Journal articles on the topic 'XGBOOST MODEL'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'XGBOOST MODEL.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Zeng, Fanchao, Qing Gao, Lifeng Wu, et al. "Modeling Short-Term Drought for SPEI in Mainland China Using the XGBoost Model." Atmosphere 16, no. 4 (2025): 419. https://doi.org/10.3390/atmos16040419.
Full textZhao, Tianwen, Guoqing Chen, Sujitta Suraphee, Tossapol Phoophiwfa, and Piyapatr Busababodhin. "A hybrid TCN-XGBoost model for agricultural product market price forecasting." PLOS One 20, no. 5 (2025): e0322496. https://doi.org/10.1371/journal.pone.0322496.
Full textNabilah Selayanti, Dwi Amalia Putri, Trimono Trimono, and Mohammad Idhom. "PREDIKSI HARGA PENUTUPAN SAHAM BBRI DENGAN MODEL HYBRID LSTM-XGBOOST." Informatika: Jurnal Teknik Informatika dan Multimedia 5, no. 1 (2025): 52–64. https://doi.org/10.51903/informatika.v5i1.1011.
Full textOUKHOUYA, HASSAN, HAMZA KADIRI, KHALID EL HIMDI, and RABY GUERBAZ. "Forecasting International Stock Market Trends: XGBoost, LSTM, LSTM-XGBoost, and Backtesting XGBoost Models." Statistics, Optimization & Information Computing 12, no. 1 (2023): 200–209. http://dx.doi.org/10.19139/soic-2310-5070-1822.
Full textTran, Thanh-Ngoc, and Quoc-Dai Nguyen. "Research on the Influence of Genetic Algorithm Parameters on XGBoost in Load Forecasting." Engineering, Technology & Applied Science Research 14, no. 6 (2024): 18849–54. https://doi.org/10.48084/etasr.8863.
Full textYang, Hao, Jiaxi Li, Siru Liu, Xiaoling Yang, and Jialin Liu. "Predicting Risk of Hypoglycemia in Patients With Type 2 Diabetes by Electronic Health Record–Based Machine Learning: Development and Validation." JMIR Medical Informatics 10, no. 6 (2022): e36958. http://dx.doi.org/10.2196/36958.
Full textGu, Kai, Jianqi Wang, Hong Qian, and Xiaoyan Su. "Study on Intelligent Diagnosis of Rotor Fault Causes with the PSO-XGBoost Algorithm." Mathematical Problems in Engineering 2021 (April 26, 2021): 1–17. http://dx.doi.org/10.1155/2021/9963146.
Full textLiu, Jialin, Jinfa Wu, Siru Liu, Mengdie Li, Kunchang Hu, and Ke Li. "Predicting mortality of patients with acute kidney injury in the ICU using XGBoost model." PLOS ONE 16, no. 2 (2021): e0246306. http://dx.doi.org/10.1371/journal.pone.0246306.
Full textJi, Shouwen, Xiaojing Wang, Wenpeng Zhao, and Dong Guo. "An Application of a Three-Stage XGBoost-Based Model to Sales Forecasting of a Cross-Border E-Commerce Enterprise." Mathematical Problems in Engineering 2019 (September 16, 2019): 1–15. http://dx.doi.org/10.1155/2019/8503252.
Full textSovia, Nabila Ayunda, Ni Wayan Surya Wardhani, Eni Sumarminingsih, and Elvo Ramadhan Shofa. "Enhancing Image Classification of Cabbage Plant Diseases Using a Hybrid Model Convolutional Neural Network and XGBoost." CAUCHY: Jurnal Matematika Murni dan Aplikasi 10, no. 1 (2025): 278–89. https://doi.org/10.18860/cauchy.v10i1.30866.
Full textWang, Yu, Li Guo, Yanrui Zhang, and Xinyue Ma. "Research on CSI 300 Stock Index Price Prediction Based On EMD-XGBoost." Frontiers in Computing and Intelligent Systems 3, no. 1 (2023): 72–77. http://dx.doi.org/10.54097/fcis.v3i1.6027.
Full textSuresh, Tamilarasi, Assegie Tsehay Admassu, Sangeetha Ganesan, Tulasi Ravulapalli Lakshmi, Radha Mothukuri, and Salau Ayodeji Olalekan. "Explainable extreme boosting model for breast cancer diagnosis." International Journal of Electrical and Computer Engineering (IJECE) 13, no. 5 (2023): 5764–69. https://doi.org/10.11591/ijece.v13i5.pp5764-5769.
Full textXiong, Shuai, Zhixiang Liu, Chendi Min, Ying Shi, Shuangxia Zhang, and Weijun Liu. "Compressive Strength Prediction of Cemented Backfill Containing Phosphate Tailings Using Extreme Gradient Boosting Optimized by Whale Optimization Algorithm." Materials 16, no. 1 (2022): 308. http://dx.doi.org/10.3390/ma16010308.
Full textZhu, Yiming. "Stock Price Prediction based on LSTM and XGBoost Combination Model." Transactions on Computer Science and Intelligent Systems Research 1 (October 12, 2023): 94–109. http://dx.doi.org/10.62051/z6dere47.
Full textGu, Zhongyuan, Miaocong Cao, Chunguang Wang, Na Yu, and Hongyu Qing. "Research on Mining Maximum Subsidence Prediction Based on Genetic Algorithm Combined with XGBoost Model." Sustainability 14, no. 16 (2022): 10421. http://dx.doi.org/10.3390/su141610421.
Full textKandi, Kianeh, and Antonio García-Dopico. "Enhancing Performance of Credit Card Model by Utilizing LSTM Networks and XGBoost Algorithms." Machine Learning and Knowledge Extraction 7, no. 1 (2025): 20. https://doi.org/10.3390/make7010020.
Full textHarriz, Muhammad Alfathan, Nurhaliza Vania Akbariani, Harlis Setiyowati, and Handri Santoso. "Enhancing the Efficiency of Jakarta's Mass Rapid Transit System with XGBoost Algorithm for Passenger Prediction." Jambura Journal of Informatics 5, no. 1 (2023): 1–6. http://dx.doi.org/10.37905/jji.v5i1.18814.
Full textLee, Jong-Hyun, and In-Soo Lee. "Hybrid Estimation Method for the State of Charge of Lithium Batteries Using a Temporal Convolutional Network and XGBoost." Batteries 9, no. 11 (2023): 544. http://dx.doi.org/10.3390/batteries9110544.
Full textSiringoringo, Rimbun, Resianta Perangin-angin, and Jamaluddin Jamaluddin. "MODEL HIBRID GENETIC-XGBOOST DAN PRINCIPAL COMPONENT ANALYSIS PADA SEGMENTASI DAN PERAMALAN PASAR." METHOMIKA Jurnal Manajemen Informatika dan Komputerisasi Akuntansi 5, no. 2 (2021): 97–103. http://dx.doi.org/10.46880/jmika.vol5no2.pp97-103.
Full textZeng, Shuang, Chang Liu, Heng Zhang, Baoqun Zhang, and Yutong Zhao. "Short-Term Load Forecasting in Power Systems Based on the Prophet–BO–XGBoost Model." Energies 18, no. 2 (2025): 227. https://doi.org/10.3390/en18020227.
Full textZhang, Kun. "Transmission Line Fault Diagnosis Method Based on SDA-ISSA-XGBoost under Meteorological Factors." Journal of Physics: Conference Series 2666, no. 1 (2023): 012006. http://dx.doi.org/10.1088/1742-6596/2666/1/012006.
Full textHe, Wenwen, Hongli Le, and Pengcheng Du. "Stroke Prediction Model Based on XGBoost Algorithm." International Journal of Applied Sciences & Development 1 (December 13, 2022): 7–10. http://dx.doi.org/10.37394/232029.2022.1.2.
Full textXiaobing Lin, Xiaobing Lin, Zhe Wu Xiaobing Lin, Jianfa Chen Zhe Wu, Lianfen Huang Jianfa Chen, and Zhiyuan Shi Lianfen Huang. "A Credit Scoring Model Based on Integrated Mixed Sampling and Ensemble Feature Selection: RBR_XGB." 網際網路技術學刊 23, no. 5 (2022): 1061–68. http://dx.doi.org/10.53106/160792642022092305014.
Full textRiando, Dhafin, and Afiyati Afiyati. "Implementasi Algoritma XGBoost untuk Memprediksi Harga Jual Cabai Rawit di DKI Jakarta." Eduvest - Journal of Universal Studies 4, no. 9 (2024): 7877–89. http://dx.doi.org/10.59188/eduvest.v4i9.3784.
Full textZhang, Jun, Ranran Wang, Yijun Lu, and Jiandong Huang. "Prediction of Compressive Strength of Geopolymer Concrete Landscape Design: Application of the Novel Hybrid RF–GWO–XGBoost Algorithm." Buildings 14, no. 3 (2024): 591. http://dx.doi.org/10.3390/buildings14030591.
Full textGuo, RuYan, MinFang Peng, ZhenQi Cao, and RunFu Zhou. "Transformer graded fault diagnosis based on neighborhood rough set and XGBoost." E3S Web of Conferences 243 (2021): 01002. http://dx.doi.org/10.1051/e3sconf/202124301002.
Full textXie, Peifeng, and Jinghang Xu. "Prediction of diabetes mellitus using XGBoost model." Applied and Computational Engineering 67, no. 1 (2024): 131–41. http://dx.doi.org/10.54254/2755-2721/78/20240646.
Full textXie, Peifeng, and Jinghang Xu. "Prediction of diabetes mellitus using XGBoost model." Applied and Computational Engineering 67, no. 1 (2024): 131–41. http://dx.doi.org/10.54254/2755-2721/67/20240646.
Full textOgunleye, Adeola, and Qing-Guo Wang. "XGBoost Model for Chronic Kidney Disease Diagnosis." IEEE/ACM Transactions on Computational Biology and Bioinformatics 17, no. 6 (2020): 2131–40. http://dx.doi.org/10.1109/tcbb.2019.2911071.
Full textYin, Yilan, Yanguang Sun, Feng Zhao, and Jinxiang Chen. "Improved XGBoost model based on genetic algorithm." International Journal of Computer Applications in Technology 62, no. 3 (2020): 240. http://dx.doi.org/10.1504/ijcat.2020.10028423.
Full textChen, Jinxiang, Feng Zhao, Yanguang Sun, and Yilan Yin. "Improved XGBoost model based on genetic algorithm." International Journal of Computer Applications in Technology 62, no. 3 (2020): 240. http://dx.doi.org/10.1504/ijcat.2020.106571.
Full textZong, Zihe. "Credit Risk Assessment Model Based on XGBoost." Advances in Economics, Management and Political Sciences 193, no. 1 (2025): 170–79. https://doi.org/10.54254/2754-1169/2025.lh24569.
Full textKumar, Thella Ajay. "Stroke Prediction Using XGboost and a Fusion of XGboost with Random Forest." INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 09, no. 05 (2025): 1–9. https://doi.org/10.55041/ijsrem48840.
Full textZhao, Haolei, Yixian Wang, Xian Li, Panpan Guo, and Hang Lin. "Prediction of Maximum Tunnel Uplift Caused by Overlying Excavation Using XGBoost Algorithm with Bayesian Optimization." Applied Sciences 13, no. 17 (2023): 9726. http://dx.doi.org/10.3390/app13179726.
Full textYahya, Furqon Nurbaril, Mochammad Anshori, and Ahsanun Naseh Khudori. "Evaluasi Performa XGBoost dengan Oversampling dan Hyperparameter Tuning untuk Prediksi Alzheimer." Techno.Com 24, no. 1 (2025): 1–12. https://doi.org/10.62411/tc.v24i1.12057.
Full textXu, Bing, Youcheng Tan, Weibang Sun, Tianxing Ma, Hengyu Liu, and Daguo Wang. "Study on the Prediction of the Uniaxial Compressive Strength of Rock Based on the SSA-XGBoost Model." Sustainability 15, no. 6 (2023): 5201. http://dx.doi.org/10.3390/su15065201.
Full textN., KALAISELVI, and SASIKALA R. "ENHANCED LIVER CANCER DETECTION USING HYBRID CNN-XGBOOST MODEL IN MACHINE LEARNING." Journal of Dynamics and Control 9, no. 3 (2025): 109–15. https://doi.org/10.71058/jodac.v9i3008.
Full textChoi, Bong-Jin, Seong-Woo Lee, and Yeonkook J. Kim. "Developing Consumer Bank Loan Delinquency Prediction Model Using XAI." Korean Association Of Computers And Accounting 22, no. 2 (2024): 43–61. http://dx.doi.org/10.32956/kaoca.2024.22.2.43.
Full textLin, Nan, Jiawei Fu, Ranzhe Jiang, Genjun Li, and Qian Yang. "Lithological Classification by Hyperspectral Images Based on a Two-Layer XGBoost Model, Combined with a Greedy Algorithm." Remote Sensing 15, no. 15 (2023): 3764. http://dx.doi.org/10.3390/rs15153764.
Full textWu, Kehe, Yanyu Chai, Xiaoliang Zhang, and Xun Zhao. "Research on Power Price Forecasting Based on PSO-XGBoost." Electronics 11, no. 22 (2022): 3763. http://dx.doi.org/10.3390/electronics11223763.
Full textFeng, Dachun, Bing Zhou, Shahbaz Gul Hassan, et al. "A Hybrid Model for Temperature Prediction in a Sheep House." Animals 12, no. 20 (2022): 2806. http://dx.doi.org/10.3390/ani12202806.
Full textZheng, Jiayan, Tianchen Yao, Jianhong Yue, Minghui Wang, and Shuangchen Xia. "Compressive Strength Prediction of BFRC Based on a Novel Hybrid Machine Learning Model." Buildings 13, no. 8 (2023): 1934. http://dx.doi.org/10.3390/buildings13081934.
Full textSingh, Puneet, Shubha Mishra, Gargi Porwal, Prakhar Saxena, and Rishabh Tripathi. "Credit Risk Model: Research on Credit Risk Categorization model using XGBoost." INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 09, no. 03 (2025): 1–9. https://doi.org/10.55041/ijsrem43005.
Full textWang, Li-Jing, Zhi-Ying Liu, Fei Li, Kang-Kang Tan, Yang Han, and Ai-Min Yang. "Sparrow-based optimised XGBoost blast furnace utilisation factor forecasting model." Ironmaking & Steelmaking: Processes, Products and Applications 51, no. 2 (2024): 107–16. http://dx.doi.org/10.1177/03019233231215197.
Full textLiu, Baohua, Hang Lin, Yifan Chen, and Chaoyi Yang. "Prediction of Rock Unloading Strength Based on PSO-XGBoost Hybrid Models." Materials 17, no. 17 (2024): 4214. http://dx.doi.org/10.3390/ma17174214.
Full textHa, Jinbing, and Ziyi Zhou. "Subway Energy Consumption Prediction based on XGBoost Model." Highlights in Science, Engineering and Technology 70 (November 15, 2023): 548–52. http://dx.doi.org/10.54097/hset.v70i.13958.
Full textWan, Zhi, Yading Xu, and Branko Šavija. "On the Use of Machine Learning Models for Prediction of Compressive Strength of Concrete: Influence of Dimensionality Reduction on the Model Performance." Materials 14, no. 4 (2021): 713. http://dx.doi.org/10.3390/ma14040713.
Full textYuan, Jianming. "Predicting Death Risk of COVID-19 Patients Leveraging Machine Learning Algorithm." Applied and Computational Engineering 8, no. 1 (2023): 186–90. http://dx.doi.org/10.54254/2755-2721/8/20230122.
Full textAndrew, O. H., B. D. Oluyemi-Ayibiowu, O. T. Biala, Y. B. Oluwadiya, J. O. Ohwofasa, and O. D. Titiloye. "Evaluation of Load-Bearing Capacity of Lateritic Soils under Unsoaked and Soaked Conditions Commonly Employed in Pavement Design and Construction in Akure, Ondo State, Nigeria." Journal of Applied Sciences and Environmental Management 29, no. 6 (2025): 1951–60. https://doi.org/10.4314/jasem.v29i6.26.
Full textUbaidillah, Rahmad, Muliadi Muliadi, Dodon Turianto Nugrahadi, M. Reza Faisal, and Rudy Herteno. "Implementasi XGBoost Pada Keseimbangan Liver Patient Dataset dengan SMOTE dan Hyperparameter Tuning Bayesian Search." JURNAL MEDIA INFORMATIKA BUDIDARMA 6, no. 3 (2022): 1723. http://dx.doi.org/10.30865/mib.v6i3.4146.
Full text