel à tout le potentiel de l'instrument. La deuxième partie de ce travail analyse les capacités du X-IFU à caractériser les propriétés physiques et chimiques du milieu intra-amas, ainsi que sa turbulence. Pour obtenir des simulations représentatives, des modèles ou d'autres simulations numériques sont utilisés comme point de départ de ces études. Mes résultats montrent la puissance du X-IFU à mesurer les propriétés des amas de galaxies, même à haut redshift (z ~ 2) et sur des temps d'exposition de 100ks. Je présente également une nouvelle façon d'aborder les biais sur les diagnostics spectraux. Elle permettra d'optimiser les observations de la turbulence dans les amas. Enfin, pour remplir ses objectifs scientifiques, le X-IFU nécessitera une calibration très précise. La troisième partie de cette thèse aborde différents points de la calibration du X-IFU, notamment la connaissance de son échelle de gain, de son efficacité quantique et de son bruit de fond instrumental. Je démontre que de nouvelles méthodes de correction de gain et de surveillance du niveau de bruit de fond instrumental sont nécessaires pour vérifier les spécifications attendues. Ces résultats permettent d'optimiser l'architecture de l'instrument (par ex., sources modulées de rayons X, stratégies de corrections) et de mieux préparer ses phases de calibration au sol et en vol. Les études de calibration se feront aussi et surtout par des essais en conditions représentatives, comme dans le banc cryogénique développé et caractérisé à l'IRAP au cours de ma thèse
Future breakthroughs in X-ray astronomy require a new generation of X-ray instruments, capable of observing the sky with high spectral and spatial resolutions combined. This need drives the development of the X-ray Integral Field Unit (X-IFU) onboard the future European X-ray observatory Athena scheduled for a launch in 2031. The complexity of the X-IFU and of its readout chain calls for a close monitoring of its instrumental effects. This can be investigated using dedicated end-to-end simulators, which reproduce an X-ray observation, from the emission of X-rays by an astrophysical source to their detection. In the first part of this thesis, I use this approach to quantify the impact of crosstalk between pixels, to derive the requirement on the reproducibility of the instrumental background, and to estimate the line sensitivity of the instrument. I demonstrate that the X-IFU will be capable of observing bright, extended sources with a required high-resolution throughput above 80%. I also show that an accurate knowledge of the spectral lines (their energy and their profile), as well as of the non-X-ray background level (to better than 2%) are needed to minimise systematic errors in the observation. Analysis of the instrumental effects need to be coupled with feasibility studies of the core science objectives of the X-IFU to verify the potential of the instrument. This is valid in particular for extended sources, which will use this integral field unit at its full capabilities. In the second part of this work, I investigate the ability of the X-IFU to characterise the properties of the intra-cluster medium and its turbulent motions. To guarantee a representative result, both toy models and hydrodynamical simulations of clusters are used as inputs of end-to-end simulations. My results underline the strengths of the X-IFU, which will provide an accurate view of the physics and the chemical enrichment of clusters, even at high redshift (z ~ 2) with typical 100ks exposure. I also put forward an analytical way to estimate the systematic errors on line diagnostics in turbulence-related studies, which will be of particular interest to optimise future observations. To fulfil its science objectives, the X-IFU will require a careful calibration. The third part of this thesis presents studies on this topic related to the energy scale, the instrumental background, or the quantum efficiency. I demonstrate that new methods of gain drift correction and background monitoring are required to meet the expected requirements. These results provide constraints on the design of the instrument (e.g., modulated X-ray sources, correction strategies) and can be used to plan ground or in-flight calibration activities. Calibration studies will also be performed experimentally, notably using the test bench developed and characterised at IRAP during my thesis
APA, Harvard, Vancouver, ISO, and other styles
7

Stejskal, Pavel. "Design mobilního rentgenu." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2014. http://www.nusl.cz/ntk/nusl-231162.

Full text
Abstract:
Master thesis deals with creating a new design of mobile x-ray machine. Three studies of design were created on the base of processed analysis, when the best one were chosen and developed as a final design. The final design takes into account all egonomics and technical requirements and creates a machine with less technical and more favorable view for patients. Simplification and better arranged the control panels bring easier service for operators.
APA, Harvard, Vancouver, ISO, and other styles
8

Johnson, Eleda. "The Elastic Behavior of Plagioclase Feldspar at High Pressure." Thesis, Virginia Tech, 2007. http://hdl.handle.net/10919/36450.

Full text
Abstract:
Feldspars are one of the archetypical families of framework silicates. They not only comprise around 60% volumetrically of the Earthâ s crust, but are among some of the most structurally complicated minerals. Investigation into the structural behavior of various intermediate plagioclases at pressure has been undertaken with the intent of categorizing the elastic behavior with pressure across the solid solution series and establishing a conceptual model to characterize feldspar compression. Complex behavior has been observed in the Equation of State for plagioclase feldspars in excess of 3 GPa, including an anomalous softening of ordered albite in excess of 8.4 GPa (Benusa et al 2005: Am Min 90:1115-1120). This softening was not observed in the EoS for the more intermediate plagioclase compositions containing between 20 and 40 mol% of end-member anorthite. The calculated elastic compliance tensor sums at room pressure show a general stiffening with increasing anorthite component, small elastic changes at the C-1 to I-1 transition, and a dominantly first-order response at the P-1 to I-1 transition near end-member anorthite. The crystal structure of An37 plagioclase was determined by single-crystal X-ray diffraction. The compression mechanisms in An37 are similar to those in albite at lower pressures. The softening in albite at higher pressures is therefore attributed to the structural shearing in albite that is absent in An37 plagioclase up to 9.5 GPa.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
9

Vojtěch, Michael. "Konstrukční návrh tříosého manipulátoru." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2015. http://www.nusl.cz/ntk/nusl-231951.

Full text
Abstract:
The goal of master’s thesis is design of a three-axis manipulator working as x-ray unit. Axis include one rotary and two liner. The work is based on the existing manipulator and the goals are reducing vertical installation space, weight reduction, increasing accuracy and repeatability. Creating 3D model with computational report from available components. There is resulting variant solved with linear motor in this thesis with that there is indicated alternative variant but not dealt with in detail.
APA, Harvard, Vancouver, ISO, and other styles
10

Nilsson, Marita. "Hydrogen generation from dimethyl ether by autothermal reforming." Licentiate thesis, Stockholm : Kemi, Kungliga Tekniska högskolan, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4434.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "X ray unit"

1

Agency, Medical Devices. A comparative evaluation of mammography x-ray units. Norwich: HMSO, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Agency, Medical Devices, ed. X-ograph visitor mobile X-ray unit. London: Department of Health, Medical Devices Agency, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Great Britain. Medical Devices Directorate., ed. IGE VMX Plus mobile X-ray unit. London: Department of Health, Medical Devices Directorate, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Great Britain. Department of Health., ed. General electric CGR AMX4 mobile X-ray unit. (London): (Department of Health), 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Great Britain. Department of Health and Social Security. Supplies Technology Division., ed. Assessment of a Picker Explorer mobile X-ray unit. London: Great Britain, Department of Health and Social Security, Supplies Technology Division, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Agency, Medical Devices, ed. Xograph Instrumentarium Performa mammography x-ray unit: NHSBSP report. London: Medical Devices Agency, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Great Britain. Medical Devices Directorate., ed. Assessment of a Philips medical systems Practix 30 mobile X-ray unit. London: Department of Health, Medical Devices Directorate, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Great Britain. Department of Health and Social Security. Supplies Technology Division., ed. Follow up report on the Picker Explorer mobile motorised X-ray unit. London: Great Britain, Department ofHealth and Social Security, Supplies Technology Division, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

S, Drozdz, Vogel Raymond S, and Construction Engineering Research Laboratory, eds. Evaluation of X-ray fluorescence unit for detecting lead in paint on military structures. Champaign, Ill: US Army Corps of Engineers, Construction Engineering Research Laboratory, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Great Britain. Department of Health and Social Security. Supplies Technology Division., ed. Assessment of the Hitachi Sirius 125B mobile X-ray unit at three hospitals. London: Great Britain, Department of Health and Social Security, Supplies Technology Division, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "X ray unit"

1

Schwartz, Kenneth B., Jinlong Cheng, Vijay N. Reddy, Matilda Fone, and Howard P. Fisher. "Crystallinity and Unit Cell Variations in Linear High-Density Polyethylene." In Advances in X-Ray Analysis, 495–502. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-1797-9_57.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wertz, David L., and Margaret Bissell. "Analysis of the Average Poly-Cyclic Aromatic Unit in a Meta-Anthracite Coal Using Conventional X-ray Powder Diffraction and Intensity Separation Methods." In Advances in X-Ray Analysis, 491–97. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2528-8_60.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gualini, M. M. S. "DFB X-Ray Laser Gain Per Unit in Deformed Crystals." In Frontiers of Laser Physics and Quantum Optics, 493–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-07313-1_50.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gil, Guk-Ho, Sungwoo Sul, Yun-Su Kim, Eunmee Shin, Miyoung Lee, and Seolynn Park. "Ergonomic Design of a Tube Head Unit (THU) for Radiographers in Digital X-Ray Environment." In Advances in Intelligent Systems and Computing, 44–49. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-96098-2_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lu, W., B. Friedrich, T. Noll, K. Zhou, J. Hallmann, G. Ansaldi, T. Roth, et al. "Progresses of a Hard X-Ray Split and Delay Line Unit for the MID Station at the European XFEL." In Springer Proceedings in Physics, 131–37. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-35453-4_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Dunn, D. S., and T. F. Marinis. "X-Ray Diffraction Measurements Via a Unix+ Based System." In Advances in X-Ray Analysis, 241–47. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4613-2471-3_36.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Roling, Sebastian, and Helmut Zacharias. "Split-and-Delay Units for Soft and Hard X-Rays." In Synchrotron Light Sources and Free-Electron Lasers, 1057–91. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-23201-6_24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Roling, Sebastian, and Helmut Zacharias. "Split-and-Delay Units for Soft and Hard X-Rays." In Synchrotron Light Sources and Free-Electron Lasers, 891–925. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-14394-1_24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Roling, Sebastian, and Helmut Zacharias. "Split-and-Delay Units for Soft and Hard X-Rays." In Synchrotron Light Sources and Free-Electron Lasers, 1–31. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04507-8_24-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Balmer, J. E., M. Grünig, C. Imesch, and F. Staub. "Recent Progress in Grazing-Incidence-Pumped X-Ray Lasers at Uni-BE." In Springer Proceedings in Physics, 23–31. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-9924-3_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "X ray unit"

1

Barret, Didier, Jan-Willem den Herder, Thien Lam Trong, Luigi Piro, Massimo Cappi, Juhani Houvelin, Richard Kelley, et al. "The ATHENA x-ray integral field unit (X-IFU)." In Space Telescopes and Instrumentation 2018: Ultraviolet to Gamma Ray, edited by Jan-Willem A. den Herder, Kazuhiro Nakazawa, and Shouleh Nikzad. SPIE, 2018. http://dx.doi.org/10.1117/12.2312409.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Barret, Didier, Thien Lam Trong, Jan-Willem den Herder, Luigi Piro, Xavier Barcons, Juhani Huovelin, Richard Kelley, et al. "The Athena X-ray Integral Field Unit (X-IFU)." In SPIE Astronomical Telescopes + Instrumentation, edited by Jan-Willem A. den Herder, Tadayuki Takahashi, and Marshall Bautz. SPIE, 2016. http://dx.doi.org/10.1117/12.2232432.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ravera, Laurent, Didier Barret, Jan Willem den Herder, Luigi Piro, Rodolphe Clédassou, Etienne Pointecouteau, Philippe Peille, et al. "The X-ray Integral Field Unit (X-IFU) for Athena." In SPIE Astronomical Telescopes + Instrumentation, edited by Tadayuki Takahashi, Jan-Willem A. den Herder, and Mark Bautz. SPIE, 2014. http://dx.doi.org/10.1117/12.2055884.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sorgenfrei, F., W. F. Schlotter, M. Nagasono, M. Beye, T. Beeck, W. Wurth, and A. Föhlisch. "Ultrafast X-Ray Physics with the X-Ray Split and Delay Unit at FLASH." In Laser Science. Washington, D.C.: OSA, 2009. http://dx.doi.org/10.1364/ls.2009.lsmh1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Nam, Irena F., Amir A. Sakashev, and Sergey A. Ryabkov. "Detecting unit for X-ray nondestructive testing systems." In 2015 International Siberian Conference on Control and Communications (SIBCON). IEEE, 2015. http://dx.doi.org/10.1109/sibcon.2015.7147306.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Apollonov, Victor V., K. K. Kazakov, N. V. Pletnyev, Vladimir R. Sorochenko, A. V. Astakhov, Gennady A. Baranov, A. A. Kuchinsky, and V. P. Tomashevich. "Superatmospheric x-ray preionized TE-CO 2 discharge unit." In XIII International Symposium on Gas Flow and Chemical Lasers and High-Power Laser Conference. SPIE, 2001. http://dx.doi.org/10.1117/12.414081.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Dreimann, Matthias, Sebastian Roling, Frank Wahlert, Sven Eppenhoff, Marion Kuhlmann, Sven Toleikis, Maciej Brachmanski, Rolf Treusch, Elke Ploenjes, and Helmut Zacharias. "A XUV and soft X-ray split-and-delay unit for FLASH2." In EUV and X-ray Optics, Sources, and Instrumentation, edited by René Hudec, Ladislav Pina, Luc Patthey, Kai Tiedtke, Libor Juha, Thomas Tschentscher, Marco Zangrando, Saša Bajt, and Stéphane Guizard. SPIE, 2021. http://dx.doi.org/10.1117/12.2597647.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Conti, Giancarlo, E. Mattaini, E. Santambrogio, Bruno Sacco, Giancarlo Cusumano, Oberto Citterio, Heinrich W. Braeuninger, and Wolfgang Burkert. "Engineering qualification model of the SAX x-ray mirror unit: technical data and x-ray imaging characteristics." In SPIE's 1993 International Symposium on Optics, Imaging, and Instrumentation, edited by Richard B. Hoover. SPIE, 1994. http://dx.doi.org/10.1117/12.167245.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Peille, Philippe, Roland H. den Hartog, Hervé Geoffray, Jean-Michel Mesnager, Marco Barbera, Claudio Macculi, Jörn Wilms, et al. "The performance of the ATHENA X-ray Integral Field Unit." In Space Telescopes and Instrumentation 2018: Ultraviolet to Gamma Ray, edited by Jan-Willem A. den Herder, Kazuhiro Nakazawa, and Shouleh Nikzad. SPIE, 2018. http://dx.doi.org/10.1117/12.2313720.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wende, Henning, Giuseppe Distratis, Chris Tenzer, Eckhard Kendziorra, and Andrea Santangelo. "A digital data processing unit for future X-ray observatories." In SPIE Astronomical Telescopes + Instrumentation, edited by Tadayuki Takahashi, Stephen S. Murray, and Jan-Willem A. den Herder. SPIE, 2012. http://dx.doi.org/10.1117/12.925397.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "X ray unit"

1

Johnson, C. M. The calibration and characterization of a research x-ray unit. Office of Scientific and Technical Information (OSTI), June 1996. http://dx.doi.org/10.2172/254977.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Beitelman, Al, S. Drozdz, and R. Vogel. Evaluation of X-Ray Fluorescence Unit for Detecting Lead in Paint on Military Structures. Fort Belvoir, VA: Defense Technical Information Center, February 1991. http://dx.doi.org/10.21236/ada232229.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bunn, Amoret L., Brad G. Fritz, and Dawn M. Wellman. 100-OL-1 Operable Unit Field Portable X-Ray Fluorescence (XRF) Analyzer Pilot Study Plans. Office of Scientific and Technical Information (OSTI), July 2014. http://dx.doi.org/10.2172/1170492.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bergman, S. C., and C. J. Stuart. X-ray diffraction analysis of seven core samples from the Phillips Petroleum Company (Cherryville Corp.) North Cook Inlet Unit A-12 (A-15) well. Alaska Division of Geological & Geophysical Surveys, 1988. http://dx.doi.org/10.14509/19242.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Blake, Paul K., Jeffery W. Hall, Charles Severance, and Jennifer Rusiecki. Personnel Radiation Exposure Associated With X-Rays Emanating from U.S. Coast Guard LORAN High Voltage Vacuum Tube Transmitter Units. Fort Belvoir, VA: Defense Technical Information Center, July 2011. http://dx.doi.org/10.21236/ada553018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

X-ray diffraction analysis of cuttings from the Northstar Unit #NS-07, Northstar Unit #NS-08, Northstar Unit #NS-15 and Northstar Unit #NS-27 wells. Alaska Division of Geological & Geophysical Surveys, September 2017. http://dx.doi.org/10.14509/29758.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

X-Ray diffraction analysis of cuttings samples from the Trading Bay Unit #M-31B well. Alaska Division of Geological & Geophysical Surveys, December 2013. http://dx.doi.org/10.14509/26881.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

X-ray diffraction analysis of cuttings from the: Texaco Inc. East Kurupa Unit #2 well (1310'-9310'); Mobil Oil Corporation Echooka Unit #1 well (1500'-10110'). Alaska Division of Geological & Geophysical Surveys, 2001. http://dx.doi.org/10.14509/19146.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

X-ray diffraction analysis of cuttings from Happy Valley A-10, Happy Valley B-12, Kenai Beluga Unit 31-18, Ninilchik Unit G Oskolkoff 1, Ninilchik Unit G Oskolkoff 2, Ninilchik Unit G Oskolkoff 3, Ninilchik Unit G Oskolkoff 5, Ninilchik Unit G Oskolkoff 8, Star 1, Swanson River Unit 24-15, Swanson River Unit 32C-15, Swanson River Unit 34-10, and Swanson River Unit 34-16 wells. Alaska Division of Geological & Geophysical Surveys, November 2017. http://dx.doi.org/10.14509/29810.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

X-ray diffraction patterns of clay from the following wells: Beli Unit #1, cuttings (1210' - 2680') and core (9105 - 11665); and E de K Leffingwell, cuttings (2440' - 13660'). Alaska Division of Geological & Geophysical Surveys, 1992. http://dx.doi.org/10.14509/19035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography