To see the other types of publications on this topic, follow the link: Yang-Mills, Champs de.

Dissertations / Theses on the topic 'Yang-Mills, Champs de'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 17 dissertations / theses for your research on the topic 'Yang-Mills, Champs de.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Efremov, Alexander. "Renormalization of SU(2) Yang-Mills theory with flow equations." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLX050/document.

Full text
Abstract:
L'objectif de ce travail est une construction perturbative rigoureuse de la théorie de la Yang-Mills SU(2) dans l'espace euclidien à quatre dimensions. La technique d'intégration fonctionnelle donne une basemathématique pour établir les équations de flot différentielles du groupe de renormalisation pour l'action efficace. Si l'introduction de régulateurs dans l'espace de moments permet de donner une définition mathématique des fonctions de Schwinger, la difficulté importante de l'approche est le fait que cesrégulateurs brisent l'invariance de jauge. Ainsi, le travail principal est alors de prouver à tous les ordres en perturbation l'existence de ces fonctions de correlation et la validité des identités de Slavnov-Taylor pour la théorie renormalisée
The goal of this work is a rigorous perturbative construction of the SU(2) Yang-Mills theory in four dimensional Euclidean space. The functional integration technique gives a mathematical basis for establishing the differential Flow Equations of the renormalization group for the effective action. While the introduction of momentum space regulators permits to give a mathematical definition of the Schwinger functions, the important difficulty of the approach is the fact that these regulators break gauge invariance. Thus the main part of the work is to prove at all loop orders the existence of the vertex functions and the restoration of the Slavnov-Taylor identities in the renormalised theory
APA, Harvard, Vancouver, ISO, and other styles
2

Gabriel, Franck. "Champs d'holonomies et matrices aléatoires : symétries de tressage et de permutation." Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066168/document.

Full text
Abstract:
Cette thèse porte sur plusieurs questions liées aux mesures de Yang-Mills planaires et aux champs markoviens d'holonomies planaires. Les problèmes sont de deux sortes : étude des champs markoviens d'holonomies planaires pour un groupe de structure donné et l'étude asymptotique des mesures de Yang-Mills lorsque la dimension du groupe tend vers l'infini. On définit la notion de champs markoviens d'holonomies planaires qui axiomatise la notion de mesures de Yang-Mills planaires. En utilisant une nouvelle symétrie en théorie des probabilités, l'invariance par tresse, on construit, caractérise et classifie les champs markoviens d'holonomies planaires. Nous montrons que tout champ markovien d'holonomies planaire est associé à un processus de Lévy qui satisfait une condition de symétrie et vice-versa. Ceci nous permet de caractériser, pour les surfaces sphériques, les champs markoviens d'holonomies tels que définis précédemment par Thierry Lévy. Lorsque le groupe de structure est le groupe symétrique, on peut construire le champ markovien d'holonomies planaire associé grâce à un modèle de revêtements aléatoires. On prouve la convergence des monodromies de ce revêtement aléatoire en s'appuyant sur l'étude, développée dans cette thèse, de l'asymptotique des matrices aléatoires invariantes par conjugaison par le groupe symétrique
This thesis focuses on planar Yang-Mills measures and planar Markovian holonomy fields. We consider two different questions : the study of planar Markovian holonomy fields with fixed structure group and the asymptotic study of the planar Yang-Mills measures when the dimension of the structure group grows. We define the notion of planar Markovian holonomy fields which generalizes the concept of planar Yang-Mills measures. We construct, characterize and classify the planar Markovian holonomy fields by introducing a new symmetry : the invariance under the action of braids. We show that there is a bijection between planar Markovian holonomy fields and some equivalent classes of Lévy processes. We use these results in order to characterize Markovian holonomy fields on spherical surfaces. The Markovian holonomy fields with the symmetric group as structure group can be constructed using random ramified coverings. We prove that the monodromies of these models of random ramified coverings converge as the number of sheets of the covering goes to infinity. To prove this, we develop general tools in order to study the limits of families of random matrices invariant by the symmetric group. This allows us to generalize ideas, developped by Thierry Lévy in order to study the planar Yang-Mills measure with the unitary structure group, to the setting where the structure group is the symmetric group
APA, Harvard, Vancouver, ISO, and other styles
3

Egeileh, Michel. "Géométrie des champs de Higgs : compactifications et supergravité." Paris 7, 2007. http://www.theses.fr/2007PA077158.

Full text
Abstract:
Ma thèse porte sur la dynamique des champs de Higgs, dans leurs aspects géométriques classiques et supersymétriques. Dans une première partie, qui a donné lieu à une publication dans la revue « Journal of Geometry and Physics », numéro 57, 2007, je suis parti du point de vue classique de Kaluza Klein. En considérant une théorie de gravitation d'Einstein sur un espace-temps élargi fibre en espaces homogènes compacts G/H au-dessus de l'espace-temps ordinaire, j'ai défini pour la théorie réduite un espace affine F de champs scalaires cet espace provient d'un sous-ensemble des métriques sur les fibres, il est naturellement associé à une décomposition de la restriction à H de la représentation adjointe de G ; en restriction à F le potentiel est positi et coercitif et les couplages des champs scalaires avec la gravité réduite ainsi qu'avec la théorie de Yang-Milh réduite possèdent toutes les propriétés des champs de Higgs standard. Il se trouve que dans tous les cas le potentiel sur F est une fonction polynômiale de degré inférieur ou égal à 6. Ce potentiel peut donner naissance à de nouveaux types de monopoles. La seconde partie de la thèse étudie les champs obtenus en compactifiant une théorie de super-gravité, à la manière de Cremmer-Julia-Scherk , Duff ou DeWit -Nicolai. En premier lieu j'ai repris la formulation des théories de super-gravité en super-espace suivant Salam et Strathdee, comme elle est exposée dans Wess et Bagger, mais en dimension arbitraire ; j'ai trouvé une interprétation géométrique des contraintes de torsions en supergravité : en adoptant le point de vue de John Lott où le groupe de Lorentz est augmenté, mais en considérant l'extension affine du groupe de jauge, ces contraintes traduisent l'existence d'une jauge où l'action sur le vielbein des super-difféomorphismes coïncide avec celle des super-translations de jauge. Parallèlement, j'ai repris la théorie des lagrangiens supersymétriques en restant systématiquement dans la catégorie des supervariétés équivalente à celle des faisceaux de Berezin et Kostant ; j'ai ainsi obtenu des équations nouvelles de champs classiques de spineurs, dans le cas des « supergéodésiques », des « supersigma-modèles » et de « super-Yang-Mills ». Ceci forme un chapitre autonome de la thèse, qui introduit à la dernière partie : Reconsidérer les potentiels des champs scalaires définis par DeWit et Nicolai pour les théories de super gravité jaugées d'espèce N=8 en dimension 4. Ces théories sont équivalentes à des compactifications sur de; sphères de dimension 7 de la super-gravité étendue en dimension 11, selon Cremmer, Julia, Scherk et DeWi Nicolai elles possèdent une invariance globale sous un groupe réel exceptionnel E7 et leurs champs scalaires sont à valeurs dans un espace homogène E7(7)/SU(8). J'étudie les relations de ce potentiel avec les constructions de la première partie appliquées au groupe SO(8)xSO(8)
My thesis concerns Higgs fields dynamics, in their classical geometrical and supersymmetrical aspects. In a first part which has given rise to a publication in the "Journal of Geometry and Physics", volume 57 (2007), I have started from the classical Kaluza-Klein point of view. Considering an Einstein gravitational theory on an extended spacetime, fibered with homogeneous spaces G/H over the ordinary spacetime, I defined for the reduced theory an affine space F of scalar fields; this space cornes from a subset of metrics in the fibers, it is naturally associated to the decomposition of the restriction to H of the adjoint representation of G. When restricted to F, the potential is positive and coercitive, and the couplings of the scalar fields with the reduced gravity as well as with Yang-Mills reduced theory possess all standard Higgs fields properties. It appears in this case that the potential on F is a polynomial function with degree smaller or equal to 6. This potential may give rise to new types of monopoles. The second part of the thesis concerns the study of the fields obtained by compactifying a supergravity theory, in the way of Cremmer-Julia-Scherk, Duff, or DeWit and Nicolai. In a first step, I reconsidered the formulation of supergravity theories in superspace, following Salam and Strathdee, as it is exposed in Wess and Bagger, but in arbitrary dimension; I hâve found a geometrical interpretation of the torsion constraints in supergravity: adopting the point of view of John Lott where the Lorentz group is extended, but considering the affine extension of the gauge group, these constraints express the existence of a gauge where the action on the supervielbein of superdiffeomorphisms is équivalent to the action of gauge supertranslations. In parallel, I reconsidered supersymmetric Lagrangian theory while staying systematically in the category of supermanifolds that is equivalent to that of the scheaves of Berezin and Kostant; I thus obtained new classical spinorfield equations, in the case of "super-geodesics", "super-sigma-models", and "super-Yang-Mills". This is an independent chapter of the thesis, which introduces the last part: reconsidering the scalar fields potentiels defined by DeWit and Nicolai for gauged N=8 supergravities in 4 dimensions. These theories are equivalent to seven-sphere compactifications of eleven-dimensional supergravity. From Cremmer, Julia, DeWit and Nicolai, they possess global invariance under a real exceptional E7 group and the scalar fields take their values in a homogeneous space E7(7)/ SU(8). I study the relations of this potential with the constructions of the first part applied to the group SO(8)xSO(8)
APA, Harvard, Vancouver, ISO, and other styles
4

Li, Wenliang. "Aspects of Gravitational Theories : holography and modified gravity." Sorbonne Paris Cité, 2015. http://www.theses.fr/2015USPCC288.

Full text
Abstract:
Dans cette thèse, nous étudions deux aspects de la théorie de la gravitation : la correspondance holographique et les théories de la gravité modifiée. La correspondance holographique est une conjecture remarquable qui établit l'équivalence entre certaines théories de la gravitation et certaines théories quantiques des champs. Les recherches dans le domaine de la gravité modifiée portent sur le développement des théories cohérentes de la gravité qui diffèrent de la relativité générale d'Einstein. La première partie de la thèse est dédiée à la correspondance holographique, ou la dualité gauge/gravité. Nous présentons un nouveau formalisme pour étudier les théories d'Einstein- scalaires du point de vue de l'holographie. Nous appliquons ce formalisme à la théorie holographique duale à une théorie de Yang- Mills à quatre dimensions. Nous calculons holographiquement l'action efficace pour le condensat de gluons, ainsi que pour la version de cet operateur qui est invariant sous le groupe de renormalisation. La deuxième partie de cette thèse traite les théories de la gravité modifiée. Nous nous concentrons sur une limite intéressante de la gravité massive autour de l'espace de Sitter. La théorie est connue comme gravité partiellement massless. Nous abordons la question s'il existe une extension non-linéaire de la gravité partiellement massless
In this thesis, we will investigate two aspects of gravitational theories: holographic correspondence and modified gravity theories. Holographic correspondence is a remarkable conjecture which establishes the equivalence between certain gravitational theories and certain quantum field theories. The research in the domain of modified gravity concerns the development of consistent theories of gravity that are different from the standard general relativity. The first part of this thesis is dedicated to the holographic correspondence or the gauge/gravity duality. We will present a novel formalism to study the Einstein-scalar theories from the perspective of holography. We will apply this novel formalism to holographic Yang-Mills theory. We will compute the effective action for the gluon condensate and its relative that is renormalization-roup invariant. The second part of this thesis is about modified theories of gravity. We will focus on an interesting limit of massive gravity around de Sitter space. The theory is known as partially massless gravity. We will investigate whether a non-linear extension for partially massless gravity exists
APA, Harvard, Vancouver, ISO, and other styles
5

Maspfuhl, Oliver. "Théorie de jauge et variétés de Poisson." Paris 6, 2003. http://www.theses.fr/2003PA066209.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Jiang, Yunfeng. "Three-point functions in N=4 Super-Yang-Mills theory from integrability." Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066395.

Full text
Abstract:
Cette thèse est dédiée à l'étude de la fonction à trois points dans la théorie de jauge super-symétrique (SYM) N=4, dans la limite du grand nombre de couleurs, à l'aide de l'intégrabilité. La théorie de jauge N=4 SYM est invariante conforme au niveau quantique est on pense qu'elle est résoluble exactement. Par la correspondance AdS/CFT, elle est duale à la théorie des cordes de type IIB dans l'espace courbe AdS5× S5. Les fonctions à trois points sont des quantités qui contiennent de l'information essentielle sur la dynamique de la théorie.Nous passons en revue les méthodes déjà existantes et outils de l'intégrabilité qui sont nécessaires pour le calcul de la fonction à trois points. Nous présentons le calcul de la fonction à trois points dans le secteur SU(3), de rang supérieur à un, nous avons utilisé une représentation sous forme de déterminant, qui nous permets de prendre la limite semi-classique. En exploitant la relation entre des chaines de spin à langue portée et la chaine de Heisenberg inhomogène, nous avons développé une nouvelle pur calculer la fonction à trois points dans le secteur SU(2) à l'ordre d'une boucle qui nous permets d'obtenir le résultat dans une forme très compacte. Dans la limite de Frolov-Tseytlin ce résultat est en accord avec celui qu'on obtient au couplage fort.Nous avons exploré des nouvelles formulations de la fonction à trois points. En nous inspirant de la formulation de la théorie des champs des cordes dans la jauge du cone de lumière nous avons construit un vertex de spin, qui est la version de couplage faible du vertex des cordes, pour tous les secteurs à l'ordre des arbres. Cette approche peut être reliée au programme des facteurs de forme pour les théories de champs bi-dimensionnelles intégrables, dont nous rappelons ici les bases. Nous étudions la dépendance dans la taille du système pour une classe spéciale de fonction à trois points qui correspond aux facteurs de forme diagonaux
This thesis is devoted to the study of three-point functions of N=4 Super-Yang-Mills (SYM) theory in the planar limit by using integrability. N=4 SYM theory is conformal invariant at quantum level and is believed to be completely solvable. By the AdS/CFT correspondence, it is dual to the type IIB superstring theory on the curved background AdS5×S5. The three-point functions are important quantities which contain essential dynamic information of the theory.The necessary tools in integrability and the existing methods of computing three-point functions are reviewed. We compute the three-point functions in the higher rank SU(3) sector and obtain a determinant representation for one special configuration, which allows us to take the semi-classical limit. By exploring the relation between long-range interacting spin chain and inhomogeneous XXX spin chain, we develop a new approach to compute three-point functions in the SU(2) sector at one-loop and obtain a compact result. In the Frolov-Tseytlin limit, this result matches the result at strong coupling.We also explore new formulations of the three-point functions. In one formulation inspired by the light-cone string field theory, we constructed the spin vertex, which is the weak coupling counterpart of the string vertex for all sectors at tree level. Another formulation which is related to the form factor boostrap program in integrable field theory is reviewed. At weak coupling, we study the finite volume dependence of a special type of three-point functions which are related to the diagonal form factors
APA, Harvard, Vancouver, ISO, and other styles
7

Petrovskii, Andrei. "Approches pour les corrélateurs à trois points en N = 4 super Yang-Mills." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS233/document.

Full text
Abstract:
La correspondance AdS/CFT est la première réalisation précise de la dualité jauge/gravité. Jusqu’à maintenant la correspondance AdS/CFT reste une conjecture. La dualité de N = 4 SYM et la théorie des cordes est un exemple le plus notable de correspondance AdS/CFT. Un des obstacles principaux à l’explorer est le fait que le régime de couplage faible pour la théorie de jauge est le régime de couplage fort pour la théorie des cordes et vice versa. Par conséquent, aussi longtemps que les méthodes perturbatives sont appliquées, on ne peut pas comparer les observables de deux cotés de la correspondance directement en dehors de quelques cas particuliers. A ce stade, l’énorme symétrie de N = 4 SYM joue un rôle important en permettant le calcul exact des observables de la théorie au moins dans la limite planaire. Cette thèse est consacrée au calcul des fonctions à trois, l’un des principaux observables de N = 4 SYM, et est composée de deux parties. Dans la première partie nous considérons l’approche générale pour le calcul des fonctions à trois points sur la base de soi-disant vertex de spin, qui est inspiré de la théorie de champs des cordes. Dans la deuxième partie, nous considérons un type spécifique de fonctions à trois points appelés lourd-lourd-léger, qui sont caractérisés par la propriété que la longueur de l’un des opérateurs est beaucoup plus petite des longueurs de deux autres. Il s’avère que ces fonctions de corrélations peuvent être identifiées à des facteurs de forme diagonaux et ainsi on peut appliquer les résultats concernant les facteurs de forme
N=4 SYM theory has been drawing the attention of a lot of physicists during two last decades mainly due to the two aspects: AdS/CFT correspondence and integrability. AdS/CFT correspondence is the first precise realization of the gauge/string duality whose history starts in the 60's, when a string theory was considered as a candidate for describing the strong interactions. In 1997 Maldacena made a proposal about the duality between certain conformal field theories (CFT) and string theories defined on the product of AdS space and some compact manifold, which implies a one to one map between the observables of the gauge and string counterparts. Up to now AdS/CFT correspondence still remains a conjecture. The duality of N=4 SYM and the appropriate string counterpart is the most notable example of the AdS/CFT correspondence. One of the main obstructions to exploring it is the fact that weak coupling regime for the gauge theory is the strong coupling regime for the string theory and vice versa. Therefore as long as perturbative methods are applied, one can not compare the observables of dual counterparts directly apart from some specific cases. At this point the huge symmetry of N=4 SYM plays an important role allowing exact computation of the theory observables at least in the planar limit. This property of the theory is called integrability. The observables of the N=4 SYM are Wilson loops and correlation functions built out of gauge invariant operators. The space-time dependence of the two- and three-point correlators is fixed by the conformal symmetry up to some parameters: dimensions of the operators in the case of two-point functions and dimensions of the operators and structure constants in the case of three-point functions. It's commonly accepted to refer to the problem of finding the dimensions of the operators as the spectral problem. On the classical level the operator dimension is equal to the sum of the dimensions of the fundamental fields out of which the operator is composed. When the interaction is turned on, the conformal dimension gets quantum correction. In order to compute three-point functions, apart from the conformal dimensions of corresponding operators one needs to compute the structure constants. In CFT computation of the higher-point correlators eventually can be reduced to computation of two- and three-point functions by means of the operator product expansion. Therefore two- and three-point functions appear to be building blocks of any correlator of the theory. This thesis is devoted to computation of three-point functions and consists of two parts. In the first part we consider the general approach for computing three-point functions based on the so-called spin vertex, which is inspired from the string field theory. In the second part we consider a specific kind of three-point functions called heavy-heavy-light, which are characterized by the property that the length of one of the operators is much smaller the lengthes of other two. It happens that this kind of correlators can be considered as diagonal form factors which supposes that in this case one can apply the results obtained in the form factor theory
APA, Harvard, Vancouver, ISO, and other styles
8

Koukiou, Flora. "Problèmes mathématiques liés à la mécanique statistique des systèmes non-périodiques : solutions classiques des équations de Yang-Mills." Paris 11, 1988. http://www.theses.fr/1988PA112361.

Full text
Abstract:
Dans la première partie, la théorie Pirogov-Sinai est généralisée au cas où les interactions périodiques sont perturbées par de petites interactions quasi-périodiques. On construit le diagramme des phases à basse température et on démontre qu'il est une déformation homéomorphe du diagramme à température zéro. La thermodynamique d'une classe de mesures aléatoires, construites à l'aide de l'opérateur du chaos multiplicatif, est étudiée. Le modèle d'énergies aléatoires indépendantes est interprété en termes de recouvrement de la droite par des intervalles aléatoires. Dans la deuxième partie, on présente une classe de solutions complexes pour des champs de jauge SU(2) self-duaux. Une autre classe de solutions exactes est aussi construite à l'aide de transformations du type Harrison-Neugebauer pour les backgrounds abéliens self-duaux à symétrie axiale.
APA, Harvard, Vancouver, ISO, and other styles
9

Fournel, Cedric. "Théories de jauge et connexions généralisées sur les algébroïdes de Lie transitifs." Thesis, Aix-Marseille, 2013. http://www.theses.fr/2013AIXM4036/document.

Full text
Abstract:
Connus des mécaniciens de la géométrie de Poisson, les algébroïdes de Lie transitifs sont ici étudiés du point de vue de leurs sections afin de développer un formalisme algébrique plus proche de celui développé par les théories de jauge. Ici, les algébroïdes de Lie transitifs s'apparentent à une généralisation des champs de vecteurs sur la variété de base. Ce mémoire de thèse a pour objet l'étude des connexions généralisées sur les algébroïdes de Lie transitifs et la construction de théories de jauge. Les connexions ordinaires sur les algébroïdes de Lie transitifs sont définies par des 1-formes de connexion de l'algébroïde de Lie à valeurs dans son noyau et vérifiant une contrainte de normalisation sur ce noyau. En relâchant cette contrainte, on construit l'espace des 1-formes de connexions généralisées qui se décomposent, à l'aide d'une connexion ordinaire de fond, comme la somme d'une connexion ordinaire et d'un paramètre purement algébrique définit sur le noyau. Dans l'esprit des théories Yang-Mills, une action invariante de jauge est définie comme la “norme” de la courbure associée à une connexion généralisée. De cette action, il découle un lagrangien composé des termes des théories de jauge de type Yang-Mills-Higgs : le terme cinétique associé aux champs de jauge et le terme de couplage minimal pour un champ tensoriel scalaire plongé dans un potentiel quartique. La réduction du groupe de symétrie de la théorie s'effectue par une redistribution des degrés de liberté dans l'espace fonctionnel des champs de la théorie. Il résulte de ces manipulations la définition d'une théorie de type Yang-Mills dont les bosons vecteurs sont des champs massifs
Transitive Lie algebroids are usually studied from the point of view of the geometry of Poisson. Here, they are preferentially defined in terms of sections of fiber bundle in order to get close to the formalism of the gauge field theory. Then, transitive Lie algebroids can be seen as a generalization of vector fields on the base manifold. This PhD thesis is concerned with the study of generalized connections on transitive Lie algebroids and the construction of gauge theories. Ordinary connections on transitive Lie algebroids are defined as the subset of 1-forms on Lie algebroids with values in its kernel which fulfill a normalization constraint on this kernel. By relaxing this constraint, we build the space of generalized connection 1- forms. Using a background connection, we show that any generalized connections can be decomposed as the sum of an ordinary connection and a purely algebraic parameter defined on the kernel. As in Yang-Mills theories, we define a gauge invariant functional action as the “norm” of the curvature associated to a generalized connection. Then, the Lagrangian associated to this action forms a Yang-Mills-Higgs type model composed with the field strength associated to gauge fields and a minimal coupling with a tensorial scalar field embedded into a quartic potential. In the case of Atiyah Lie algebroids, the symmetry group of the theory can be reduced by using an appropriate rearrangement of the degrees of freedom in the functional space of fields. We thus obtain a Yang-Mills type theory describing massive vector bosons
APA, Harvard, Vancouver, ISO, and other styles
10

Lacquaniti, Valentino. "La dynamique des champs et des particules dans un scenario pentadimensionnel : problèmes et perspectives de la théorie Kaluza-Klein." Chambéry, 2009. http://www.theses.fr/2009CHAMS004.

Full text
Abstract:
Les modèles de Kaluza-Klein multi-dimensionnels permettent de considérer l'unification de la gravité avec des champs de Yang-Mills : dans ces scénarios l'invariance par difféomorphismes génériques est brisée, et les symétries de jauge sont générées à partir de l'invariance par isométries dans l'espace-temps extra-dimensionnel. Dans ce contexte, le modèle le plus simple est le modèle pentadimensionnel, puisque la dimension supplémentaire, bien que compacte, n'a pas de courbure, et le modèle présente les caractéristiques d'une algèbre abélienne : il décrit le couplage entre la gravité ordinaire, un champ de jauge U(1) et un champ scalaire - le facteur d'échelle de la cinquième dimension -. Les principales hypothèses, qui garantissent l'inobservabilité de la cinquième dimension, sont la compactification à une échelle de moins de 10-18cm, et la condition de cylindricité, c'est-a-dire l'hypothèse que la métrique n'est pas dépendante de la cinquième coordonnée. Avec l'hypothèse supplémentaire que le champ scalaire soit constant, on est en mesure, avec ce modèle, de reproduire la théorie d'Einstein-Maxwell dans le vide; sinon, on a à faire avec une théorie de la gravité modifiée et les effets du champ scalaire méritent une étude ad hoc, qui est en partie abordée dans ce travail
In this work a revised study of the compactified 50 Kaluza-Klein ( KK ) model is performed. At first, it is proved the compatibility of ADM slicing with respect to the KK reduction and the Hamiltonian formulation of the model is therefore obtained : this analysis envisages how the Gauss constraint arises as a particular case of supermomenta constraints; moreover, it is shown that the hamiltonian constraint can be solved with respect to the conjugate momentum of the metric scalar field, thus allowing to write a Schroedinger-like equation via a Brown-Kuchar approach. Thereafter the problem of matter coupling is addressed and a new approach is proposed; in such a scheme a 5D cylindrical energy-momentum tensor is postulated and the dynamics of test particle is faced via a proper localization hypothesis by mean of a multi pole expansion a lá Papapetrou. The particles turns out to be delocalized into the extra dimension and the tower of huge massive modes is removed. Such a result allows us to deal consistently with matter without discarding the compactification hypothesis. Therefore a full model, involving metric fields and matter is formulated, where an extra scalar source term appears and the rest mass of particles is varying depending on scalar fields ( the metric one plus the source one ). Promising scenarios, in order to deal with unification scheme and dark matter models are outlined
APA, Harvard, Vancouver, ISO, and other styles
11

Martin, Alexis. "Formalisme du twist et applications pour la supersymétrie de Poincaré." Paris 6, 2008. http://www.theses.fr/2008PA066335.

Full text
Abstract:
Ce travail de thèse présente des résultats concernant les théories de jauge supersymétriques dans leurs formulations en composantes et en superespace, obtenus grâce au formalisme du twist. Nous passons en revue les différentes méthodes du twist utilisées et montrons leur cohérence au niveau quantique. Nous définissons ensuite une formulation hors couche de masse de la théorie de Yang-Mills en dix dimensions préservant neuf des seize charges de supersymétrie. Nous en donnons une application sous la forme de la détermination explicite de l'anomalie d'Adler-Bardeen supersymétrique. Nous proposons ensuite une approche systématique de la construction de superespaces basés sur un ensemble réduit de coordonnées fermioniques. Nous montrons comment dans chaque cas des contraintes peuvent être imposées et résolues sans impliquer les équations du mouvement, notamment en dimension huit et dix. Une procédure de quantification est proposée pour la supersymétrie étendue en dimension quatre.
APA, Harvard, Vancouver, ISO, and other styles
12

Freyhult, Lisa. "Aspects of Yang-Mills Theory : Solitons, Dualities and Spin Chains." Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Univ.-bibl. [distributör], 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-4498.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Kanning, Nils. "On the integrable structure of super Yang-Mills scattering amplitudes." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät, 2016. http://dx.doi.org/10.18452/17663.

Full text
Abstract:
Die maximal supersymmetrische Yang-Mills-Theorie im vierdimensionalen Minkowski-Raum ist ein außergewöhnliches Modell der mathematischen Physik. Dies gilt vor allem im planaren Limes, in dem die Theorie integrabel zu sein scheint. So sind etwa ihre Streuamplituden auf Baumgraphenniveau Invarianten einer Yangschen Algebra, die die superkonforme Algebra psu(2,2|4) beinhaltet. Diese unendlichdimmensionale Symmetrie ist ein Kennzeichen für Integrabilität. In dieser Dissertation untersuchen wir Verbindungen zwischen solchen Amplituden und integrablen Modellen, um Grundlagen für eine effiziente, auf der Integrabilität basierende Berechnung von Amplituden zu legen. Dazu charakterisieren wir Yangsche Invarianten innerhalb der Quanten-Inverse-Streumethode, die Werkzeuge zur Behandlung integrabler Spinketten bereitstellt. In diesem Rahmen entwickeln wir Methoden zur Konstruktion Yangscher Invarianten. Wir zeigen, dass der algebraische Bethe-Ansatz für die Erzeugung von Yangschen Invarianten für u(2) anwendbar ist. Die zugehörigen Bethe-Gleichungen lassen sich leicht lösen. Unser Zugang erlaubt es zudem diese Invarianten als Zustandssummen von Vertexmodellen zu interpretieren. Außerdem führen wir ein unitäres Graßmannsches Matrixmodell zur Berechnung Yangscher Invarianten mit Oszillatordarstellungen von u(p,q|m) ein. In einem Spezialfall reduziert es sich zu dem Brezin-Gross-Witten-Model. Wir wenden eine auf Bargmann zurückgehende Integraltransformation auf unser Matrixmodell an, welche die Oszillatoren in Spinor-Helizitäts-artige Variablen überführt. Dadurch gelangen wir zu einer Weiterentwicklung der Graßmann-Integralformulierung bestimmter Amplituden. Die maßgeblichen Unterschiede sind, dass wir in der Minkowski-Signatur arbeiten und die Integrationskontur auf die unitäre Gruppenmannigfaltigkeit festgelegt ist. Wir vergleichen durch unser Integral gegebene Yangsche Invarianten mit Amplituden und kürzlich eingeführten Deformationen derselben.
The maximally supersymmetric Yang-Mills theory in four-dimensional Minkowski space is an exceptional model of mathematical physics. Even more so in the planar limit, where the theory is believed to be integrable. In particular, the tree-level scattering amplitudes were shown to be invariant under the Yangian of the superconformal algebra psu(2,2|4). This infinite-dimensional symmetry is a hallmark of integrability. In this dissertation we explore connections between these amplitudes and integrable models. Our aim is to lay foundations for an efficient integrability-based computation of amplitudes. To this end, we characterize Yangian invariants within the quantum inverse scattering method, which is an extensive toolbox for integrable spin chains. Making use of this setup, we develop methods for the construction of Yangian invariants. We show that the algebraic Bethe ansatz can be specialized to yield Yangian invariants for u(2). Our approach also allows to interpret these Yangian invariants as partition functions of vertex models. What is more, we establish a unitary Graßmannian matrix model for the construction of u(p,q|m) Yangian invariants with oscillator representations. In a special case our formula reduces to the Brezin-Gross-Witten model. We apply an integral transformation due to Bargmann to our unitary Graßmannian matrix model, which turns the oscillators into spinor helicity-like variables. Thereby we are led to a refined version of the Graßmannian integral formula for certain amplitudes. The most decisive differences are that we work in Minkowski signature and that the integration contour is fixed to be a unitary group manifold. We compare Yangian invariants defined by our integral to amplitudes and recently introduced deformations thereof.
APA, Harvard, Vancouver, ISO, and other styles
14

Bossard, Guillaume. "Des théories quantiques de champ topologiques aux théories de jauge supersymétriques." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2007. http://tel.archives-ouvertes.fr/tel-00191113.

Full text
Abstract:
Cette thèse est constituée de deux contributions scientifiques qui ont donné lieu à deux séries d'articles. On construit dans la première une symétrie vectorielle dans les théories cohomologiques via une généralisation de l'équation de Baulieu-Singer, qui définit avec l'opérateur BRST topologique un sous ensemble de générateurs de supersymétrie admettant une représentation qui détermine l'action de la théorie de manière unique.

La seconde série propose une méthode pour renormaliser les théories supersymétriques de Yang-Mills en l'absence de schéma de régularisation préservant à la fois l'invariance de jauge et la supersymétrie. La prescription de renormalisation est obtenue en définissant deux opérateurs de Slavnov-Taylor compatibles respectivement pour l'invariance de jauge et la supersymétrie. La construction de ces derniers nécessite l'introduction de champs additionnels que nous avons appelés les champs d'ombre. Nous avons ainsi été en mesure de démontrer la renormalisabilité des théories de Yang-Mills supersymétriques et l'annulation de la fonction beta dans le cas de la supersymétrie maximale.

Après une brève introduction, le second chapitre propose une revue de la théorie de Yang-Mills de type cohomologique en huit dimensions. Le chapitre suivant examine les réductions dimensionnelles en sept et six dimensions de cette théorie. Le dernier chapitre propose quand à lui des résultats indépendants, sur une interprétation géométrique des champs d'ombre, ainsi que des travaux non publiés sur la gravité topologique en quatre dimensions, des considérations sur la symétrie superconforme et enfin la solution des contraintes dans le super-espace twisté.
APA, Harvard, Vancouver, ISO, and other styles
15

Meidinger, David. "Integrability in weakly coupled super Yang-Mills theory: form factors, on-shell methods and Q-operators." Doctoral thesis, Humboldt-Universität zu Berlin, 2018. http://dx.doi.org/10.18452/19241.

Full text
Abstract:
Diese Arbeit untersucht die N = 4 super-Yang-Mills-Theorie bei schwacher Kopplung, mit dem Ziel eines tieferen Verständnisses von Größen der Theorie als Zustände des integrablen Modells dass der planaren Theorie zu Grunde liegt. Wir leiten On-Shell-Diagramme für Formfaktoren des chiralen Energie-Impuls-Tensor-Multipletts aus der BCFW-Rekursion her, und untersuchen deren Eigenschaften. Dies erlaubt die Herleitung eines Graßmannschen Integrals. Für NMHV-Formfaktoren bestimmen wir die Integrationskontur. Dies erlaubt es das Integral mit einer Twistor-String-Formulierung in Beziehung zu setzen. Mit Hilfe dieser Methoden zeigen wir dass Formfaktoren des chiralen Energie-Impuls-Tensor-Multipletts und On-Shell-Funktionen mit Einfügungen beliebiger Operatoren Eigenzustände integrabler Transfermatrizen sind. Diese Identitäten verallgemeinern die Yangsche Invarianz der On-Shell-Funktionen von Amplituden. Wir zeigen weiterhin dass ein Teil der Yangschen Symmetrien erhalten bleibt. Wir erweitern unsere Untersuchung auf nichtplanare On-Shell-Funktionen und zeigen dass sie ebenfalls solche Symmetrien besitzen. Weitere Identitäten mit Transfermatrizen werden hergeleitet, und zeigen insbesondere dass Diagramme auf Zylindern als Intertwiner fungieren. Als Schritt hin zur Berechnung der Eigenzustände des integrablen Modells zu höheren Schleifenordnungen untersuchen wir Einspuroperatoren. Hier erlaubt die Quantum Spectral Curve die nichtperturbative Berechnung ihres Spektrums, liefert jedoch keine Information zu den Zustände. Die QSC kann als Q-System verstanden werden, welches durch Baxter Q-Operatoren formulierbar sein sollte. Um darauf hinzuarbeiten untersuchen wir die Q-Operatoren nichtkompakter Superspinketten und entwickeln ein effiziente Methode zur Berechnung ihrer Matrixelemente. Dies erlaubt es das gesamte Q-System durch Matrizen für jeden Anregungssektor zu realisieren, und liefert die Grundlage für perturbative Rechnungungen mit der QSC in Operatorform.
This thesis investigates weakly coupled N = 4 super Yang-Mills theory, aiming at a better understanding of various quantities as states of the integrable model underlying the planar theory. We use the BCFW recursion relations to develop on-shell diagrams for form factors of the chiral stress-tensor multiplet, and investigate their properties. The diagrams allow to derive a Graßmannian integral for these form factors. We devise the contour of this integral for NMHV form factors, and use this knowledge to relate the integral to a twistor string formulation. Based on these methods, we show that both form factors of the chiral stress-tensor multiplet as well as on-shell functions with insertions of arbitrary operators are eigenstates of integrable transfer matrices. These identities can be seen as symmetries generalizing the Yangian invariance of amplitude on-shell functions. In addition, a part of these Yangian symmetries are unbroken. We furthermore consider nonplanar on-shell functions and prove that they exhibit a partial Yangian invariance. We also derive identities with transfer matrices, and show that on-shell diagrams on cylinders can be understood as intertwiners. To make progress towards the calculation of the higher loop eigenstates of the integrable model, we consider single trace operators, for which the Quantum Spectral Curve determines their spectrum non-perturbatively. This formulation however carries no information about the states. The QSC is an algebraic Q-system, for which an operatorial form in terms of Baxter Q-operators should exist. To initiate the development such a formulation we investigate the Q-operators of non-compact super spin chains and devise efficient methods to evaluate their matrix elements. This allows to obtain the entire Q-system in terms of matrices for each magnon sector. These can be used as input data for perturbative calculations using the QSC in operatorial form.
APA, Harvard, Vancouver, ISO, and other styles
16

Engquist, Johan. "Dualities, Symmetries and Unbroken Phases in String Theory : Probing the Composite Nature of the String." Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Univ.-bibl. [distributör], 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-5902.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Feverati, Giovanni. "Systèmes intégrables quantiques. Méthodes quantitatives en biologie." Habilitation à diriger des recherches, 2010. http://tel.archives-ouvertes.fr/tel-00557526.

Full text
Abstract:
Les systèmes intégrables quantiques ont des propriétés mathématiques qui permettent la détermination exacte de leur spectre énergétique. A partir des équations de Bethe, je présente la relation de Baxter «T-Q». Celle-ci est à l'origine des deux approches que j'ai prioritairement employé dans mes recherches, les deux basés sur des équations intégrales non linéaires, celui de l'ansatz de Bethe thermo- dynamique et celui des équations de Klümper-Batchelor-Pearce-Destri-de Vega. Je montre le chemin qui permet de dériver les équations à partir de certain modèles sur réseau. J'évalue les limites infrarouge et ultraviolet et je discute l'approche numérique. D'autres constantes de mouvement peuvent être établies, ce qui permet un certain contrôle sur les vecteurs propres. Enfin, le modèle d'Hubbard, qui décrit des électrons interagissants sur un réseau, est présenté en relation à la théorie de jauge supersymétrique N = 4. Dans la deuxième partie, je présente un modèle d'évolution darwinienne basé sur les machines de Turing. En faisant évoluer une population d'algorithmes, je peut décrire certains aspects de l'évolution biologique, notamment la transformation entre parties codantes et non-codantes dans un génome ou la présence d'un seuil d'erreur. L'assemblage des protéines oligomériques est un aspect important qui intéresse la majorité des protéines dans une cellule. Le projet «Gemini» que j'ai contribué à créer a pour finalité d'explorer les donnés structuraux des interfaces des dites protéines pour différentier le rôle des acides aminés et déterminer la présence de patterns typiques de certaines géométries.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography