To see the other types of publications on this topic, follow the link: Xenon136.

Journal articles on the topic 'Xenon136'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Xenon136.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Davide, Ferella Alfredo. "Direct WIMP searches with XENON100 and XENON1T." EPJ Web of Conferences 95 (2015): 04019. http://dx.doi.org/10.1051/epjconf/20159504019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Alfonsi, Matteo. "The XENON Dark Matter project: from XENON100 to XENON1T." Nuclear and Particle Physics Proceedings 273-275 (April 2016): 373–77. http://dx.doi.org/10.1016/j.nuclphysbps.2015.09.053.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Fieguth, Alexander. "Search for doubleβ-decays of124Xe with XENON100 & XENON1T". Journal of Physics: Conference Series 888 (вересень 2017): 012251. http://dx.doi.org/10.1088/1742-6596/888/1/012251.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Persiani, Rino. "RESULTS FROM THE XENON100 EXPERIMENT." Acta Polytechnica 53, A (2013): 555–59. http://dx.doi.org/10.14311/ap.2013.53.0555.

Full text
Abstract:
The XENON program consists in operating and developing double-phase time projection chambers using liquid xenon as the target material. It aims to directly detect dark matter in the form of WIMPs via their elastic scattering off xenon nuclei. The current phase is XENON100, located at the Laboratori Nazionali del Gran Sasso (LNGS), with a 62 kg liquid xenon target. We present the 100.9 live days of data, acquired between January and June 2010, with no evidence of dark matter, as well as the new results of the last scientific run, with about 225 live days. The next phase, XENON1T, will increase
APA, Harvard, Vancouver, ISO, and other styles
5

BAO, SHOU-SHAN, XUE GONG, ZONG-GUO SI, and YU-FENG ZHOU. "FOURTH GENERATION MAJORANA NEUTRINO, DARK MATTER AND HIGGS PHYSICS." International Journal of Modern Physics A 29, no. 02 (2014): 1450010. http://dx.doi.org/10.1142/s0217751x14500109.

Full text
Abstract:
We consider extensions of the standard model with fourth generation fermions (SM4) in which extra symmetries are introduced such that the transitions between the fourth generation fermions and the ones in the first three generations are forbidden. In these models, the stringent lower bounds on the masses of fourth generation quarks from direct searches can be relaxed, and the lightest fourth neutrino is allowed to be stable and light enough to trigger the Higgs boson invisible decay. In addition, the fourth Majorana neutrino can be a subdominant but highly detectable dark matter component. We
APA, Harvard, Vancouver, ISO, and other styles
6

Ni, Kaixuan, Jianyang Qi, Evan Shockley, and Yuehuan Wei. "Sensitivity of a Liquid Xenon Detector to Neutrino–Nucleus Coherent Scattering and Neutrino Magnetic Moment from Reactor Neutrinos." Universe 7, no. 3 (2021): 54. http://dx.doi.org/10.3390/universe7030054.

Full text
Abstract:
Liquid xenon is one of the leading targets to search for dark matter via its elastic scattering on nuclei or electrons. Due to their low-threshold and low-background capabilities, liquid xenon detectors can also detect coherent elastic neutrino–nucleus scattering (CEνNS) or neutrino–electron scattering. In this paper, we investigate the feasibility of a compact and movable liquid xenon detector with an active target mass of O(10∼100) kg and single-electron sensitivity to detect CEνNS from anti-neutrinos from a nuclear reactor. Assuming a single- and few-electron background rate at the level ac
APA, Harvard, Vancouver, ISO, and other styles
7

Lang, Rafael F. "Status of XENON100." Journal of Physics: Conference Series 375, no. 1 (2012): 012001. http://dx.doi.org/10.1088/1742-6596/375/1/012001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Di Gangi, Pietro. "The Xenon Road to Direct Detection of Dark Matter at LNGS: The XENON Project." Universe 7, no. 8 (2021): 313. http://dx.doi.org/10.3390/universe7080313.

Full text
Abstract:
Dark matter is a milestone in the understanding of the Universe and a portal to the discovery of new physics beyond the Standard Model of particles. The direct search for dark matter has become one of the most active fields of experimental physics in the last few decades. Liquid Xenon (LXe) detectors demonstrated the highest sensitivities to the main dark matter candidates (Weakly Interactive Massive Particles, WIMP). The experiments of the XENON project, located in the underground INFN Laboratori Nazionali del Gran Sasso (LNGS) in Italy, are leading the field thanks to the dual-phase LXe time
APA, Harvard, Vancouver, ISO, and other styles
9

Schumann, Marc. "XENON100 – Results and Prospects." Journal of Physics: Conference Series 309 (August 10, 2011): 012011. http://dx.doi.org/10.1088/1742-6596/309/1/012011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Aprile, E., K. Arisaka, F. Arneodo, et al. "The XENON100 dark matter experiment." Astroparticle Physics 35, no. 9 (2012): 573–90. http://dx.doi.org/10.1016/j.astropartphys.2012.01.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Jensen, K. Birger, K. Høedt-Rasmussen, E. Sveinsdottir, and N. A. Lassen. "REGIONAL CEREBRAL BLOOD FLOW DETERMINED BY INHALATION OF XENON133." Acta Neurologica Scandinavica 41, S13 (2009): 309–10. http://dx.doi.org/10.1111/j.1600-0404.1965.tb01891.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Orrigo, S. E. A. "Direct Dark Matter search with XENON100." EPJ Web of Conferences 121 (2016): 06006. http://dx.doi.org/10.1051/epjconf/201612106006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Aprile, E., K. Arisaka, F. Arneodo, et al. "Material screening and selection for XENON100." Astroparticle Physics 35, no. 2 (2011): 43–49. http://dx.doi.org/10.1016/j.astropartphys.2011.06.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Arias-Aragón, Fernando, Francesco D'Eramo, Ricardo Z. Ferreira, Luca Merlo, and Alessio Notari. "Cosmic imprints of XENON1T axions." Journal of Cosmology and Astroparticle Physics 2020, no. 11 (2020): 025. http://dx.doi.org/10.1088/1475-7516/2020/11/025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Aprile, E., J. Aalbers, F. Agostini, et al. "The XENON1T data acquisition system." Journal of Instrumentation 14, no. 07 (2019): P07016. http://dx.doi.org/10.1088/1748-0221/14/07/p07016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Bhattacherjee, Biplob, and Rhitaja Sengupta. "XENON1T excess: Some possible backgrounds." Physics Letters B 817 (June 2021): 136305. http://dx.doi.org/10.1016/j.physletb.2021.136305.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Christensen, Niels Juel. "MUSCLE BLOOD FLOW, MEASURED BY XENON133 AND VASCULAR CALCIFICATIONS IN DIABETICS." Acta Medica Scandinavica 183, no. 1-6 (2009): 449–54. http://dx.doi.org/10.1111/j.0954-6820.1968.tb10506.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Aristizabal Sierra, D., V. De Romeri, L. J. Flores, and D. K. Papoulias. "Light vector mediators facing XENON1T data." Physics Letters B 809 (October 2020): 135681. http://dx.doi.org/10.1016/j.physletb.2020.135681.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Fieguth, Alexander. "Distillation column for the XENON1T experiment." Journal of Physics: Conference Series 718 (May 2016): 042020. http://dx.doi.org/10.1088/1742-6596/718/4/042020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Benabderrahmane, M. L. "Latest results from the XENON1T experiment." Journal of Physics: Conference Series 1258 (October 2019): 012009. http://dx.doi.org/10.1088/1742-6596/1258/1/012009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Aprile, E., J. Aalbers, F. Agostini, et al. "Search for magnetic inelastic dark matter with XENON100." Journal of Cosmology and Astroparticle Physics 2017, no. 10 (2017): 039. http://dx.doi.org/10.1088/1475-7516/2017/10/039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Aprile, E., M. Alfonsi, K. Arisaka, et al. "Analysis of the XENON100 dark matter search data." Astroparticle Physics 54 (February 2014): 11–24. http://dx.doi.org/10.1016/j.astropartphys.2013.10.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Miranda, O. G., D. K. Papoulias, M. Tórtola, and J. W. F. Valle. "XENON1T signal from transition neutrino magnetic moments." Physics Letters B 808 (September 2020): 135685. http://dx.doi.org/10.1016/j.physletb.2020.135685.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Ahlin, Daniel, Boris Bauermeister, Jan Conrad, et al. "The XENON1T Data Distribution and Processing Scheme." EPJ Web of Conferences 214 (2019): 03015. http://dx.doi.org/10.1051/epjconf/201921403015.

Full text
Abstract:
The XENON experiment is looking for non-baryonic particle dark matter in the universe. The setup is a dual phase time projection chamber (TPC) filled with 3200 kg of ultra-pure liquid xenon. The setup is operated at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy. We present a full overview of the computing scheme for data distribution and job management in XENON1T. The software package Rucio, which is developed by the ATLAS collaboration, facilitates data handling on Open Science Grid (OSG) and European Grid Infrastructure (EGI) storage systems. A tape copy at the Centre for High Perf
APA, Harvard, Vancouver, ISO, and other styles
25

Fiorucci, S. "Xenon10 and Noble Liquid Dark Matter Detectors." Journal of Low Temperature Physics 151, no. 3-4 (2008): 812–17. http://dx.doi.org/10.1007/s10909-008-9739-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Espagno, J., and Y. Lazorthes. "MEASUREMENT OF REGIONAL CEREBRAL BLOOD FLOW IN MAN BY LOCAL INJECTIONS OF XENON133." Acta Neurologica Scandinavica 41, S14 (2009): 58–62. http://dx.doi.org/10.1111/j.1600-0404.1965.tb01954.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Aprile, E., M. Alfonsi, K. Arisaka, et al. "The distributed Slow Control System of the XENON100 experiment." Journal of Instrumentation 7, no. 12 (2012): T12001. http://dx.doi.org/10.1088/1748-0221/7/12/t12001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Kim, Jongkuk, Takaaki Nomura, and Hiroshi Okada. "A radiative seesaw model linking to XENON1T anomaly." Physics Letters B 811 (December 2020): 135862. http://dx.doi.org/10.1016/j.physletb.2020.135862.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Rosendahl, S., E. Brown, I. Cristescu, et al. "A cryogenic distillation column for the XENON1T experiment." Journal of Physics: Conference Series 564 (November 28, 2014): 012006. http://dx.doi.org/10.1088/1742-6596/564/1/012006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Chigusa, So, Motoi Endo, and Kazunori Kohri. "Constraints on electron-scattering interpretation of XENON1T excess." Journal of Cosmology and Astroparticle Physics 2020, no. 10 (2020): 035. http://dx.doi.org/10.1088/1475-7516/2020/10/035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Buch, Jatan, Manuel A. Buen-Abad, JiJi Fan, and John Shing Chau Leung. "Galactic origin of relativistic bosons and XENON1T excess." Journal of Cosmology and Astroparticle Physics 2020, no. 10 (2020): 051. http://dx.doi.org/10.1088/1475-7516/2020/10/051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Aprile, E., K. L. Giboni, S. Kamat, et al. "The XENON dark matter search: status of XENON10." Journal of Physics: Conference Series 39 (May 1, 2006): 107–10. http://dx.doi.org/10.1088/1742-6596/39/1/021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Aprile, E., J. Aalbers, F. Agostini, et al. "Physics reach of the XENON1T dark matter experiment." Journal of Cosmology and Astroparticle Physics 2016, no. 04 (2016): 027. http://dx.doi.org/10.1088/1475-7516/2016/04/027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Ko, P., and Yong Tang. "Semi-annihilating Z3 dark matter for XENON1T excess." Physics Letters B 815 (April 2021): 136181. http://dx.doi.org/10.1016/j.physletb.2021.136181.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Arneodo, F. "The XENON100 experiment and the evolution to the ton scale." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 718 (August 2013): 450–53. http://dx.doi.org/10.1016/j.nima.2012.11.058.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Aprile, E., M. Alfonsi, K. Arisaka, et al. "The neutron background of the XENON100 dark matter search experiment." Journal of Physics G: Nuclear and Particle Physics 40, no. 11 (2013): 115201. http://dx.doi.org/10.1088/0954-3899/40/11/115201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Aprile, Elena. "The XENON100 dark matter experiment at LNGS: Status and sensitivity." Journal of Physics: Conference Series 203 (January 1, 2010): 012005. http://dx.doi.org/10.1088/1742-6596/203/1/012005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Farina, Marco, Mario Kadastik, Duccio Pappadopulo, Joosep Pata, Martti Raidal, and Alessandro Strumia. "Implications of Xenon100 and LHC results for Dark Matter models." Nuclear Physics B 853, no. 3 (2011): 607–24. http://dx.doi.org/10.1016/j.nuclphysb.2011.08.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Harigaya, Keisuke, Yuichiro Nakai, and Motoo Suzuki. "Inelastic dark matter electron scattering and the XENON1T excess." Physics Letters B 809 (October 2020): 135729. http://dx.doi.org/10.1016/j.physletb.2020.135729.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Khan, Amir N. "Can nonstandard neutrino interactions explain the XENON1T spectral excess?" Physics Letters B 809 (October 2020): 135782. http://dx.doi.org/10.1016/j.physletb.2020.135782.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Aprile, E., J. Angle, F. Arneodo, et al. "Design and performance of the XENON10 dark matter experiment." Astroparticle Physics 34, no. 9 (2011): 679–98. http://dx.doi.org/10.1016/j.astropartphys.2011.01.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Zu, Lei, Guan-Wen Yuan, Lei Feng, and Yi-Zhong Fan. "Mirror dark matter and electronic recoil events in XENON1T." Nuclear Physics B 965 (April 2021): 115369. http://dx.doi.org/10.1016/j.nuclphysb.2021.115369.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Zu, Lei, R. Foot, Yi-Zhong Fan, and Lei Feng. "Plasma dark matter and electronic recoil events in XENON1T." Journal of Cosmology and Astroparticle Physics 2021, no. 01 (2021): 070. http://dx.doi.org/10.1088/1475-7516/2021/01/070.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

ROSZKOWSKI, LESZEK, ENRICO MARIA SESSOLO, and YUE-LIN SMING TSAI. "BAYESIAN IMPLICATIONS OF COLLIDER AND SUSY DARK MATTER DIRECT AND INDIRECT SEARCHES." Modern Physics Letters A 28, no. 02 (2013): 1340008. http://dx.doi.org/10.1142/s0217732313400087.

Full text
Abstract:
In this talk we present our recent Bayesian analyses of the Constrained MSSM in which the model's parameter space is constrained by the CMS αT 1.1/fb data at the LHC, the XENON100 dark matter direct detection data, and Fermi-LAT γ-ray data from dwarf spheroidal galaxies (dSphs). We also show that the projected one-year sensitivities for annihilation-induced neutrinos from the Sun in the 86-string configuration of IceCube/DeepCore have the potential to yield additional constraining power on the parameter space of the CMSSM.
APA, Harvard, Vancouver, ISO, and other styles
45

Alikhanov, Ibragim, and Emmanuel Paschos. "A Light Mediator Relating Neutrino Reactions." Universe 7, no. 7 (2021): 204. http://dx.doi.org/10.3390/universe7070204.

Full text
Abstract:
The extension of the standard model with a multiplicative U(1)R factor is consistent with a light vector boson. In its simplest realization, only right-handed particles carry charges of the new group. In this model, there is a residual τ3R symmetry and one new coupling constant which correlates neutrino interactions. We compute new contributions to antineutrino–electron scattering and coherent scattering on nuclei, and compare them with the XENON1T result.
APA, Harvard, Vancouver, ISO, and other styles
46

Collaboration, T. X., E. Aprile, F. Agostini, et al. "Exclusion of leptophilic dark matter models using XENON100 electronic recoil data." Science 349, no. 6250 (2015): 851–54. http://dx.doi.org/10.1126/science.aab2069.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Mambrini, Yann. "The kinetic dark-mixing in the light of CoGENT and XENON100." Journal of Cosmology and Astroparticle Physics 2010, no. 09 (2010): 022. http://dx.doi.org/10.1088/1475-7516/2010/09/022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Hooper, Dan. "Revisiting XENON100's constraints (and signals?) for low-mass dark matter." Journal of Cosmology and Astroparticle Physics 2013, no. 09 (2013): 035. http://dx.doi.org/10.1088/1475-7516/2013/09/035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Olive, Keith A. "The impact of XENON100 and the LHC on Supersymmetric Dark Matter." Journal of Physics: Conference Series 384 (September 13, 2012): 012010. http://dx.doi.org/10.1088/1742-6596/384/1/012010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Clarke, J. D., and R. Foot. "Mirror dark matter will be confirmed or excluded by XENON1T." Physics Letters B 766 (March 2017): 29–34. http://dx.doi.org/10.1016/j.physletb.2016.12.047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!