Academic literature on the topic 'Yeast fluorescence'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Yeast fluorescence.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Yeast fluorescence"
Karreman, Robert J., and George G. Lindsey. "A Rapid Method to Determine the Stress Status of Saccharomyces cerevisiae by Monitoring the Expression of a Hsp12:Green Fluorescent Protein (GFP) Construct under the Control of the Hsp12 Promoter." Journal of Biomolecular Screening 10, no. 3 (April 2005): 253–59. http://dx.doi.org/10.1177/1087057104273485.
Full textJones, Laura M., Danielle Dunham, Monique Y. Rennie, Jeffrey Kirman, Andrea J. Lopez, Klara C. Keim, William Little, et al. "In vitro detection of porphyrin-producing wound bacteria with real-time fluorescence imaging." Future Microbiology 15, no. 5 (March 2020): 319–32. http://dx.doi.org/10.2217/fmb-2019-0279.
Full textRosseau, S., W. Seeger, H. Pralle, and J. Lohmeyer. "Phagocytosis of viable Candida albicans by alveolar macrophages: flow cytometric quantification." American Journal of Physiology-Lung Cellular and Molecular Physiology 267, no. 2 (August 1, 1994): L211—L217. http://dx.doi.org/10.1152/ajplung.1994.267.2.l211.
Full textThiebault, F., and J. Coulon. "Influence of carbon source and surface hydrophobicity on the aggregation of the yeastKluyveromyces bulgaricus." Canadian Journal of Microbiology 51, no. 1 (January 1, 2005): 91–94. http://dx.doi.org/10.1139/w04-106.
Full textSkruzny, Pohl, and Abella. "FRET Microscopy in Yeast." Biosensors 9, no. 4 (October 11, 2019): 122. http://dx.doi.org/10.3390/bios9040122.
Full textAudus, K. L., M. R. Tavakoli-Saberi, H. Zheng, and E. N. Boyce. "Chlorhexidine Effects on Membrane Lipid Domains of Human Buccal Epithelial Cells." Journal of Dental Research 71, no. 6 (June 1992): 1298–303. http://dx.doi.org/10.1177/00220345920710060601.
Full textGuenther, Margarita, Falko Altenkirch, Kai Ostermann, Gerhard Rödel, Ingo Tobehn-Steinhäuser, Steffen Herbst, Stefan Görlandt, and Gerald Gerlach. "Optical and impedimetric study of genetically modified cells for diclofenac sensing." Journal of Sensors and Sensor Systems 8, no. 1 (May 21, 2019): 215–22. http://dx.doi.org/10.5194/jsss-8-215-2019.
Full textVanek, Martin, Filip Mravec, Martin Szotkowski, Dana Byrtusova, Andrea Haronikova, Milan Certik, Volha Shapaval, and Ivana Marova. "Fluorescence lifetime imaging of red yeast Cystofilobasidium capitatum during growth." EuroBiotech Journal 2, no. 2 (April 1, 2018): 114–20. http://dx.doi.org/10.2478/ebtj-2018-0015.
Full textStasyuk, Natalia Ye, Galina Z. Gayda, Roman Ja Serkiz, and Mykhailo V. Gonchar. "Cell Imaging with Fluorescent Bi-Metallic Nanoparticles." JOURNAL OF ADVANCES IN CHEMISTRY 11, no. 4 (March 9, 2015): 3499–511. http://dx.doi.org/10.24297/jac.v11i4.6694.
Full textMonosov, E. Z., T. J. Wenzel, G. H. Lüers, J. A. Heyman, and S. Subramani. "Labeling of peroxisomes with green fluorescent protein in living P. pastoris cells." Journal of Histochemistry & Cytochemistry 44, no. 6 (June 1996): 581–89. http://dx.doi.org/10.1177/44.6.8666743.
Full textDissertations / Theses on the topic "Yeast fluorescence"
Bakker, Elco. "Quantitative fluorescence microscopy methods for studying transcription with application to the yeast GAL1 promoter." Thesis, University of Edinburgh, 2016. http://hdl.handle.net/1842/20403.
Full textJeřábková, Petra. "Studium vlastností biologického materiálu pomocí metod obrazové analýzy." Doctoral thesis, Vysoké učení technické v Brně. Fakulta chemická, 2010. http://www.nusl.cz/ntk/nusl-233311.
Full textLichten, Catherine Anne. "Quantitative fluorescence methods for studying cellular protein networks, with applications to the yeast galactose pathway." Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=114175.
Full textAu cours des deux dernières décennies, la biologie est passée d'une science réductionniste fondée sur l'observation qualitative à une science quantitative traitant les phénomènes biologiques comme des systèmes. Le développement de gènes rapporteurs fluorescents, d'instruments expérimentaux sophistiqués et de la puissance de calcul des ordinateurs ont été des éléments garants de cette transformation. Plus particulièrement, un élément clé de cette transformation a été l'utilisation croissante de modèles mathématiques pour explorer et vérifier notre compréhension de mécanismes biologiques complexes. Cette thèse traite de trois aspects de la modélisation des systèmes: l'acquisition de données, la création et l'évaluation d'un modèle et la mesure des valeurs de ses paramètres.Le système étudié dans les deux premières parties de cette thèse est la voie métabolique du galactose (GAL) chez la levure Saccharomyces cerevisiae. Cette voie est un exemple bien connu de régulation génétique. Bien qu'elle soit relativement simple et déjà bien étudiée, plusieurs questions subsistent quant aux détails reliés à son mécanisme de régulation. Dans la première partie, je décris la méthodologie pour l'acquisition de données dynamiques d'expression de protéines. J'utilise la protéine fluorescente verte (GFP) comme rapporteur et effectue des mesures sur des populations de cellules croissant dans un lecteur de microplaques. Notamment, je présente une technique permettant d'éliminer l'autofluorescence qui contamine le signal de fluorescence de la GFP. Cette technique permet même la détection de l'expression de protéines très faiblement exprimées. Dans la deuxième partie, je développe un modèle déterministe de base de la voie GAL, que je raccorde par la suite à des données dynamiques d'expression de protéines. J'utilise ce modèle pour démontrer qu'en se basant sur les données disponibles la compréhension théorique actuelle de la voie GAL capture une grande partie des comportements réels du système. Je discute aussi de possibilités pour l'élaboration subséquente du modèle. Dans la troisième partie, je présente un travail théorique qui traite de la difficulté de mesurer in vivo les interactions entre protéines à partir de données fluorescentes résultant du transfert d'énergie par résonance de type Förster (FRET). Je conçois un outil de calcul qui utilise les statistiques bayésiennes pour déduire la constante de dissociation et l'efficacité du FRET de données FRET. Un avantage clé de cette approche est qu'elle produit des distributions de probabilité pour ces paramètres d'intérêt, révélant l'incertitude des estimations obtenues. Je démontre aussi les conditions expérimentales, telles que les variations dans les concentrations de donneurs et d'accepteurs du FRET, requises pour permettre l'inférence de la constante de dissociation et de l'efficacité du FRET.
Wang, You. "Development of yeast-based methods to screen for plant cytokinin-binding proteins." Access electronically, 2004. http://www.library.uow.edu.au/adt-NWU/public/adt-NWU20060123.141512/index.html.
Full textPetosa, Adamo. "Isolation of human scFv expressing cells from a yeast library using magnetic and fluorescence activated cell sorting." Thesis, McGill University, 2006. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=101733.
Full textThe reduced size of the scFv relative to the intact IgG allows it to penetrate tissue with greater ease and therefore reach epitopes within both tissue and cells that would otherwise remain inaccessible. As a result, one possible scFv application is the study of cartilage destruction by proteases that occurs in both normal joint development and arthritis. Antibody fragments would allow for cartilage degradative processes to be studied in vivo . Fluorescently tagged scFvs could penetrate intact cartilage tissue, bind to epitopes and then be localized using techniques such as dual photon confocal microscopy. This would not be possible using IgG molecules.
The yeast library developed by Feldhaus et al. was obtained for the potential isolation of cells expressing scFvs to cartilage neoepitopes. While found to possess an inherent Candida parapsilosis contamination, the surface display library was screened using three peptide-ovalbumin-biotin complexes. Peptides corresponding to observed cartilage neoepitopes were bound to biotinylated ovalbumin and added to the library for screening. Excess unlabelled ovalbumin was also added to the library to prevent the isolation of ovalbumin binding cells.
In all, two rounds of MCS and two rounds of FACS with all three antigens were used to screen the library for binders. A portion of the remaining library cells was then screened by MCS with a single antigen and eight individual clones were isolated. The affinity of these clones was determined and the scFv region of one clone was sequenced. Despite preventative measures, all eight clones isolated and analyzed were found to have an affinity to undetermined ovalbumin complex regions other than the peptides of interest. Still, cells expressing scFvs binding to a portion of the antigen complexes presented to the library were clearly enriched and subsequently isolated using MCS and FACS.
He, Susu. "Functional localization study of acid trehalase (Ath1) and its secretion mechanism in the yeast Saccharomyces cerevisiae." Toulouse, INSA, 2009. http://eprint.insa-toulouse.fr/archive/00000334/.
Full textTrehalose (alpha-D-glucopyranosyl (1→1) alpha-D-gluocopyranoside) is a non-reducing disaccharide found in many organisms including yeasts, fungi, bacteria, plants and insects. In the yeast Saccharomyces cerevisiae, trehalose is one of the major storage carbohydrates, accounting for more than 25% of cell dry mass depending on growth conditions and stage of the yeast life cycle (Hottiger et al. , 1987a; Jules et al. , 2008; Lillie and Pringle, 1980). The accumulation of intracellular trehalose has two potential functions. First, it constitutes an endogenous storage of carbon and energy during spore germination and in resting cells. Second, trehalose acts as a stabilizer of cellular membranes and proteins (Francois and Parrou, 2001; Simola et al. , 2000; Singer and Lindquist, 1998). In the yeast S. Cerevisiae, trehalose is hydrolyzed into glucose by the action of two types of trehalases: the ‘neutral trehalases’ encoded by NTH1 and NTH2 (Jules et al. , 2008; Mittenbuhler and Holzer, 1988), which are optimally active at pH 7, and the ‘acid trehalase’ encoded by ATH1, showing optimal activity at pH 4. 5 (Destruelle et al. , 1995). Neutral trehalase has been well studied and is known to hydrolyze trehalose in the cytosol. While fungal acid trehalases, including the yeast Candida albicans (Pedreno et al. , 2004) and Kluyveromyces lactis (Swaim et al. , 2008) enzymes, have been reported to be localized at the cell surface, the localization of the S. Cerevisiae acid trehalase is still a matter of controversy. In 1982, Wiemken and coworkers (Keller et al. , 1982) first identified this protein in vacuole-enriched fraction obtained by density gradient centrifugation of a yeast protoplast preparation. Vacuolar localization of acid trehalase was very recently supported by in vivo imaging analyses using GFP-Ath1 fusion constructs under the strong and constitutive TPI1 promoter (Huang et al. , 2007). Furthermore, these authors employed various trafficking mutants to show that this acid trehalase reaches its vacuolar destination through the multivesicular body (MVB) pathway. However, this localization contrasts with the fact that this enzyme allows yeast to grow on exogenous trehalose (Nwaka et al. , 1995b), and with a measurable Ath1 activity at the cell surface (Jules et al. , 2004)
Assawajaruwan, Supasuda [Verfasser], and Bernd [Akademischer Betreuer] Hitzmann. "Development of an on-line process monitoring for yeast cultivations via 2D-fluorescence spectroscopy / Supasuda Assawajaruwan ; Betreuer: Bernd Hitzmann." Hohenheim : Kommunikations-, Informations- und Medienzentrum der Universität Hohenheim, 2019. http://d-nb.info/1177881446/34.
Full textGroß, Annett. "Genetically Tailored Yeast Strains for Cell-based Biosensors in White Biotechnology." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-83341.
Full textKorkmaz, Nuriye. "Self-assembly and Structure Investigation of Recombinant S-layer Proteins Expressed in Yeast for Nanobiotechnological Applications." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2011. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-64317.
Full textSjöstrand, Linda. "Method Development for Thermal Stability Analysis by Circular Dichroism : Application to the Abp1p SH3 domain from yeast." Thesis, Linköpings universitet, Kemi, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-148286.
Full textBooks on the topic "Yeast fluorescence"
Grigson, C. M. D. A microcontroller based flurometer for the detection of green fluorescent protein in genetically altered yeast. Manchester: UMIST, 1996.
Find full textBook chapters on the topic "Yeast fluorescence"
Denksteinová, B., D. Gášková, P. Heřman, J. Večeř, K. Sigler, J. Plášek, and J. Malínský. "Speed of Accumulation of the Membrane Potential Indicator diS-C3(3) in Yeast Cells." In Fluorescence Microscopy and Fluorescent Probes, 151–55. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4899-1866-6_21.
Full textSwayne, Theresa C., Anna C. Gay, and Liza A. Pon. "Fluorescence Imaging of Mitochondria in Yeast." In Methods in Molecular Biology, 433–59. Totowa, NJ: Humana Press, 2007. http://dx.doi.org/10.1007/978-1-59745-365-3_31.
Full textLearmonth, Robert P. "Membrane Fluidity in Yeast Adaptation: Insights from Fluorescence Spectroscopy and Microscopy." In Reviews in Fluorescence 2010, 67–93. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-9828-6_4.
Full textKumar, Arun, and Manuel Mendoza. "Time-Lapse Fluorescence Microscopy of Budding Yeast Cells." In Methods in Molecular Biology, 1–8. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-3145-3_1.
Full textScherthan, Harry. "FISH Targeting of Chromosomes and Subchromosomal Regions in Yeast." In Fluorescence In Situ Hybridization (FISH) — Application Guide, 347–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-70581-9_30.
Full textTramier, M., O. Holub, J. C. Croney, T. Ishi, S. E. Seifried, and D. M. Jameson. "Binding of Ethidium to Yeast tRNAPhe: A New Perspective on an Old Bromide." In Fluorescence Spectroscopy, Imaging and Probes, 111–21. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-642-56067-5_6.
Full textSkarp, Kari-Pekka, Xueqiang Zhao, Marion Weber, and Jussi Jäntti. "Use of Bimolecular Fluorescence Complementation in Yeast Saccharomyces cerevisiae." In Membrane Trafficking, 165–75. Totowa, NJ: Humana Press, 2008. http://dx.doi.org/10.1007/978-1-59745-261-8_12.
Full textLearmonth, R. P., and E. Gratton. "Assessment of Membrane Fluidity in Individual Yeast Cells by Laurdan Generalised Polarisation and Multi-photon Scanning Fluorescence Microscopy." In Fluorescence Spectroscopy, Imaging and Probes, 241–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-642-56067-5_14.
Full textNagumo, Sachiyo, and Koji Okamoto. "Investigation of Yeast Mitophagy with Fluorescence Microscopy and Western Blotting." In Mitophagy, 71–83. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/7651_2017_11.
Full textLipatova, Zhanna, Jane J. Kim, and Nava Segev. "Ypt1 and TRAPP Interactions: Optimization of Multicolor Bimolecular Fluorescence Complementation in Yeast." In Methods in Molecular Biology, 107–16. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-2569-8_9.
Full textConference papers on the topic "Yeast fluorescence"
Bhatta, H., E. M. Goldys, and J. Ma. "Fluorescence and fluorescence-lifetime imaging microscopy (FLIM) to characterize yeast strains by autofluorescence." In Biomedical Optics 2006, edited by Daniel L. Farkas, Dan V. Nicolau, and Robert C. Leif. SPIE, 2006. http://dx.doi.org/10.1117/12.645354.
Full textPUCHKOV, EVGENY. "Subcellular Level Resolution Fluorescence Measurements in Yeast Cells by Image Analysis." In Eighth International Conference on Advances in Applied Science and Environmental Engineering - ASEE 2018. Institute of Research Engineers and Doctors, 2018. http://dx.doi.org/10.15224/978-1-63248-143-6-01.
Full textWood, Christopher, Joseph Huff, Will Marshall, Elden Qingfeng Yu, Jay Unruh, Brian Slaughter, and Winfried Wiegraebe. "Fluorescence correlation spectroscopy as tool for high-content-screening in yeast (HCS-FCS)." In SPIE BiOS, edited by Jörg Enderlein, Zygmunt K. Gryczynski, and Rainer Erdmann. SPIE, 2011. http://dx.doi.org/10.1117/12.873947.
Full text"IMAGE ANALYSIS COMBINED FLUORESCENCE MICROSCOPY - Examples of ImageJ Software Application in Yeast Studies." In International Conference on Bioinformatics Models, Methods and Algorithms. SciTePress - Science and and Technology Publications, 2011. http://dx.doi.org/10.5220/0003120902580261.
Full textChandrasekar, S. N., Abhishek Rao G, Sai Muthukumar V, Venketesh S, and R. Raghunatha Sarma. "Detection of Hotspots in Fluorescence Imaging of Yeast Cell Model used in Neuro-Degenerative Research." In 2021 International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT). IEEE, 2021. http://dx.doi.org/10.1109/icaect49130.2021.9392397.
Full textMojica-Benavides, Martin, Amin A. Banaeiyan, David D. van Niekerk, Jacky L. Snoep, Anna-Karin Gustavsson, Caroline B. Adiels, and Mattias Goksör. "An optical tweezers, epi-fluorescence and microfluidic-setup for synchronization studies of glycolytic oscillations in living yeast cells." In SPIE Nanoscience + Engineering, edited by Kishan Dholakia and Gabriel C. Spalding. SPIE, 2016. http://dx.doi.org/10.1117/12.2236208.
Full textAydin, Ali Selman, Abhinandan Dubey, Daniel Dovrat, Amir Aharoni, and Roy Shilkrot. "CNN Based Yeast Cell Segmentation in Multi-modal Fluorescent Microscopy Data." In 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE, 2017. http://dx.doi.org/10.1109/cvprw.2017.105.
Full textKato, Ilka T., Camila C. Santos, Endi Benetti, Denise P. L. A. Tenório, Paulo E. Cabral Filho, Caetano P. Sabino, Adriana Fontes, Beate S. Santos, Renato A. Prates, and Martha S. Ribeiro. "CdTe/CdS-MPA quantum dots as fluorescent probes to label yeast cells: synthesis, characterization and conjugation with Concanavalin A." In SPIE BiOS, edited by Wolfgang J. Parak, Kenji Yamamoto, and Marek Osinski. SPIE, 2012. http://dx.doi.org/10.1117/12.909060.
Full text