Journal articles on the topic 'Xylose utilization'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Xylose utilization.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Hector, Ronald E., Jeffrey A. Mertens, and Nancy N. Nichols. "Identification of Mutations Responsible for Improved Xylose Utilization in an Adapted Xylose Isomerase Expressing Saccharomyces cerevisiae Strain." Fermentation 8, no. 12 (2022): 669. http://dx.doi.org/10.3390/fermentation8120669.
Full textKim, Jae-Han, Sharon P. Shoemaker, and David A. Mills. "Relaxed control of sugar utilization in Lactobacillus brevis." Microbiology 155, no. 4 (2009): 1351–59. http://dx.doi.org/10.1099/mic.0.024653-0.
Full textPanchal, Chandra J., Lynda Bast, Inge Russell, and Graham G. Stewart. "Repression of xylose utilization by glucose in xylose-fermenting yeasts." Canadian Journal of Microbiology 34, no. 12 (1988): 1316–20. http://dx.doi.org/10.1139/m88-230.
Full textZheng, Liyuan, Shan Wei, Meiling Wu, et al. "Improving Xylose Fermentation in Saccharomyces cerevisiae by Expressing Nuclear-Localized Hexokinase 2." Microorganisms 8, no. 6 (2020): 856. http://dx.doi.org/10.3390/microorganisms8060856.
Full textSonderegger, Marco, and Uwe Sauer. "Evolutionary Engineering of Saccharomyces cerevisiae for Anaerobic Growth on Xylose." Applied and Environmental Microbiology 69, no. 4 (2003): 1990–98. http://dx.doi.org/10.1128/aem.69.4.1990-1998.2003.
Full textKlimacek, Mario, Stefan Krahulec, Uwe Sauer, and Bernd Nidetzky. "Limitations in Xylose-Fermenting Saccharomyces cerevisiae, Made Evident through Comprehensive Metabolite Profiling and Thermodynamic Analysis." Applied and Environmental Microbiology 76, no. 22 (2010): 7566–74. http://dx.doi.org/10.1128/aem.01787-10.
Full textIkawa, Yumi, Sayaka Ohnishi, Akiko Shoji, Ayako Furutani, and Seiji Tsuge. "Concomitant Regulation by a LacI-Type Transcriptional Repressor XylR on Genes Involved in Xylan and Xylose Metabolism and the Type III Secretion System in Rice Pathogen Xanthomonas oryzae pv. oryzae." Molecular Plant-Microbe Interactions® 31, no. 6 (2018): 605–13. http://dx.doi.org/10.1094/mpmi-11-17-0277-r.
Full textLiu, Yunhao, Paul B. Rainey, and Xue-Xian Zhang. "Molecular mechanisms of xylose utilization byPseudomonas fluorescens: overlapping genetic responses to xylose, xylulose, ribose and mannitol." Molecular Microbiology 98, no. 3 (2015): 553–70. http://dx.doi.org/10.1111/mmi.13142.
Full textMeijnen, Jean-Paul, Johannes H. de Winde, and Harald J. Ruijssenaars. "Engineering Pseudomonas putida S12 for Efficient Utilization of d-Xylose and l-Arabinose." Applied and Environmental Microbiology 74, no. 16 (2008): 5031–37. http://dx.doi.org/10.1128/aem.00924-08.
Full textErbeznik, Milutin, Karl A. Dawson, and Herbert J. Strobel. "Cloning and Characterization of Transcription of the xylAB Operon in Thermoanaerobacter ethanolicus." Journal of Bacteriology 180, no. 5 (1998): 1103–9. http://dx.doi.org/10.1128/jb.180.5.1103-1109.1998.
Full textPark, Jongbeom, Sujeong Park, Grace Evelina, et al. "Metabolic Engineering of Komagataella phaffii for Xylose Utilization from Cellulosic Biomass." Molecules 29, no. 23 (2024): 5695. https://doi.org/10.3390/molecules29235695.
Full textKoirala, Santosh, Xiaoyi Wang, and Christopher V. Rao. "Reciprocal Regulation of l-Arabinose and d-Xylose Metabolism in Escherichia coli." Journal of Bacteriology 198, no. 3 (2015): 386–93. http://dx.doi.org/10.1128/jb.00709-15.
Full textVan Zyl, C., B. A. Prior, S. G. Kilian, and J. L. F. Kock. "D-Xylose Utilization by Saccharomyces cerevisiae." Microbiology 135, no. 11 (1989): 2791–98. http://dx.doi.org/10.1099/00221287-135-11-2791.
Full textSong, S. "Utilization of ?-ribose through ?-xylose transporter." FEMS Microbiology Letters 163, no. 2 (1998): 255–61. http://dx.doi.org/10.1016/s0378-1097(98)00180-3.
Full textWu, Meiling, Hongxing Li, Shan Wei, et al. "Simulating Extracellular Glucose Signals Enhances Xylose Metabolism in Recombinant Saccharomyces cerevisiae." Microorganisms 8, no. 1 (2020): 100. http://dx.doi.org/10.3390/microorganisms8010100.
Full textSizemore, C., B. Wieland, F. Götz, and W. Hillen. "Regulation of Staphylococcus xylosus xylose utilization genes at the molecular level." Journal of Bacteriology 174, no. 9 (1992): 3042–48. http://dx.doi.org/10.1128/jb.174.9.3042-3048.1992.
Full textXiong, Xiaochao, Xi Wang, and Shulin Chen. "Engineering of a Xylose Metabolic Pathway in Rhodococcus Strains." Applied and Environmental Microbiology 78, no. 16 (2012): 5483–91. http://dx.doi.org/10.1128/aem.08022-11.
Full textWang, Meng, Chenzhao Yu, and Huimin Zhao. "Directed evolution of xylose specific transporters to facilitate glucose-xylose co-utilization." Biotechnology and Bioengineering 113, no. 3 (2015): 484–91. http://dx.doi.org/10.1002/bit.25724.
Full textXin, Fengxue, Yi-Rui Wu, and Jianzhong He. "Simultaneous Fermentation of Glucose and Xylose to Butanol by Clostridium sp. Strain BOH3." Applied and Environmental Microbiology 80, no. 15 (2014): 4771–78. http://dx.doi.org/10.1128/aem.00337-14.
Full textDíaz-Fernández, David, Gloria Muñoz-Fernández, Victoria Isabel Martín, José Luis Revuelta, and Alberto Jiménez. "Sugar transport for enhanced xylose utilization in Ashbya gossypii." Journal of Industrial Microbiology & Biotechnology 47, no. 12 (2020): 1173–79. http://dx.doi.org/10.1007/s10295-020-02320-5.
Full textRhee, Mun Su, Lusha Wei, Neha Sawhney, et al. "Engineering the Xylan Utilization System in Bacillus subtilis for Production of Acidic Xylooligosaccharides." Applied and Environmental Microbiology 80, no. 3 (2013): 917–27. http://dx.doi.org/10.1128/aem.03246-13.
Full textNobre, Alexandra, Cândida Lucas, and Cecília Leão. "Transport and Utilization of Hexoses and Pentoses in the Halotolerant Yeast Debaryomyces hansenii." Applied and Environmental Microbiology 65, no. 8 (1999): 3594–98. http://dx.doi.org/10.1128/aem.65.8.3594-3598.1999.
Full textBlazeck, John, and Hal Alper. "Uncovering latent xylose utilization potential inSaccharomyces cerevisiae." Biofuels 1, no. 5 (2010): 681–84. http://dx.doi.org/10.4155/bfs.10.50.
Full textLi, Haibo, and Hal S. Alper. "Enabling xylose utilization inYarrowia lipolyticafor lipid production." Biotechnology Journal 11, no. 9 (2016): 1230–40. http://dx.doi.org/10.1002/biot.201600210.
Full textKawaguchi, Hideo, Alain A. Vert�s, Shohei Okino, Masayuki Inui, and Hideaki Yukawa. "Engineering of a Xylose Metabolic Pathway in Corynebacterium glutamicum." Applied and Environmental Microbiology 72, no. 5 (2006): 3418–28. http://dx.doi.org/10.1128/aem.72.5.3418-3428.2006.
Full textTräff, K. L., R. R. Otero Cordero, W. H. van Zyl, and B. Hahn-Hägerdal. "Deletion of the GRE3 Aldose Reductase Gene and Its Influence on Xylose Metabolism in Recombinant Strains of Saccharomyces cerevisiae Expressing thexylA and XKS1 Genes." Applied and Environmental Microbiology 67, no. 12 (2001): 5668–74. http://dx.doi.org/10.1128/aem.67.12.5668-5674.2001.
Full textWahlbom, C. Fredrik, Ricardo R. Cordero Otero, Willem H. van Zyl, Bärbel Hahn-Hägerdal, and Leif J. Jönsson. "Molecular Analysis of a Saccharomyces cerevisiae Mutant with Improved Ability To Utilize Xylose Shows Enhanced Expression of Proteins Involved in Transport, Initial Xylose Metabolism, and the Pentose Phosphate Pathway." Applied and Environmental Microbiology 69, no. 2 (2003): 740–46. http://dx.doi.org/10.1128/aem.69.2.740-746.2003.
Full textWisselink, H. Wouter, Maurice J. Toirkens, Qixiang Wu, Jack T. Pronk, and Antonius J. A. van Maris. "Novel Evolutionary Engineering Approach for Accelerated Utilization of Glucose, Xylose, and Arabinose Mixtures by Engineered Saccharomyces cerevisiae Strains." Applied and Environmental Microbiology 75, no. 4 (2008): 907–14. http://dx.doi.org/10.1128/aem.02268-08.
Full textSirithep, Kanokwadee, Fei Xiao, Nachon Raethong, et al. "Probing Carbon Utilization of Cordyceps militaris by Sugar Transportome and Protein Structural Analysis." Cells 9, no. 2 (2020): 401. http://dx.doi.org/10.3390/cells9020401.
Full textKim, Byoungjin, Jing Du, Dawn T. Eriksen, and Huimin Zhao. "Combinatorial Design of a Highly Efficient Xylose-Utilizing Pathway in Saccharomyces cerevisiae for the Production of Cellulosic Biofuels." Applied and Environmental Microbiology 79, no. 3 (2012): 931–41. http://dx.doi.org/10.1128/aem.02736-12.
Full textBolotnikova, Olga, Julia Bazarnova, Ekaterina Aronova, Natalia Mikhailova, Tatiana Bolotnikova, and Jing Pu. "Spent sulphite liquor utilization by xylose-assimilating yeast pachysolen tannophilus, capable of bioethanol producing." E3S Web of Conferences 140 (2019): 02008. http://dx.doi.org/10.1051/e3sconf/201914002008.
Full textRunquist, David, B�rbel Hahn-H�gerdal, and Maurizio Bettiga. "Increased Ethanol Productivity in Xylose-Utilizing Saccharomyces cerevisiae via a Randomly Mutagenized Xylose Reductase." Applied and Environmental Microbiology 76, no. 23 (2010): 7796–802. http://dx.doi.org/10.1128/aem.01505-10.
Full textLuo, Kui, Xiaolong Guo, Huihui Zhang, Hongxin Fu, and Jufang Wang. "The Physiological Functions of AbrB on Sporulation, Biofilm Formation and Carbon Source Utilization in Clostridium tyrobutyricum." Bioengineering 9, no. 10 (2022): 575. http://dx.doi.org/10.3390/bioengineering9100575.
Full textMeijnen, Jean-Paul, Johannes H. de Winde, and Harald J. Ruijssenaars. "Establishment of Oxidative d-Xylose Metabolism in Pseudomonas putida S12." Applied and Environmental Microbiology 75, no. 9 (2009): 2784–91. http://dx.doi.org/10.1128/aem.02713-08.
Full textSizemore, Christine, Eberhard Buchner, Thomas Rygus, Claudia Witke, Friedrich Götz, and Wolfgang Hillen. "Organization, promoter analysis and transcriptional regulation of the Staphylococcus xylosus xylose utilization operon." Molecular and General Genetics MGG 227, no. 3 (1991): 377–84. http://dx.doi.org/10.1007/bf00273926.
Full textChung, Nguyen Hoang, Nguyen Thi Thu Hoai, and Le Quang Dien. "Synthesis of furfural from Acacia mangium wood sawdust‐derived xylose by continuous distillation method using sulfonated carbonaceous catalyst from the same source." Vietnam Journal of Chemistry 58, no. 4 (2020): 494–99. http://dx.doi.org/10.1002/vjch.202000012.
Full textBonthong, Pawarin, Benjarat Bunterngsook, Wuttichai Mhuantong, et al. "Genomic and Functional Analysis of a Novel Yeast Cyberlindnera fabianii TBRC 4498 for High-Yield Xylitol Production." Journal of Fungi 11, no. 6 (2025): 453. https://doi.org/10.3390/jof11060453.
Full textLiu, Tingting, Shuangcheng Huang, and Anli Geng. "Recombinant Diploid Saccharomyces cerevisiae Strain Development for Rapid Glucose and Xylose Co-Fermentation." Fermentation 4, no. 3 (2018): 59. http://dx.doi.org/10.3390/fermentation4030059.
Full textFeng, Linjuan, Junhao Xu, Cuifang Ye, et al. "Metabolic Engineering of Pichia pastoris for the Production of Triacetic Acid Lactone." Journal of Fungi 9, no. 4 (2023): 494. http://dx.doi.org/10.3390/jof9040494.
Full textSong, Sukgil, and Chankyu Park. "Utilization of d-ribose through d-xylose transporter." FEMS Microbiology Letters 163, no. 2 (1998): 255–61. http://dx.doi.org/10.1111/j.1574-6968.1998.tb13054.x.
Full textMcMillan, James D., and Brian L. Boynton. "Arabinose utilization by xylose-fermenting yeasts and fungi." Applied Biochemistry and Biotechnology 45-46, no. 1 (1994): 569–84. http://dx.doi.org/10.1007/bf02941831.
Full textStevis, Panayiotis E., and Nancy W. Y. Ho. "Positive selection vectors based on xylose utilization suppression." Gene 55, no. 1 (1987): 67–74. http://dx.doi.org/10.1016/0378-1119(87)90249-6.
Full textBanerjee, S., A. Archana, and T. Satyanarayana. "Xylanolytic activity and xylose utilization by thermophilic molds." Folia Microbiologica 40, no. 3 (1995): 279–82. http://dx.doi.org/10.1007/bf02814208.
Full textDevarapalli, Pratap, Nishad Deshpande, and Rajkumar R. Hirwani. "Xylose utilization in ethanol production: a patent landscape." Biofuels, Bioproducts and Biorefining 10, no. 5 (2016): 534–41. http://dx.doi.org/10.1002/bbb.1664.
Full textJin, Yong-Su, Jose M. Laplaza, and Thomas W. Jeffries. "Saccharomyces cerevisiae Engineered for Xylose Metabolism Exhibits a Respiratory Response." Applied and Environmental Microbiology 70, no. 11 (2004): 6816–25. http://dx.doi.org/10.1128/aem.70.11.6816-6825.2004.
Full textXiao, Han, Yang Gu, Yuanyuan Ning, et al. "Confirmation and Elimination of Xylose Metabolism Bottlenecks in Glucose Phosphoenolpyruvate-Dependent Phosphotransferase System-Deficient Clostridium acetobutylicum for Simultaneous Utilization of Glucose, Xylose, and Arabinose." Applied and Environmental Microbiology 77, no. 22 (2011): 7886–95. http://dx.doi.org/10.1128/aem.00644-11.
Full textZhang, Guo-Chang, Jing-Jing Liu, and Wen-Tao Ding. "Decreased Xylitol Formation during Xylose Fermentation in Saccharomyces cerevisiae Due to Overexpression of Water-Forming NADH Oxidase." Applied and Environmental Microbiology 78, no. 4 (2011): 1081–86. http://dx.doi.org/10.1128/aem.06635-11.
Full textLong, Tanya M., Yi-Kai Su, Jennifer Headman, Alan Higbee, Laura B. Willis, and Thomas W. Jeffries. "Cofermentation of Glucose, Xylose, and Cellobiose by the Beetle-Associated Yeast Spathaspora passalidarum." Applied and Environmental Microbiology 78, no. 16 (2012): 5492–500. http://dx.doi.org/10.1128/aem.00374-12.
Full textBazarnova, Yuliya, Olga Bolotnikova, Natalia Michailova, and Jing Pu. "Optimization of parameters of alcohol fermentation of xylose-containing inedible substrates using the yeast Pachysolen Tannophilus." MATEC Web of Conferences 245 (2018): 18006. http://dx.doi.org/10.1051/matecconf/201824518006.
Full textGu, Pengfei, Fangfang Li, and Zhaosong Huang. "Engineering Escherichia coli for Isobutanol Production from Xylose or Glucose–Xylose Mixture." Microorganisms 11, no. 10 (2023): 2573. http://dx.doi.org/10.3390/microorganisms11102573.
Full text