Academic literature on the topic 'XUV laser'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'XUV laser.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "XUV laser"

1

Wild, Jan, Peter Pira, Tomas Burian, Ludek Vysin, Libor Juha, Zdenek Zelinger, Stanislav Danis, et al. "Ablation of single-crystalline cesium iodide by extreme ultraviolet capillary-discharge laser." Nukleonika 65, no. 4 (December 1, 2020): 205–10. http://dx.doi.org/10.2478/nuka-2020-0031.

Full text
Abstract:
AbstractExtreme ultraviolet (XUV) capillary-discharge lasers (CDLs) are a suitable source for the efficient, clean ablation of ionic crystals, which are obviously difficult to ablate with conventional, long-wavelength lasers. In the present study, a single crystal of cesium iodide (CsI) was irradiated by multiple, focused 1.5-ns pulses of 46.9-nm radiation delivered from a compact XUV-CDL device operated at either 2-Hz or 3-Hz repetition rates. The ablation rates were determined from the depth of the craters produced by the accumulation of laser pulses. Langmuir probes were used to diagnose the plasma plume produced by the focused XUV-CDL beam. Both the electron density and electron temperature were sufficiently high to confirm that ablation was the key process in the observed CsI removal. Moreover, a CsI thin film on MgO substrate was prepared by XUV pulsed laser deposition; a fraction of the film was detected by X-ray photoelectron spectroscopy.
APA, Harvard, Vancouver, ISO, and other styles
2

JUNGWIRTH, K. "Recent highlights of the PALS research program." Laser and Particle Beams 23, no. 2 (June 2005): 177–82. http://dx.doi.org/10.1017/s0263034605050317.

Full text
Abstract:
The Prague Asterix Laser System (PALS) research program covers a broad spectrum of laser–plasma experiments in the range of power densities of 1014-5 × 1016W/cm2, aimed at development and applications of laser plasma-based ion and soft X-ray sources of plasma based ultra-bright XUV lasers in particular. In parallel to these two main lines of research, various principal tasks of laser plasma physics are being studied, such as generation and propagation of laser-induced shock waves, laser ablation, and crater creation processes or laser imprint treatment. Results selected of numerous experimental projects performed at PALS within the period 2002–2004 are surveyed in the paper, experiments with intense soft XUV laser beams being highlighted on the first place.
APA, Harvard, Vancouver, ISO, and other styles
3

Helk, Tobias, Emma Berger, Sasawat Jamnuch, Lars Hoffmann, Adeline Kabacinski, Julien Gautier, Fabien Tissandier, et al. "Table-top extreme ultraviolet second harmonic generation." Science Advances 7, no. 21 (May 2021): eabe2265. http://dx.doi.org/10.1126/sciadv.abe2265.

Full text
Abstract:
The lack of available table-top extreme ultraviolet (XUV) sources with high enough fluxes and coherence properties has limited the availability of nonlinear XUV and x-ray spectroscopies to free-electron lasers (FELs). Here, we demonstrate second harmonic generation (SHG) on a table-top XUV source by observing SHG near the Ti M2,3 edge with a high-harmonic seeded soft x-ray laser. Furthermore, this experiment represents the first SHG experiment in the XUV. First-principles electronic structure calculations suggest the surface specificity and separate the observed signal into its resonant and nonresonant contributions. The realization of XUV-SHG on a table-top source opens up more accessible opportunities for the study of element-specific dynamics in multicomponent systems where surface, interfacial, and bulk-phase asymmetries play a driving role.
APA, Harvard, Vancouver, ISO, and other styles
4

Vassakis, Emmanouil, Ioannis Orfanos, Ioannis Liontos, and Emmanouil Skantzakis. "Generation of Energetic Highly Elliptical Extreme Ultraviolet Radiation." Photonics 8, no. 9 (September 9, 2021): 378. http://dx.doi.org/10.3390/photonics8090378.

Full text
Abstract:
In this study, the generation of energetic coherent extreme ultraviolet (XUV) radiation with the potential for controlled polarization is reported. The XUV radiation results from the process of high harmonic generation (HHG) in a gas phase atomic medium, driven by an intense two-color circularly polarized counter-rotating laser field, under loose focusing geometry conditions. The energy of the XUV radiation emitted per laser pulse is found to be of the order of ~100 nJ with the spectrum spanning from 17 to 26 eV. The demonstrated energy values (along with tight XUV focusing geometries) are sufficient to induce nonlinear processes. Our results challenge current perspectives regarding ultrafast investigations of chiral phenomena in the XUV spectral region.
APA, Harvard, Vancouver, ISO, and other styles
5

Blejchař, Tomáš, Václav Nevrlý, Michal Vašinek, Michal Dostál, Milada Kozubková, Jakub Dlabka, Martin Stachoň, et al. "Desorption/ablation of lithium fluoride induced by extreme ultraviolet laser radiation." Nukleonika 61, no. 2 (June 1, 2016): 131–38. http://dx.doi.org/10.1515/nuka-2016-0023.

Full text
Abstract:
Abstract The availability of reliable modeling tools and input data required for the prediction of surface removal rate from the lithium fluoride targets irradiated by the intense photon beams is essential for many practical aspects. This study is motivated by the practical implementation of soft X-ray (SXR) or extreme ultraviolet (XUV) lasers for the pulsed ablation and thin film deposition. Specifically, it is focused on quantitative description of XUV laser-induced desorption/ablation from lithium fluoride, which is a reference large band-gap dielectric material with ionic crystalline structure. Computational framework was proposed and employed here for the reconstruction of plume expansion dynamics induced by the irradiation of lithium fluoride targets. The morphology of experimentally observed desorption/ablation craters were reproduced using idealized representation (two-zone approximation) of the laser fluence profile. The calculation of desorption/ablation rate was performed using one-dimensional thermomechanic model (XUV-ABLATOR code) taking into account laser heating and surface evaporation of the lithium fluoride target occurring on a nanosecond timescale. This step was followed by the application of two-dimensional hydrodynamic solver for description of laser-produced plasma plume expansion dynamics. The calculated plume lengths determined by numerical simulations were compared with a simple adiabatic expansion (blast-wave) model.
APA, Harvard, Vancouver, ISO, and other styles
6

Nam, C. H., W. Tighe, S. Suckewer, U. Feldman, and J. Seely. "Generation of XUV Spectra by Powerful Picosecond Laser." International Astronomical Union Colloquium 102 (1988): 203–6. http://dx.doi.org/10.1017/s0252921100107705.

Full text
Abstract:
AbstractThe development of laser action at wavelengths shorter than those of current X-ray lasers is being investigated along two fronts. In the first case, we are exploring the possibilities for laser action at 15.4 nm in Li-like AIXI and 12.9 nm in Li-like SiXII in a magnetically confined recombining plasma. Previous work on hydrogen-like carbon, CVI, led to lasing action at 18.2 nm. Recently, this has been applied to microscopy and first results from a soft X-ray laser microscope are presented. A new technique to generate shorter wavelength X-ray lasing involves the interaction of a high power laser with a preformed plasma. The Powerful Picosecond Laser (PP-Laser) System with an output power level of 20-30 GW and focussed power density of 1016- 1017W/cm2has recently become operational. The spectra of highly ionized atoms in the XUV region were recorded on a high resolution grazing incidence spectrometer for the PP-Laser beam interacting with different solid targets.
APA, Harvard, Vancouver, ISO, and other styles
7

HARILAL, S. S., C. V. BINDHU, V. P. SHEVELKO, and H. J. KUNZE. "Charge-exchange collisions in interpenetrating laser-produced magnesium plasmas." Laser and Particle Beams 19, no. 1 (January 2001): 99–103. http://dx.doi.org/10.1017/s0263034601191159.

Full text
Abstract:
Charge-exchange collisions are one of the effective pumping methods for soft X-ray lasers. Experiments are performed to investigate charge-exchange collisions between highly charged Mg ions in colliding laser-produced magnesium plasmas. Pinhole photography and XUV spectroscopy are used as diagnostic tools. Spectroscopic studies show selective population of n = 3 levels of Mg IX ions, which results in enhancement of respective line intensities. Theoretical calculations also give a large cross section as high as 10−15 cm2 for these charge-exchange collisions when the relative velocities of the colliding ions are of the order of 107 cm s−1. XUV pinhole pictures are taken in early stages, which give more insight into the expansion dynamics of the colliding magnesium plasmas.
APA, Harvard, Vancouver, ISO, and other styles
8

Kato, Yoshiaki. "XUV laser and plasma physics." Kakuyūgō kenkyū 59, no. 2 (1988): 87–101. http://dx.doi.org/10.1585/jspf1958.59.87.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

LE PAPE, S., PH ZEITOUN, P. DHEZ, M. FRANÇOIS, M. IDIR, D. ROS, and A. CARILLON. "Measurement of XUV sources' wavefronts." Laser and Particle Beams 19, no. 1 (January 2001): 55–58. http://dx.doi.org/10.1017/s0263034601191081.

Full text
Abstract:
New fields of X-ray source applications (X-ray laser and high order harmonic generation) could appear if an intensity higher than 1012 Wcm−2 is reached. Following this goal, we have started a complete investigation of the X-ray beam wavefront both numerically and experimentally. The first XUV wavefront sensor has been developed and tested on different XUV sources. For a better comprehension of the experimental results, a numerical work (ray-trace code) has been performed. We present and discuss the first results obtained on the X-ray laser at 21.2 nm.
APA, Harvard, Vancouver, ISO, and other styles
10

Magunia, Alexander, Lennart Aufleger, Thomas Ding, Patrick Rupprecht, Marc Rebholz, Christian Ott, and Thomas Pfeifer. "Bound-State Electron Dynamics Driven by Near-Resonantly Detuned Intense and Ultrashort Pulsed XUV Fields." Applied Sciences 10, no. 18 (September 4, 2020): 6153. http://dx.doi.org/10.3390/app10186153.

Full text
Abstract:
We report on numerical results revealing line-shape asymmetry changes of electronic transitions in atoms near-resonantly driven by intense extreme-ultraviolet (XUV) electric fields by monitoring their transient absorption spectrum after transmission through a moderately dense atomic medium. Our numerical model utilizes ultrashort broadband XUV laser pulses varied in their intensity (1014–1015 W/cm2) and detuning nearly out of resonance for a quantitative evaluation of the absorption line-shape asymmetry. It will be shown how transient energy shifts of the bound electronic states can be linked to these asymmetry changes in the case of an ultrashort XUV driving pulse temporally shorter than the lifetime of the resonant excitation, and how the asymmetry can be controlled by the near-resonant detuning of the XUV pulse. In the case of a two-level system, the numerical model is compared to an analytical calculation, which helps to uncover the underlying mechanism for the detuning- and intensity-induced line-shape modification and links it to the generalized Rabi frequency. To further apply the numerical model to recent experimental results of the near-resonant dressing of the 2s2p doubly excited state in helium by an ultrashort XUV free-electron laser pulse we extend the two-level model with an ionization continuum, thereby enabling the description of transmission-type (Fraunhofer-like) transient absorption of a strongly laser-coupled autoionizing state.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "XUV laser"

1

Kiehn, G. P. "XUV laser amplication in recombining laser produced plasmas." Thesis, University of Oxford, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.379973.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Holden, Philip Bernard. "Numerical modelling of laser produced plasmas as XUV lasers." Thesis, University of York, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.292556.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Cassou, Kevin. "Etudes d'amplificateurs plasma laser à haute cadence dans le domaine XUV et applications à la station LASERIX." Paris 11, 2006. https://tel.archives-ouvertes.fr/tel-00170172.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Cairns, Gerald Francis. "Development studies of XUV laser amplifiers." Thesis, Queen's University Belfast, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.295405.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bettaibi, Islam. "Développement et caractérisation des lasers XUV créés par laser femtoseconde." Phd thesis, Ecole Polytechnique X, 2005. http://tel.archives-ouvertes.fr/tel-00179321.

Full text
Abstract:
Les sources XUV cohérentes présentent un potentiel important d'applications scientifiques, médicales et industrielles. Le développement des lasers ultra intenses a permis la réalisation de nouvelles sources XUV cohérentes et brèves, comme la génération d'harmonique d'ordre élevée et les lasers XUV. Ces sources sont compactes, peu coûteuses par rapport aux sources classiques telles que les synchrotrons, et présentent donc un intérêt tout particulier.

Cette thèse présente une série d'études sur une nouvelle source laser XUV, pompée par un laser femtoseconde fonctionnant à 10 Hz. Un laser ultra intense est focalisé dans une cellule remplie de xénon ou de krypton et crée une colonne de plasma. Une émission laser à 41,8 nm dans le xénon IX ou à 32,8 nm dans le krypton IX est alors obtenue sur l'axe du laser de pompe. Nous avons réalisé une étude à la fois expérimentale et numérique de ce type de source dans le but de caractériser l'importance de différents paramètres tels que l'intensité et polarisation du laser, la pression du gaz et la longueur de la cellule. Cette thèse présente aussi une étude des profils spatiaux et temporels de l'émission laser.

Afin de compenser la réfraction du laser de pompe, nous avons utilisé deux techniques de guidage qui ont permis un allongement significatif de la zone amplificatrice du plasma. La première repose sur la création d'un canal plasma par décharge électrique et la deuxième sur les réflexions sur les parois internes de tubes diélectriques de saphir ou de verre. Dans les deux cas une amélioration spectaculaire des performances de la source a été observée.

Finalement, nous présentons dans ce manuscrit une étude préliminaire sur un autre schéma de pompage de laser X: par photo ionisation en couches internes d'atomes neutres. Nous avons développé un système optique qui devrait permettre la réalisation d'une onde inhomogène femtoseconde absolument nécessaire pour ce type de laser X.
APA, Harvard, Vancouver, ISO, and other styles
6

Bettaïbi, Islam Sebban Stéphane. "Développement et caractérisation des lasers XUV crées par laser femtoseconde." [S. l.] : [s.n], 2005. http://www.polymedia.polytechnique.fr.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bettaïbi, Islam. "Développement et caractérisation des lasers XUV crées par laser femtoseconde." Palaiseau, Ecole polytechnique, 2005. http://www.theses.fr/2005EPXX0035.

Full text
Abstract:
Les sources XUV cohérentes présentent un potentiel important d'applications scientifiques, médicales et industrielles. Le développement des lasers ultra intenses a permis la réalisation de nouvelles sources XUV cohérentes et brèves, comme la génération d'harmonique d'ordre élevée et les lasers XUV. Ces sources sont compactes, peu coûteuses par rapport aux sources classiques telles que les synchrotrons, et présentent donc un intérêt tout particulier. Cette thèse présente une série d'études sur une nouvelle source laser XUV, pompée par un laser femtoseconde fonctionnant à 10 Hz. Un laser ultra intense est focalisé dans une cellule remplie de xénon ou de krypton et crée une colonne de plasma. Une émission laser, à 41,8 nm dans le xénon IX ou à32,8 nm dans le krypton IX est alors obtenue sur l'axe du laser de pompe. Nous avons réalisé une étude à la fois expérimentale et numérique de ce type de source dans le but de caractériser l'importance de différents paramètres tels que l'intensité et polarisation du laser, la pression du gaz et la longueur de la cellule. Cette thèse présente aussi une étude des profils spatiaux et temporels de l'émission laser
Coherent soft x-ray sources have an important potential for scientific, medical and industrial applications. The development of high intensity laser systems allowed the realization of new coherent and fast soft x-ray sources like high order harmonic generation and soft x-ray lasers. These sources are compact, cheaper than traditionnal sources such as synchrotrons, and are thus interesting. This thesis presents the study of a new soft x-ray laser pumped by a femtoseconde laser beam working at 10 Hz. The circularly polarized ultra intense laser is longitudinally focused in a cell filled with xenon or krypton, to obtain the amplification of two lasing lines at 41,8 nm and 32,8 nm in Pd-like xenon and Ni-like krypton respectively. Wecarry out an experimental and numerical study of the source to understand the importance of different parameters such as the laser intensity and polarization, the gas pressure and the cell length. We have also spatially and temporally characterized the soft x-ray laser beam
APA, Harvard, Vancouver, ISO, and other styles
8

Smith, Roland Adam. "XUV amplification in recombining laser produced plasmas." Thesis, Imperial College London, 1989. http://hdl.handle.net/10044/1/47667.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

HAROUTUNIAN, ROMAIN. "Sources xuv coherentes creees par laser femtoseconde : laser x et optimisation de la generation d'harmoniques d'ordre eleve." Palaiseau, Ecole polytechnique, 2001. http://www.theses.fr/2001EPXX0024.

Full text
Abstract:
Les sources xuv possedent un veritable potentiel d'applications scientifiques, industrielles et medicales. En parallele avec l'evolution des lasers de puissance, les sources xuv coherentes creees par laser femtoseconde offrent une alternative en terme de cout et d'encombrement, par rapport au sources plus classiques telles que le synchrotron. Dans ce contexte, nous avons developpe au laboratoire d'optique appliquee deux types de sources xuv coherentes reposant sur l'interaction d'une impulsion femtoseconde intense avec un milieu dilue : le laser x et la generation d'harmoniques d'ordre eleve. Bien controler et optimiser ces sources implique une bonne connaissance du milieu emetteur et des caracteristiques des impulsions excitatrices. L'interaction d'une impulsion femtoseconde intense (10 1 4 a 10 1 7 w/cm 2) dans un gaz (qq. Mbar) induit une propagation hautement non-lineaire qui conditionne la physique des sources xuv. Nous avons donc developpe un code de propagation en milieu dilue, et realise des experiences de propagation dans des configurations semblables a celles de ces sources xuv coherentes. Nous avons observe une phenomene de collimation non-relativiste, dont la comprehension necessite une modelisation plus poussee de l'interaction laser-gaz. La generation d'harmoniques d'ordre eleve repose a la fois sur une reponse non-lineaire et un comportement collectif du milieu. Nous avons montre qu'un bon accord de phase et une generation d'harmoniques efficace peuvent etre obtenus dans un grand volume, mais pendant un temps tres court, sur le front montant de l'impulsion. Nous presentons les premieres etudes visant a controler la phase de la polarisation non lineaire, influencant ainsi la phase du rayonnement xuv emis et donc, ses proprietes spatiales, temporelles et spectrales. Enfin, nous avons realise le premier laser xuv sature pompe par un laser femtoseconde. Un fort gain de 67 cm 1 a ete obtenu dans le xenon palladiumoide lasant a 41. 8 nm, avec un produit gain-longueur de 15 indiquant la saturation. L'influence de l'ellipticite de la polarisation laser a ete etudiee, permettant de montrer la tres forte influence de la propagation et de la sur-ionisation sur la creation du milieu lasant.
APA, Harvard, Vancouver, ISO, and other styles
10

Goddet, Jean-Philippe. "Etude et développement de sources laser XUV par injection d'harmoniques d'ordre élevé." Phd thesis, Ecole Polytechnique X, 2009. http://pastel.archives-ouvertes.fr/pastel-00503026/en/.

Full text
Abstract:
Les travaux réalisés dans le cadre de cette thèse visent à étudier une géométrie de lasers XUV inspirée des lasers de puissance. Cette architecture, consistant en un injecteur (une source d'harmoniques d'ordre élevé) couplé à un amplificateur (plasma créé par laser), correspond à celle d'une chaîne laser de puissance dans la gamme spectrale de l'XUV. Le laser à 32,8 nm étudié ici, est produit par l'injection d'harmonique d'ordre élevé dans un plasma de krypton créé par Optical Field Ionisation (OFI). Ce schéma, initialement testé par T. Ditmire en 1995, a été validé en 2003 au Laboratoire d'Optique Appliquée avec un amplificateur plasma créé par l'interaction d'un laser intense et d'un milieu gazeux. Cette thèse s'inscrit dans la continuité de ce dernier travail en tentant d'aborder différents aspects liés, non seulement à une meilleure compréhension des processus physiques impliqués, mais aussi à la caractérisation spatio-temporelle de ce type de source.Nous avons démontré expérimentalement et pour la première fois qu'une source dans le domaine de l'XUV peut être à la fois très compacte, énergétique (1 µJ par impulsion), proche de la limite de diffraction et de celle de Fourier. En effet, grâce au filtrage spatial des harmoniques par le milieu amplificateur, le laser XUV injecté à 32,8 nm montre un profil spatial gaussien avec une divergence de 0,7 mrad (à 1/e2). Le front d'onde a été mesuré avec un senseur de type Hartmann et atteint une valeur de lambda/17 en écart quadratique moyen, démontrant que cette source XUV est limitée par la diffraction. Les caractérisations temporelles du laser montrent que le temps de cohérence est de l'ordre de la durée d'émission spontanée de l'amplificateur. Les résultats de la mesure de la cohérence temporelle présentent un profil gaussien de largeur spectrale relative delta lambda/lambda égale à 10-5 (à mi-hauteur) correspondant à une durée d'impulsion de l'ordre de 5 ps.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "XUV laser"

1

name, No. Laser-tissue interaction XIV. Bellingham, WA: SPIE, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

1932-, Yu Heji, ed. Ji guang zhi zao gong yi li xue: Laser manufacturing technology. Beijing: Guo fang gong ye chu ban she, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kudryashov, Alexis V. Laser resonators, microresonators, and beam control XIV: 22-25 January 2012, San Francisco, California, United States. Edited by SPIE (Society). Bellingham, Wash: SPIE, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Yamanouchi, Kaoru, Philippe Martin, Marc Sentis, Li Ruxin, and Didier Normand, eds. Progress in Ultrafast Intense Laser Science XIV. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-03786-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Yongpeng, Zhao, ed. Ji guang qi dong li xue: Laser kinetics. Ha'erbin Shi: Ha'erbin gong ye da xue chu ban she, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Rechmann, Peter, and Daniel S. Fried. Lasers in dentistry XV: 24 January 2009, San Jose, California, United States. Edited by SPIE (Society). Bellingham, Wash: SPIE, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Yamanouchi, Kaoru, and Dimitrios Charalambidis, eds. Progress in Ultrafast Intense Laser Science XV. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-47098-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Guang dian zi xue yuan li yu ji shu. Beijing Shi: Beijing hang kong hang tian da xue chu ban she, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Diego, Calif ). Laser Beam Shaping (Conference) (14th 2013 San. Laser Beam Shaping XIV: 26 August 2013, San Diego, California, United States. Bellingham, Washington: SPIE, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

1965-, Jin Yuqi, and Yang Bailing, eds. Qi liu hua xue ji guang ce shi zhen duan ji shu. 2nd ed. Beijing: Ke xue chu ban she, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "XUV laser"

1

Morgner, Uwe. "Ultrafast Laser Oscillators and Amplifiers." In Attosecond and XUV Physics, 17–36. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527677689.ch2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sauerbrey, R. "New VUV and XUV Laser Systems." In Gas Flow and Chemical Lasers, 102–13. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-71859-5_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Daido, H., E. Miura, Y. Kitagawa, Y. Kato, K. Nishihara, S. Nakai, and C. Yamanaka. "Study on XUV Lasers Produced by a CO2 Laser." In Springer Proceedings in Physics, 105–12. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-74088-6_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Meng, L., A. Calisti, S. Ferri, C. Mossé, B. Talin, D. Benredjem, O. Guilbaud, and A. Klisnick. "Spectral Broadening of Ni-Like XUV Laser Lines." In Springer Proceedings in Physics, 181–84. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-00696-3_29.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Schmidt, Jiri, Karel Kolacek, Oleksandr Frolov, Vaclav Prukner, and Jaroslav Straus. "Repetitive XUV Discharge-Pumped Laser at 46.9 nm." In Springer Proceedings in Physics, 231–34. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-00696-3_37.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Borsutzky, A., R. Brünger, and R. Wallenstein. "Narrowband Tunable VUV/XUV Radiation Generated by Third-Order Frequency Mixing of Laser Radiation in Gases." In Applied Laser Spectroscopy, 63–67. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4684-1342-7_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Stehlé, C., R. Lefèvre, U. Chaulagain, N. Champion, P. Barroso, F. Reix, P. Jagourel, et al. "Critical Components for XUV Probing of Laser Driven Shocks." In Springer Proceedings in Physics, 239–42. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-00696-3_39.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Dzelzainis, T. W. J., F. Y. Khattak, B. Nagler, S. Vinko, T. Whitcher, A. J. Nelson, R. W. Lee, et al. "Emission Spectroscopy from an XUV Laser Irradiated Solid Target." In Springer Proceedings in Physics, 549–55. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-9924-3_65.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Midorikawa, Katsumi. "Nonlinear Interaction of Strong XUV Fields with Atoms and Molecules." In Lectures on Ultrafast Intense Laser Science 1, 175–201. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-95944-1_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lu, Peixiang, Hidetoshi Nakano, Tadashi Nishikawa, and Naoshi Uesugi. "XUV Emissions from Terawatt Femtosecond Laser Produced Plasma Columns in Gases." In Frontiers of Laser Physics and Quantum Optics, 387–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-07313-1_30.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "XUV laser"

1

Tzallas, P., E. Skantzakis, and D. Charalambidis. "Exploiting energetic XUV super-continua." In Laser Science. Washington, D.C.: OSA, 2012. http://dx.doi.org/10.1364/ls.2012.lw1h.4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lam, Matthew H. C., T. J. Hammond, Arthur K. Mills, and David J. Jones. "XUV Frequency Combs for Spectroscopy." In Laser Science. Washington, D.C.: OSA, 2012. http://dx.doi.org/10.1364/ls.2012.lw2i.2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Johnsson, Per, Wing Kiu Siu, Arjan Gijsbertsen, and Marc Vrakking. "Molecular control experiments using ultrashort XUV pulses." In Laser Science. Washington, D.C.: OSA, 2007. http://dx.doi.org/10.1364/ls.2007.ltug3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ubachs, W. "Laser Spectroscopy in the XUV." In EQEC'96. 1996 European Quantum Electronic Conference. IEEE, 1996. http://dx.doi.org/10.1109/eqec.1996.561675.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sonntag, B. F., C. L. Cromer, J. M. Bridges, T. J. McIlrath, and T. B. Lucatorto. "Laser-XUV excited state spectroscopy." In AIP Conference Proceedings Volume 147. AIP, 1986. http://dx.doi.org/10.1063/1.35968.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

O'Neill, F. "Laser-plasma XUV sources generated by KrF lasers." In Soft X-Rays Optics and Technology, edited by E. Koch and Guenther A. Schmahl. SPIE, 1986. http://dx.doi.org/10.1117/12.964885.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Jones, R. Jason, David R. Carlson, and Tsung-Han Wu. "An XUV dual-comb source for precision spectroscopy." In Laser Science. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/ls.2015.lw5i.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

WANG, HE, Yiming Xu, Stefan Ulonska, Predrag Ranitovic, and Robert A. Kaindl. "High repetition-rate XUV source for ultrafast photoemission." In Laser Science. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/ls.2013.lth1i.2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sandhu, Arvinder S., and Henry Timmers. "Attosecond XUV spectroscopy to study dynamics near conical intersections." In Laser Science. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/ls.2013.lw2h.3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Qi, N., D. A. Hammer, D. H. Kalantar, G. D. Rondeau, K. C. Mittal, J. P. Apruzese, and G. J. Bordonaro. "Photopumped XUV laser studies at Cornell." In 1990 Plasma Science IEEE Conference Record - Abstracts. IEEE, 1990. http://dx.doi.org/10.1109/plasma.1990.110566.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "XUV laser"

1

Yang, T. T., V. T. Gylys, R. D. Bower, D. G. Harris, J. A. Blauer, C. E. Turner, and R. N. Hindy. Ionic alkali halide XUV laser feasibility study. Office of Scientific and Technical Information (OSTI), November 1989. http://dx.doi.org/10.2172/5987078.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kalantar, D. H., L. B. DaSilva, and S. Glendinning. Measurements of laser imprint by XUV radiography using an x-ray laser. Office of Scientific and Technical Information (OSTI), May 1996. http://dx.doi.org/10.2172/249256.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kalantar, D. H., M. H. Key, and L. B. DaSilva. Measurements of direct drive laser imprint in thin foils by XUV radiography using an X-ray laser backlighter. Office of Scientific and Technical Information (OSTI), November 1996. http://dx.doi.org/10.2172/464293.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kapteyn, Henry C. Annual Scientific Report for DE-FG03-02NA00063 Coherent imaging of laser-plasma interactions using XUV high harmonic radiation. Office of Scientific and Technical Information (OSTI), May 2005. http://dx.doi.org/10.2172/839546.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kapteyn, Henry. Final Scientific/Technical Report for DE-FG03-02NA00063 Coherent imaging of laser-plasma interactions using XUV high harmonic radiation. Office of Scientific and Technical Information (OSTI), June 2006. http://dx.doi.org/10.2172/884813.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kalantar, D. H., A. Demir, and M. H. Key. XUV radiography measurements of direct drive imprint in thin aluminum foils using a Ge x-ray laser on Vulcan. Office of Scientific and Technical Information (OSTI), March 1996. http://dx.doi.org/10.2172/236216.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Young, James F. Research on XUV Lasers and Applications. Fort Belvoir, VA: Defense Technical Information Center, December 1997. http://dx.doi.org/10.21236/ada334636.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Young, James F. Development and Application of XUV Lasers. Fort Belvoir, VA: Defense Technical Information Center, January 1993. http://dx.doi.org/10.21236/ada277173.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Griem, H. R. Experimental study of layer mixing, relative ionic escape velocity, and electron temperature gradients in spherical multilayered targets by XUV spectroscopy. Office of Scientific and Technical Information (OSTI), July 1990. http://dx.doi.org/10.2172/6169792.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography