To see the other types of publications on this topic, follow the link: Yi jia lei.

Journal articles on the topic 'Yi jia lei'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 26 journal articles for your research on the topic 'Yi jia lei.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Loh, Jia Jian, Tin Lok Wong, Shixun Lu, Helen HN Yan, Hoi Cheong Siu, Ren Xi, Dessy Chan, et al. "Abstract 1755: ADAR1-mediated RNA editing of SCD1 links lipid metabolism to gastric cancer drug resistance and self-renewal." Cancer Research 83, no. 7_Supplement (April 4, 2023): 1755. http://dx.doi.org/10.1158/1538-7445.am2023-1755.

Full text
Abstract:
Abstract Targetable drivers governing to 5-fluorouracil and cisplatin (5FU+CDDP) resistance remain elusive due to the paucity of physiologically and therapeutically relevant models. Accordingly, we established 5FU+CDDP resistant intestinal subtype GC patient-derived organoid lines. JAK/STAT signaling and its downstream, adenosine deaminases acting on RNA 1 (ADAR1), are shown to be concomitantly upregulated in the resistant lines. ADAR1 was demonstrated to confer chemoresistance and self-renewal in an RNA editing-dependent manner. WES-seq coupled with RNA-seq identified enrichment of hyperedited lipid metabolism genes in the resistant lines. Mechanistically, ADAR1-mediated A-to-I editing on 3’UTR of stearoyl-CoA desaturase (SCD1) increased binding of KH domain-containing, RNA-binding, signal transduction-associated 1 (KHDRBS1), thereby augmenting SCD1 mRNA stability. Consequently, SCD1 facilitates lipid droplet formation to alleviate chemotherapy-induced ER stress and enhances self-renewal through increasing β-catenin expression. Pharmacological inhibition of SCD1 abrogated chemoresistance and tumor-initiating cell frequency. Clinically, high proteomic level of ADAR1 and SCD1, or high SCD1 editing/ADAR1 mRNA signature score predicts a worse prognosis. Together, we unveiled a novel actionable target to circumvent chemoresistance. Citation Format: Jia Jian Loh, Tin Lok Wong, Shixun Lu, Helen HN Yan, Hoi Cheong Siu, Ren Xi, Dessy Chan, Max JF Kam, Lei Zhou, Man Tong, John A. Copland, Leilei Chen, Jingping Yun, Suet Yi Leung, Stephanie Ma. ADAR1-mediated RNA editing of SCD1 links lipid metabolism to gastric cancer drug resistance and self-renewal [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2023; Part 1 (Regular and Invited Abstracts); 2023 Apr 14-19; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2023;83(7_Suppl):Abstract nr 1755.
APA, Harvard, Vancouver, ISO, and other styles
2

Lin, Ying-Yi, Hong-Fei Gao, Hong Li, Bo-Lei Du, Min-Yi Cheng, Jia-Chen Zou, Xing-xing Zheng, et al. "Abstract PO1-06-01: Clinical Efficacy of Tumor Organoid-Guided Cancer Therapy for Locally Advanced Unresectable or Metastatic Breast Cancer." Cancer Research 84, no. 9_Supplement (May 2, 2024): PO1–06–01—PO1–06–01. http://dx.doi.org/10.1158/1538-7445.sabcs23-po1-06-01.

Full text
Abstract:
Abstract Purpose: Patient-derived organoids (PDOs) may facilitate treatment selection, but the feasibility of using breast cancer PDOs to guide personalized treatment in clinical practice has not been fully investigated. This study aimed to assess the clinical efficacy of treatment guided by PDO drug sensitivity tests (OGT) versus treatment of physician’s choice (TPC) in patients with locally advanced unresectable or metastatic breast cancer (MBC) and to explore the potential of PDOs to reveal mechanisms underlying treatment resistance. Methods: Patients diagnosed with MBC were recruited between January 2020 and August 2022. PDOs were established from biopsies specimens or malignant effusion samples. The efficacy of customized drug panels was determined by measuring cell mortality after drug exposure. Patients receiving OGT were matched 1:2 by nearest neighbor propensity scores with patients receiving TPC. The primary clinical outcome was progression-free survival. Secondary outcomes included objective response rate and disease control rate. Targeted gene sequencing and pathway enrichment analysis were performed. Results: 46 PDOs (46 of 51, 90.2%) were generated from 45 MBC patients. PDO drug screening showed an accuracy of 81.1% (95% CI 67.6%-91.9%) in predicting patients' clinical responses. 36 OGT patients were matched to 69 TPC patients. OGT was associated with prolonged median progression-free survival (11.0 months vs 5.0 months; unadjusted hazard ratio 0.53 [95% CI 0.33-0.85]; P=0.01) and improved disease control (88.9% vs 63.8%; unadjusted odd ratio 4.26 [1.44-18.62]) compared with TPC. The objective response rate of both groups was similar. Pathway enrichment analysis uncovered differentially modulated pathways implicated in DNA repair and transcriptional regulation in patients less sensitive to capecitabine/gemcitabine, and pathways associated with cell cycle regulation in patients less sensitive to palbociclib. Conclusions: MBC patients treated with OGT were associated with superior progression-free survival and disease control compared with TPC. PDO-based functional precision medicine is a feasible strategy for treatment optimization and customization in MBC and may enhance our understanding of therapeutic resistance. Citation Format: Ying-Yi Lin, Hong-Fei Gao, Hong Li, Bo-Lei Du, Min-Yi Cheng, Jia-Chen Zou, Xing-xing Zheng, Teng Zhu, Ting-Ting Li, Sheng Li, Kun Wang. Clinical Efficacy of Tumor Organoid-Guided Cancer Therapy for Locally Advanced Unresectable or Metastatic Breast Cancer [abstract]. In: Proceedings of the 2023 San Antonio Breast Cancer Symposium; 2023 Dec 5-9; San Antonio, TX. Philadelphia (PA): AACR; Cancer Res 2024;84(9 Suppl):Abstract nr PO1-06-01.
APA, Harvard, Vancouver, ISO, and other styles
3

Gao, Yue, Chun-Jie Liu, Hua-Yi Li, Xiao-Ming Xiong, Sjors G. j. g. In ‘t Veld, Gui-Ling Li, Jia-Hao Liu, et al. "Abstract LB168: Platelet RNA signature enables early and accurate detection of ovarian cancer: An intercontinental, biomarker identification study." Cancer Research 82, no. 12_Supplement (June 15, 2022): LB168. http://dx.doi.org/10.1158/1538-7445.am2022-lb168.

Full text
Abstract:
Abstract Background: Morpho-physiological alternations of platelets provided a rationale to harness RNA sequencing of tumor-educated platelets (TEPs) for preoperative diagnosis of cancer. Timely, accurate, and non-invasive detection of ovarian cancer in women with adnexal masses presents a significant clinical challenge. Patients and Methods: This intercontinental, hospital-based, diagnostic study included 761 treatment-naïve inpatients with histologically confirmed adnexal masses and 167 healthy controls from nine medical centers (China, n=3; Netherlands, n=5; Poland, n=1) between September 2016 and May 2019. The main outcomes were the performance of TEPs and their combination with CA125 in two Chinese (VC1 and VC2) and the European (VC3) validation cohorts collectively and independently. Exploratory outcome was the value of TEPs in public pan-cancer platelet transcriptome datasets. Results: The AUCs for TEPs in the combined validation cohort, VC1, VC2, and VC3 were 0.918 (95% CI 0.889-0.948), 0.923 (0.855-0.990), 0.918 (0.872-0.963), and 0.887 (0.813-0.960), respectively. Combination of TEPs and CA125 demonstrated an AUC of 0.922 (0.889-0.955) in the combined validation cohort; 0.955 (0.912-0.997) in VC1; 0.939 (0.901-0.977) in VC2; 0.917 (0.824-1.000) in VC3. For subgroup analysis, TEPs exhibited an AUC of 0.858, 0.859, and 0.920 to detect early-stage, borderline, non-epithelial diseases and 0.899 to discriminate ovarian cancer from endometriosis. Analysis of public datasets suggested that TEPs had potential to detect multiple malignancies (Table 1). Conclusions: TEPs had robustness, compatibility, and universality for preoperative diagnosis of ovarian cancer since it withstood validations in populations of different ethnicities, heterogeneous histological subtypes, early-stage ovarian cancer as well as other malignancies. However, these observations warrant prospective validations in a larger population before clinical utilities. Table 1. Performance for TEPs in public pan-cancer datasets. Disease n Healthy Control AUC, area under the curve (95% CI) Women NSCLC (non-small-cell lung cancer) 126 77 0.758 (0.691-0.825) Breast cancer 38 77 0.817 (0.726-0.909) Colorectal cancer 18 77 0.973 (0.945-1.000) Pancreatic cancer 16 77 0.993 (0.981-1.000) Glioblastoma 10 77 0.923 (0.831-1.000) Men NSCLC 119 82 0.746 (0.677-0.815) Colorectal cancer 25 82 0.933 (0.884-0.982) Pancreatic cancer 22 82 0.993 (0.984-1.000) Glioblastoma 19 82 0.981 (0.959-1.000) All NSCLC 245 159 0.774 (0.728-0.820) Colorectal cancer 40 159 0.978 (0.961-0.996) Breast cancer 38 159 0.821 (0.736-0.906) Pancreatic cancer 35 159 0.987 (0.974-0.999) Glioblastoma 35 159 0.931 (0.890-0.972) Hepatobiliary carcinomas 14 159 0.991 (0.978-1.000) Citation Format: Yue Gao, Chun-Jie Liu, Hua-Yi Li, Xiao-Ming Xiong, Sjors G.j.g. In ‘t Veld, Gui-Ling Li, Jia-Hao Liu, Guang-Yao Cai, Gui-Yan Xie, Shao-Qing Zeng, Yuan Wu, Jian-Hua Chi, Qiong Zhang, Xiao-Fei Jiao, Lin-Li Shi, Wan-Rong Lu, Wei-Guo Lv, Xing-Sheng Yang, Jurgen M.j. Piek, Cornelis D de Kroon, C.a.r. Lok, Anna Supernat, Sylwia Łapińska-Szumczyk, Anna Łojkowska, Anna J. Żaczek, Jacek Jassem, Bakhos A. Tannous, Nik Sol, Edward Post, Myron G. Best, Bei-Hua Kong, Xing Xie, Ding Ma, Thomas Wurdinger, An-Yuan Guo, Qing-Lei Gao. Platelet RNA signature enables early and accurate detection of ovarian cancer: An intercontinental, biomarker identification study [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr LB168.
APA, Harvard, Vancouver, ISO, and other styles
4

Wu, Song-Yang, Xi Jin, Yin Liu, Wen-Jia Zuo, Li Chen, Xiyu Liu, Lei Fan, et al. "Abstract PO1-14-07: Programme of mast cell subsets to potentiate breast cancer immunotherapy: from bed to bench to bed (the phase 2 platform RENAISSANCE trial)." Cancer Research 84, no. 9_Supplement (May 2, 2024): PO1–14–07—PO1–14–07. http://dx.doi.org/10.1158/1538-7445.sabcs23-po1-14-07.

Full text
Abstract:
Abstract Background: Immune checkpoint inhibitors (ICIs) have heralded a new era in breast cancer treatment; however, response rates remain limited, making precision immune-oncology a major unmet need. In addition to T cells, effective immune responses to ICIs rely on coordinated interactions between innate and adaptive immune cells. Mast cells are evolutionarily conserved, tissue-resident cells of importance to human health. Specific subsets of mast cells might be endowed with opposite roles in cancer treatment, yet the extent of mast cell heterogeneity and its clinical merit in immunotherapy remain undefined. Objective: We sought to comprehensively characterize mast cells in breast cancer, investigate their association with immunotherapy response with in-depth mechanistic insights, and identify actionable strategies to modulate mast cell functional states, thereby optimizing immunotherapy efficacy. Methods: We employed single-cell profiling on longitudinal breast cancer samples from three independent clinical trials (NCT04613674, NCT03197389 and GSE169246) to delineate mast cell heterogeneity in anti-PD-(L)1 therapy. By integrating multi-omic analyses, tissue characterization, preclinical experiments, transgenic mice, and high-throughput drug screening, we outlined the molecular features, underlying mechanisms, and clinical relevance of distinct mast cells to elicit ICI-responsive microenvironments. Subsequently, we launched RENAISSANCE (NCT05076682), a proof-of-concept, Bayesian adaptive, phase 2 platform trial, to evaluate the efficacy and safety of combining mast cell therapeutics with anti-PD-1 backbone therapy in metastatic triple-negative breast cancer (TNBC) patients who progressed after immunotherapy. The primary endpoint was the objective response rate (ORR) assessed using RECIST v1.1 criteria. Results: We identified a distinct population of mast cells termed antigen-presenting mast cells (APMCs), constituting approximately 30% of intratumoral mast cells and correlating with improved clinical benefit of anti-PD-(L)1 therapy in TNBC. APMCs displayed MHC-II and costimulatory molecules, and indicated the presence of tumor-reactive T cells and tertiary lymphoid structures. Using three immunocompetent mouse models, we confirmed the immunomodulatory capacity of APMCs in immunotherapy. Mechanistically, by employing Cpa3CreERT2Cd74fl/fl mice, we demonstrated that APMCs potentiate anti-PD-1 efficacy and antitumor T cell immunity through their antigen-presentation machinery. Interestingly, we identified cromolyn, an FDA-approved drug for allergy, as a potential therapeutic agent that elicited APMC-dependent CD8+ T cell cytotoxicity to synergize with anti-PD-1 therapy. Between February 2022 and March 2023, 10 patients with immunotherapy-refractory metastatic TNBC were enrolled to receive cromolyn plus camrelizumab backbone treatment. Given Bayesian predictive probability, this arm was “graduated” due to meeting the pre-specified efficacy boundary, with an ORR of 40.0% (4/10). The treatment was well tolerated with similar safety profiles of relevant drugs. Conclusions: Our findings provide crucial insights into the impact of mast cell heterogeneity on the clinical response to ICIs at a single-cell level, and pave the way for APMC-directed therapeutic interventions in cancer treatment. To our knowledge, this is the first prospective study in breast cancer of cromolyn plus anti-PD-1 backbone regimen after anti-PD-(L)1 immunotherapy failure, demonstrating significant antitumor activity and commendable tolerability. Consequently, we suggest a phase 3 randomized study to consolidate this finding, which might be an effective treatment in patients for whom there are few effective treatment options. Citation Format: Song-Yang Wu, Xi Jin, Yin Liu, Wen-Jia Zuo, Li Chen, Xiyu Liu, Lei Fan, Zhong-Hua Wang, Yan-Fei Liu, Yi-Zhou Jiang, Zhi-Ming Shao. Programme of mast cell subsets to potentiate breast cancer immunotherapy: from bed to bench to bed (the phase 2 platform RENAISSANCE trial) [abstract]. In: Proceedings of the 2023 San Antonio Breast Cancer Symposium; 2023 Dec 5-9; San Antonio, TX. Philadelphia (PA): AACR; Cancer Res 2024;84(9 Suppl):Abstract nr PO1-14-07.
APA, Harvard, Vancouver, ISO, and other styles
5

Kuo, Wen-Hung, Yen-Jang Huang, Jia-Yang Chen, Yi-Chun Wu, Chia-Chun Chen, Mark D. Pegram, and Ying-Chih Chang. "Abstract LB434: Rapid and reproducible expansion of rare tumor cells: The R3CE platform for personalized medicine." Cancer Research 84, no. 7_Supplement (April 5, 2024): LB434. http://dx.doi.org/10.1158/1538-7445.am2024-lb434.

Full text
Abstract:
Abstract We have developed a novel single-cell derived 3D organoid culture platform, Rapid, Reproducible, Rare Cell 3D Expansion (R3CE), capable of generating 3D organoids from solid tumors and normal tissues obtained via surgical tissues and needle biopsies within one week. This method demonstrates over 90% success in banking for at least two passages with over 106 cells across various cancer types, including breast cancer, colorectal cancer, hepatoma cancer, and ovarian cancer. The organoids maintain high fidelity to original tissues, as evidenced by H&E staining, WES, and protein marker analysis across generations. Notably, the R3CE platform can also cultivate circulating tumor cells (CTCs) from peripheral blood. The drug sensitivity profiles of RCE-cultured CTCs closely mirrored clinical outcomes in breast cancer patients. For a patient with stage IV HER2-positive breast cancer, our real-time assay results led to an adjustment in treatment from lapatinib/5-FU to lapatinib/Trastuzumab emtansine (TDM-1), which resulted in substantial clinical improvement. To our knowledge, the R3CE platform is the first 3D organoid system that does not require aggregation or 3D scaffold such as matrigel system. These advancements position the R3CE platform as a promising tool for personalized medicine, offering a rapid and accurate method for drug screening and therapeutic response prediction to guide clinical decision-making in cancer treatment. Citation Format: Wen-Hung Kuo, Yen-Jang Huang, Jia-Yang Chen, Yi-Chun Wu, Chia-Chun Chen, Mark D. Pegram, Ying-Chih Chang. Rapid and reproducible expansion of rare tumor cells: The R3CE platform for personalized medicine [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2024; Part 2 (Late-Breaking, Clinical Trial, and Invited Abstracts); 2024 Apr 5-10; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2024;84(7_Suppl):Abstract nr LB434.
APA, Harvard, Vancouver, ISO, and other styles
6

Huang, Yu-zhou, Ming-Yi Sang, Pei-Wen Xi, Ruo-Xi Xu, Meng-Yuan Cai, Zi-Wen Wang, Jian-Yi Zhao, Yi-Han Li, Ji-Fu Wei, and Qiang Ding. "Abstract 7220: Emerging combination strategy: FANCI suppression induces PARP1 redistribution to enhance efficacy of PARP inhibitors in breast cancer." Cancer Research 84, no. 6_Supplement (March 22, 2024): 7220. http://dx.doi.org/10.1158/1538-7445.am2024-7220.

Full text
Abstract:
Abstract While polyADP-ribose polymerase (PARP) inhibitors have made advancements in the treatment of breast cancer, challenges such as chemotherapy resistance and limited application persist. Fanconi AnemiaComplementation Group I (FANCI), a DNA repair protein associated with breast cancer development, represents a potential target for novel combination therapeutic strategies. However, the role of FANCI in breast cancer and its impact on the efficacy of PARP inhibitors require further investigation. In our study, we analyzed FANCI expression in breast cancer tissues and cell lines, and its correlation with clinical parameters and patient prognosis. Lentiviral vectors were utilized and functional assays were performed to evaluate the effects of FANCI modulation on breast cancer cell growth and migration. Co-immunoprecipitation assays and protein interaction analysis were conducted to identify the interaction between FANCI and PARP1 and determine the specific binding region. The functionality and nuclear distribution of PARP1 were assessed upon FANCI modulation. Finally, the sensitivity of breast cancer cells to the PARP inhibitor talazoparib upon FANCI knockdown was evaluated in vitro and in vivo. Our findings demonstrated that FANCI was overexpressed in breast cancer and associated with poor prognosis. FANCI significantly promoted breast cancer cell proliferation both in vitro and in vivo. We identified the interaction between FANCI and PARP1, specifically at the FANCI helical domain 2 binding site. FANCI knockdown led to reduced nuclear localization of PARP1 and decreased PARP1 activity. Importantly, combination treatment with FANCI knockdown and talazoparib significantly inhibited cancer growth in vitro and in vivo. Additionally, we found that the cyclin-dependent kinase (CDK) 4/6 inhibitor palbociclib, which effectively suppresses FANCI protein expression, exhibited a robust synergistic effect with talazoparib both in vitro and in vivo. In conclusion, FANCI is a novel therapeutic target for breast cancer. Suppression of FANCI regulates PARP1 redistribution and activity, making breast cancer cells more responsive to PARP inhibitors. This combination therapeutic strategy shows potential in enhancing the effectiveness of PARP inhibitors for breast cancer treatment, regardless of BRCA mutations. Citation Format: Yu-zhou Huang, Ming-Yi Sang, Pei-Wen Xi, Ruo-Xi Xu, Meng-Yuan Cai, Zi-Wen Wang, Jian-Yi Zhao, Yi-Han Li, Ji-Fu Wei, Qiang Ding. Emerging combination strategy: FANCI suppression induces PARP1 redistribution to enhance efficacy of PARP inhibitors in breast cancer [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2024; Part 1 (Regular Abstracts); 2024 Apr 5-10; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2024;84(6_Suppl):Abstract nr 7220.
APA, Harvard, Vancouver, ISO, and other styles
7

Tong, Jie, and Ji Ma. "A preliminary study on a Mirror of Japan (Ribenyijian)." Trans/Form/Ação 45, no. 4 (December 2022): 117–36. http://dx.doi.org/10.1590/0101-3173.2022.v45n4.p117.

Full text
Abstract:
Abstract: After the reign of Emperor Jiajing of the Ming Dynasty, as the Japanese pirates’ problem became more and more serious, books devoted to the study of Japan began to be published. Among them, the most important ones are A Brief Survey of Japan (Ri Ben Kao Lue), A Compilation of Japanese Maps (Ri Ben Tu Zuan), A Mirror of Japan (Ri Ben Yi Jian), A Survey of Japan (Ri Ben Kao), A Record of Japanese Customs (Ri Ben Fen Tu Ji), and A Biography of Japanese Pirates in Qiantai (Qian Tai Wo Zhuan). Out of these, A Mirror of Japan is a special one. In addition, there are also special books that depict the general ambiance of Japan, such as A Collection of Coastal Military Maps (Chou Hai Tu Bian), Resistance to Japanese Pirates in Ming Dynasty (Huang Ming Yu Wo Lu), the Compilation of Coastal Defense (Hai Fang Zuan Yao) and the Continuation of Coastal Defense Category in Zhedong and Zhexi Regions (Liang Zhe Hai Fang Lei Kao Xu Bian). Zheng Shungong, the author of the book A Mirror of Japan, visited Japan twice, so many contents in the book are based on his own experience and knowledge. Therefore, the breadth and scope of his research on Japan had gone beyond the similar literature of the Ming Dynasty. Moreover, the Japanese pirates’ record and analysis in the book are of great research value. Before the publication of Huang Zunxian’s Annals of Japan (Ri Ben Tu Zhi), A Mirror of Japan was one of the highest levels of monographs on Japan in ancient China.
APA, Harvard, Vancouver, ISO, and other styles
8

Wang, Lei, Yufeng Xiao, Yuewan Luo, Rohan Master, Jiao Mo, Myung-Chul Kim, Yi Liu, et al. "Abstract 2469: PROTAC mediated NR4A1 degradation as a novel strategy for cancer immunotherapy." Cancer Research 84, no. 6_Supplement (March 22, 2024): 2469. http://dx.doi.org/10.1158/1538-7445.am2024-2469.

Full text
Abstract:
Abstract An effective cancer therapy requires both killing cancer cells and targeting tumor-promoting pathways or cell populations within the tumor microenvironment (TME). We purposely search for molecules that are critical for multiple cell types in the TME and identified nuclear receptor subfamily 4 group A member 1 (NR4A1) as one such molecule. NR4A1 has been shown to promote the aggressiveness of cancer cells and maintain the immune suppressive TME. Using genetic and pharmacological approaches, we establish NR4A1 as a valid therapeutic target for cancer therapy. Importantly, we have developed the first-of-its kind proteolysis-targeting chimera (PROTAC, named NR-V04) against NR4A1. NR-V04 effectively degrades NR4A1 within hours of treatment in vitro and sustains for at least 4 days in vivo, exhibiting long-lasting NR4A1-degradation in tumors and an excellent safety profile. NR-V04 leads to robust tumor inhibition and sometimes eradication of established melanoma tumors. At the mechanistic level, we have identified an unexpected novel mechanism via significant induction of tumor-infiltrating (TI) B cells as well as an inhibition of monocytic myeloid derived suppressor cells (m-MDSC), two clinically relevant immune cell populations in human melanomas. Overall, NR-V04-mediated NR4A1 degradation holds promise for enhancing anti-cancer immune responses and offers a new avenue for treating various types of cancer such as melanoma. Citation Format: Lei Wang, Yufeng Xiao, Yuewan Luo, Rohan Master, Jiao Mo, Myung-Chul Kim, Yi Liu, Chandra Maharjan, Urvi Patel, Xiangming Li, Donald Shaffer, Guertin Kevin, Haoyang Zhuang, Emily Moser, Keiran Smalley, Daohong Zhou, Guangrong Zheng, Weizhou Zhang. PROTAC mediated NR4A1 degradation as a novel strategy for cancer immunotherapy [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2024; Part 1 (Regular Abstracts); 2024 Apr 5-10; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2024;84(6_Suppl):Abstract nr 2469.
APA, Harvard, Vancouver, ISO, and other styles
9

CHOI, Haebyoul. "The Perception and Treatment of People about Abscesses(<i>癰疽</i>) in the Song Period: Focus on Hongmai(<i>洪邁</i>) <i>Yijianzhi</i>(<i>夷堅志</i>)." Korean Journal of Medical History 33, no. 1 (April 30, 2024): 135–89. http://dx.doi.org/10.13081/kjmh.2024.33.135.

Full text
Abstract:
During the Song period, abscesses(<i>癰疽</i>) were a disease that could affect anyone regardless of their class. This study examines how people at that time explained the cause of abscesses and their efforts to treat them, focusing on the experiences of those who suffered from abscesses and their families. Previous research on disease history during the Song period primarily focused on ailments like colds (<i>傷寒</i>) and infectious diseases (<i>瘟疫</i>), or plagues prevalent in the southern regions of China. On the other hand, examining abscesses as a common everyday illness that could affect anyone and considering them from the perspective of patients’ experiences has remained unexplored in previous studies.</br>To reconstruct the experiences of Song period patients, this study analyzes over sixty anecdotes related to abscesses found in <i>Yi Jian Zhi</i> (<i>夷堅志</i>) written by Hong Mai. These cases span across the mid to late 12th century, with a majority of the patients being from the literati (<i>士人</i>) class or connected to the literati.</br>These anecdotes exhibit two distinct trends. One focuses on narratives surrounding the onset of abscesses, attributing their cause primarily to the patients’ lifestyle. When the cause of the abscesses was unknown, people metaphorically attributed its onset to perceived blasphemy against God, an act of killing, negligence in duties, or other wrongdoings. This trend is evident among the literati class in particular, where abscesses were often linked to factors such as excessive legal executions or exploitation, and even acts of killing people. Except for those cases, in explaining the cause of abscesses in commoners, there were instances caused by a pediculus infestation, while in case of literati, Dansha (<i>丹砂</i>) poisoning was a common cause. It is interesting to note that the narrative tradition, prevalent in official history biographies, which attributes the onset of abscesses to worries and resentment, was not evident in written records such as <i>Yi Jian Zhi</i>. Furthermore, the detailed description of external similarities, portraying abscesses as traces of punishment from the underground realm (<i>陰界</i>), is a narrative characteristic that solidified such stereotypical perceptions. The literati's notion that they should alert people through these related anecdotes contributed to the spread of this perception.</br>Another trend in these anecdotes was centered around narratives of abscess treatment, where the focus shifted primarily to seeking “doctors,” unlike the metaphorical explanations of abscess onset causes and processes. When afflicted with abscesses, people generally sought out those renowned surgeons, known as Yang-yi (<i>瘍醫</i>), and those famous for treating abscesses. In local communities, individuals who had “received the divine secrets of abscesses,” those possessing their own mysterious abscesses cures, and those famous for generations for treating abscesses by using stone acupuncture were active. Such information about them was shared within the local societies. Their treatment predominantly consisted of surgical procedures to lance abscesses and drain pus, which often led patients to endure significant pain during the treatment process. In many cases, such patients sought treatment from well-known local surgeons and abscess specialists who surgically treated them. The literati, who are said to have influenced the development of pulse-centered medical and academic medicine in China, also sought out surgeons for abscess treatment.</br>Medical formularies compiled by the court as well as privately published ones rarely mentioned surgical methods utilizing tools. The fact that surgical techniques were utilized in local regions at that time indicates a disparity between the official medical practices documented in texts and the practical methods employed in local communities.</br>An analysis of approximately sixty anecdotes related to abscesses shows that abscesses were characterized by unknown causes and excruciating pain. Their onset was often attributed to the patient’s lifestyle and wrongdoings, and they were also perceived as punishment for one’s wrongdoings. However, as it was a disease where treatment effects could be relatively easily observed through surgical procedures, there was a proactive utilization of the locally formed treatment environment, preferring surgical interventions over relying on religious powers. Contrary to the medical trends and methods outlined in medical literature, surgical treatments were prevalent as the chosen method of treatment among the population in local communities. It appears that the realities experienced, reasoned, and shared by people in the Song period regarding the perception and response to abscesses did not necessarily align with those of mainstream medical practices. Moreover, despite attributing the onset of abscesses to one’s wrongdoing, there was a preference for seeking surgeons or Yang-yi (<i>瘍醫</i>) over religious methods in their treatment, reflecting a characteristic of the local medical culture surrounding abscesses during the Song period.
APA, Harvard, Vancouver, ISO, and other styles
10

Kang, Sungmuk, Hyeonju Kang, Jihye Koo, Yoojin Kim, Suho Park, Inyoung Lee, Jiye Yi, et al. "Abstract 1532: Next generation IgM antibody based multimeric platform: ePENDY (engineered pentamer body)." Cancer Research 83, no. 7_Supplement (April 4, 2023): 1532. http://dx.doi.org/10.1158/1538-7445.am2023-1532.

Full text
Abstract:
Abstract Among many candidates from the recent diverging research to develop a multivalent platform, IgM has shown potential as a pharmaceutical because of its avidity coming from natural multimeric target binding ability. IgM has a great advantage of naturally forming multimers, however, there are some unfulfilled needs to become a good pharmaceutical platform, such as limited biological activity, short half-life, safety concerns, and difficult purification steps compared to IgG. Here, we developed an antibody platform, ePENDY, by engineering IgM to improve efficacy, safety, and convenience of manufacturing process. ePENDY has a self-assembling decavalent pentameric structure and it is an improved IgM with maximized biological activity as therapeutics by using flexible linkers. In addition, ePENDY was engineered one of the effector functions of antibodies, ADCC, was greatly increased compared to IgG as well as IgM which does not have this function. More importantly, the presence or absence of effector functions can be controlled depending on the MoA (Mode of action) of the target. Serum half-life of ePENDY was significantly increased compared to natural IgM, and ePENDY showed similar PK profiles as the IgG Fc-based molecules through FcRn recycling. Unlike natural IgM, ePENDY does not bind to any IgM receptors, such as pIgR, FcμR, and Fcα/μR, thereby eliminating possible side effects. In addition, it has been confirmed that ePENDY showed a comparable expression level to that of IgG, and since the purification process can also be set up in a process like IgG, thus production of ePENDY can be facilitated. Based on these results, we are researching ePENDY which are applying various therapeutic molecules, such as antibodies, protein ligand-based active molecules and therapeutic cancer vaccines. We expect that our versatile applicable platform, safe and long acting ePENDY, can be a superior tool for the various therapeutic targets. Citation Format: Sungmuk Kang, Hyeonju Kang, Jihye Koo, Yoojin Kim, Suho Park, Inyoung Lee, Jiye Yi, Hong Jai Lee, Yonghyun Cho, Hyunju Hwang, Kyunggi Hyun, Chungmin Lee, Gyongsik Ha. Next generation IgM antibody based multimeric platform: ePENDY (engineered pentamer body) [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2023; Part 1 (Regular and Invited Abstracts); 2023 Apr 14-19; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2023;83(7_Suppl):Abstract nr 1532.
APA, Harvard, Vancouver, ISO, and other styles
11

Lu, Zhihua, Guiting Lin, Amanda Reed-Maldonado, Chunxi Wang, Yung-Chin Lee, and Tom F. Lue. "Reply to Zi-Jun Zou, Jia-Yu Liang, Yi-Ping Lu's Letter to the Editor re: Zhihua Lu, Guiting Lin, Amanda Reed-Maldonado, Chunxi Wang, Yung-Chin Lee, Tom F. Lue. Low-intensity Extracorporeal Shock Wave Treatment Improves Erectile Function: A Systematic Review and Meta-analysis. Eur Urol 2017;71:223–33." European Urology 71, no. 2 (February 2017): e59-e60. http://dx.doi.org/10.1016/j.eururo.2016.08.020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Palacino, James, Chen Bai, Yong Yi, Anna Skaletskaya, Khuloud Takrouri, Wesley Wong, Min-Soo Kim, et al. "Abstract 3933: ORM-5029: A first-in-class targeted protein degradation therapy using antibody neodegrader conjugate (AnDC) for HER2-expressing breast cancer." Cancer Research 82, no. 12_Supplement (June 15, 2022): 3933. http://dx.doi.org/10.1158/1538-7445.am2022-3933.

Full text
Abstract:
Abstract Targeted protein degradation (TPD) molecules, including IMiD-based molecular glues and heterobifunctional degraders have expanded the breadth of therapeutic options through both their catalytic mechanism of action and ability to degrade previously “undruggable” target proteins. To increase the efficacy vs. tolerability window of protein degradation and improve drug delivery we combine the catalytic approach of targeted protein degradation with the precision of tumor targeting therapeutic antibodies. Here, we describe the development of ORM-5029, a highly potent and selective GSPT1 degrader targeting HER2-expressing tumor cells. We first screened a panel of cell lines to identify tumors where treatment with a selective, membrane-permeable, molecular glue (SMol007) would exhibit the most potent GSPT1 degradation, integrated stress response, and ultimately apoptosis. HER2+ breast cancer cell lines were more sensitive to GSPT1 degradation than the average IC50 for all cell lines tested. Several of our GSPT1 degrader molecules were tested in HER2-positive tumor models and displayed a consistent pattern of potent cytotoxicity. An unbiased global proteomics evaluation of changes in abundance identified SMol006 as a specific GSPT1 degrader, with no significant depletion of over 6500 other proteins detected. To evaluate whether antibody delivery could provide a potency increase of Smol006 and other GSTP1 degrader payloads, we conjugated these payloads to the HER2-targeting antibodies, trastuzumab and pertuzumab. Given the comparable activity of both antibodies and frequent use of trastuzumab as the antibody domain of several ADCs, we selected pertuzumab as our targeting antibody. Further medicinal chemistry optimization and evaluation of many linker-payloads led to the identification of our first preclinical AnDC candidate ORM-5029, which is composed of SMol006, a highly-potent GSPT1 degrader conjugated to pertuzumab via a clinically-validated Val-Cit PABc linker. ORM-5029 treatment in the HER2-expressing cell lines showed 10-1000 fold superiority in potency compared to SMol006, Kadcyla and/or Enhertu treatment. We evaluated ORM-5029 in several in vivo xenograft models and observed robust efficacy, following a single-dose treatment testing as low as 3 mg/kg. In the BT474 xenograft model, treatment with ORM-5029 demonstrated single-dose activity superior to Kadcyla, and comparable to Enhertu when given at an equivalent dose. In an HCC1569 xenograft model, tumor growth inhibition correlated with the degree and duration of GSPT1 depletion and changes in expression of previously described integrated stress response biomarker genes. ORM-5029 is currently in preclinical development as a potential first-in-class targeted protein degrader therapy with HER2-targeted delivery. Citation Format: James Palacino, Chen Bai, Yong Yi, Anna Skaletskaya, Khuloud Takrouri, Wesley Wong, Min-Soo Kim, Dong-Ki Choi, Da-Young Kim, Yeonhee Yang, Jiae Kook, Pedro Lee, Hangyeol Jeong, Sang-Mi Jee, Jiyun Park, Ki-Hwan Chang, Nathan Fishkin, Peter U. Park. ORM-5029: A first-in-class targeted protein degradation therapy using antibody neodegrader conjugate (AnDC) for HER2-expressing breast cancer [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr 3933.
APA, Harvard, Vancouver, ISO, and other styles
13

Zhu, Dandan, Jian Tu, Zijun Huo, An Xu, Mo-Fan Huang, Ying Liu, Yi-Hung Chen, Ruiying Zhao, and Dung-Fang Lee. "Abstract 1616: Dissecting the biology and therapeutic vulnerabilities of RB1-mutant osteosarcoma using hereditary retinoblastoma iPSCs." Cancer Research 82, no. 12_Supplement (June 15, 2022): 1616. http://dx.doi.org/10.1158/1538-7445.am2022-1616.

Full text
Abstract:
Abstract Patients with hereditary retinoblastoma (RB), an inherited autosomal dominant cancer disordercaused by germline mutations/deletions in the RB1 gene, have a &gt;400 fold increased incidenceof osteosarcoma (OS), suggesting a strong mechanistic link between RB1 loss andosteosarcomagenesis. Although mice offer many advantages when conducting cancer research,unlike humans, Rb1 knockout mice do not develop OS, suggesting the urgent requirement foralternative disease models to understand how RB1 mutation leads to osteosarcomagenesis.Here, we generated patient-derived induced pluripotent stem cells (iPSCs) by reprogramming RBand healthy control fibroblasts and then created isogenic controls by correcting RB1 mutationusing CRISPR/Cas9. Performing in vitro soft-agar assay and in vivo xenografts, we foundpotential tumorigenic ability in RB osteoblasts (OBs) but not control OBs. In order to gain insightsinto RB1 loss associated osteosarcomagenesis, we compared global transcripts among RB andcontrol OBs. GSEA analysis indicated that OS associated genes are specifically enriched in RBOBs in comparison with control OBs, demonstrating that RB OBs acquire OS characteristics inthe absence of additional gene alterations. GO analysis revealed that genes involved in the mitoticcell cycle are enriched in RB OBs. Although RB1 is known to controlling G1/S related geneexpression by inhibiting E2F transcription factors, it is still nebulous if RB1 plays a role inregulating mitotic genes.To comprehensively identify preferential binding of RB1 to specific promoters in OBs, weconducted RB1 ChIP-seq to map genome-wide RB1-binding sites in iPSC-derived OBs. SinceE2F3a, a RB1 repressed transcription factor, is enriched expressed in OBs, we also performedE2F3a ChIP-seq to define whether these RB1-repressed targets are E2F3a-activated targets.Using the nonbiased de novo motif search algorithm DME, we further identified the most highlyenriched RB1-binding motif in all conditions and cross-compare with the E2F3a motifs. Weconfirmed that RB1 and E2F3a co-occupy the mitotic regulator promoters by ChIP-PCR. IHCstudies of clinical OS specimens supported the clinical correlation between RB1/E2F3a andmitotic regulators. High mitotic regulator genes expression is correlated with poor prognosis. Ourresults demonstrated that the mitotic regulators are co-regulated by both RB1 and E2F3a andthey play roles in osteosarcomagenesis.Taken together, our findings demonstrated multiple OS-related phenotypes in human RB iPSC-derived OBs and RB1/E2F3a-regulating mitotic regulators can be a therapeutic vulnerability inRB1-mutant OS. Citation Format: Dandan Zhu, Jian Tu, Zijun Huo, An Xu, Mo-Fan Huang, Ying Liu, Yi-Hung Chen, Ruiying Zhao, Dung-Fang Lee. Dissecting the biology and therapeutic vulnerabilities of RB1-mutant osteosarcoma using hereditary retinoblastoma iPSCs [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr 1616.
APA, Harvard, Vancouver, ISO, and other styles
14

Kader, Tanjina, Jia-Ren Lin, Shannon Coy, Clemens Hug, Yu-An Chen, Roxanne J. Pelletier, Mariana Leon, et al. "Abstract LB311: Multimodal spatial profiling reveals the emergence of an immune suppressive microenvironment at the initial stages of high-grade serous ovarian cancer development." Cancer Research 84, no. 7_Supplement (April 5, 2024): LB311. http://dx.doi.org/10.1158/1538-7445.am2024-lb311.

Full text
Abstract:
Abstract Introduction: Despite the clear genetic evidence linking serous tubal intraepithelial carcinoma (STIC) and high-grade serous ovarian carcinoma (HGSOC), the specific conditions and events that promote the progression of STIC lesions into invasive disease remain poorly understood. Method: As a critical initial step, we have assembled a cohort of incidental p53 signatures, STIC lesions, and STIC with concurrent HGSOC. We have performed extensive multi-modal analysis using multiplexed tissue imaging and spatial transcriptomics that identify features of the immune system that play a vital role in the early steps of HGSOC development. We have processed 43 specimens using highly multiplexed tissue imaging at single-cell resolution (cyclic immunofluorescence, CyCIF), and 35 specimens for micro-regional spatial transcriptomics using the GeoMx (Whole Transcriptome, Nanostring) on over 450 pathologist-annotated regions of interest. Results: Our data suggests an immune-cold environment and T-cell dysfunction in STIC lesions, including incidental STIC. One of the significant immune populations identified was CD103+ tissue-resident memory T cells (TRM). In incidental p53 signatures, activation of TRM was rare, similar to FT, which may indicate the absence of sensing “tumor antigen” by these TRM. CyCIF analysis also revealed that most incidental STIC lesions (7/9 cases) overexpress major histocompatibility complex (MHC) class I compared to the normal epithelium, especially both HLA complex, HLA-A and HLA-E. Most STICs showed extensive intra-lesion heterogeneity, with some STICs remaining HLA-A and HLA-E negative. Incidental p53 signatures, on the other hand, were mostly HLA-A and HLA-E negative and, when positive, had only a few cells expressing HLA. We hypothesized that there might be a natural selection of HLA-E-positive clones as STICs progress to HGSOC. Consistent with this, HGSOC showed further overexpression of HLA-E. However, HLA-E heterogeneity was still observed in the invasive tumor, with both positive and negative clones co-existing. Geomx data suggested that the interferon signaling pathway is upregulated in the epithelial of HLA-E positive STIC and cancer clones compared to HLA-E negative clones. In turn, both HLA-A and HLA-E might be overexpressed in the epithelial of HLA-E-positive STICs. Overall, we showed that the response in interferon (IFN) α and γ, NF-KB, and IL-6-induced STAT-3 pathways were upregulated in both STIC lesions and carcinoma. The role of these pathways, especially STAT-3 pathway, has been shown in other aneuploid cancers in promoting immune escape, cell proliferation and migration, chemoresistance and inhibiting apoptosis. We have shown the co-localization of cGAS and BAF, a marker for micronuclei rupture, by super-resolution 3D imaging to confirm one of the mechanisms of IFN activation. Conclusion: Taken together, these data may indicate chromosomal instability is one of the mechanisms that is driving the IFN-signaling pathway and, hence, a potential selective advantage for HLA-E-positive clones in tumorigenesis, leading to inhibiting NK cell surveillance followed by reducing T cell infiltration. Citation Format: Tanjina Kader, Jia-Ren Lin, Shannon Coy, Clemens Hug, Yu-An Chen, Roxanne J. Pelletier, Mariana Leon, John Lee, Yi-Lin Xu, Clarence Yapp, Natalie Shih, Gabriel Mingo, Euihye Jung, Srishti Rathore, Judith Agudo, Charles Drescher, Peter K. Sorger, Ronny Drapkin, Sandro Santagata. Multimodal spatial profiling reveals the emergence of an immune suppressive microenvironment at the initial stages of high-grade serous ovarian cancer development [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2024; Part 2 (Late-Breaking, Clinical Trial, and Invited Abstracts); 2024 Apr 5-10; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2024;84(7_Suppl):Abstract nr LB311.
APA, Harvard, Vancouver, ISO, and other styles
15

Liao, Nai-Shun, Yuan-Mao Hung, Yi-Jian Tsai, Nam Nhut Phan, Pei-Chun Chen, Liang-Chuan Lai, Mong-Hsun Tsai, Tzu-Pin Lu, and Eric Y. Chuang. "Abstract 3032: A novel deep learning pipeline for early detection of colorectal cancer and colorectal adenoma using gut microbiome data." Cancer Research 83, no. 7_Supplement (April 4, 2023): 3032. http://dx.doi.org/10.1158/1538-7445.am2023-3032.

Full text
Abstract:
Abstract Many studies have shown the associations between colorectal cancer (CRC) and gut microbiome. The deep learning models have the potential to detect CRC earlier than the conventional stool screening test. However, the results are very inconsistent, which impedes the application of prediction using gut microbiomes as biomarkers. Therefore, this study aims to construct a novel deep learning (DL) pipeline to better classify CRC, colorectal adenoma, and healthy groups using microbiome data. Tissue or stool samples with sequence data and/or taxonomy profiles from 16 studies were collected from the NCBI SRA database or supplementary data provided in studies. Tumor-adjacent samples were excluded because of highly related to tumor samples. Sequence data were quality controlled and taxonomy assigned by EasyMAP based on the QIIME2 pipeline. All taxonomy profiles were merged and normalized to relative abundance. In total, 136 CRC-associated genera were collected from 38 different region studies. Among the CRC-associated genera, 98 ones with high prevalence were selected as CRC biomarkers. Taxonomy profiles were feature-selected by the CRC biomarkers. A phylogenetic tree of 98 CRC biomarkers was constructed by ete3 package and NCBI taxonomy database. Features in taxonomy profiles were sorted and converted into a 10x10 array by phylogenetic-based order. Samples labeled as healthy, adenoma, or CRC were randomly split into train, validation, and test datasets by 8:1:1. The 2D convolutional neural network DL model was trained with a feature array of the samples in the training dataset. Model performance was evaluated by the test dataset. Moreover, Saliency map was calculated to identify highly contributed features. Our results showed that, by combining the tissue and stool data, the DL model illustrated excellent performance with 81% AUC and 60% accuracy for the test dataset in classifying health, adenoma, and CRC groups. Two-class DL model performed even higher with 85% AUC and 78% accuracy in classifying health and CRC groups. For a model with only stool samples, the model in classifying health and CRC groups achieved comparable results with 84% AUC and 76% accuracy. Finally, CRC biomarkers that highly contributed to the DL model were identified by saliency map. In summary, we developed a new pipeline for CRC classification using 16s rRNA gut microbiome data and identified CRC-specific gut microbiome genera. The pipeline and biomarkers could be used as a non-invasive tool for the early detection of CRC. Citation Format: Nai-Shun Liao, Yuan-Mao Hung, Yi-Jian Tsai, Nam Nhut Phan, Pei-Chun Chen, Liang-Chuan Lai, Mong-Hsun Tsai, Tzu-Pin Lu, Eric Y. Chuang. A novel deep learning pipeline for early detection of colorectal cancer and colorectal adenoma using gut microbiome data [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2023; Part 1 (Regular and Invited Abstracts); 2023 Apr 14-19; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2023;83(7_Suppl):Abstract nr 3032.
APA, Harvard, Vancouver, ISO, and other styles
16

Agarwal, Yash, K. Wittrup, and Darrell Irvine. "738 Intratumoral administration of alum-tethered engineered inflammatory cytokines safely elicits potent local and systemic immunity." Journal for ImmunoTherapy of Cancer 9, Suppl 2 (November 2021): A769. http://dx.doi.org/10.1136/jitc-2021-sitc2021.738.

Full text
Abstract:
BackgroundWhile immune checkpoint blockade therapy has improved progression-free survival in patients suffering from cancer over other treatments,1–4 these typically elicit durable responses in only minority of patients, in part because of the highly immunosuppressive tumor microenvironment (TME).5 6 Rational combinations with inflammatory cytokines can relieve some immunosuppression,7 8 but systemic dosing of these proteins is impeded by severe immune-related adverse events (irAE).9–14 One approach to focus the activity of immunostimulatory agents in tumors while lowering systemic toxicity is to administer these drugs intratumorally. However, intratumoral injection alone generally achieves limited persistence in the TME, as drugs quickly clear from the tumor via lymphatics and the tumor vasculature, rapidly leading to harmful accumulation in the circulation.15 16 Thus, approaches to promote in vivo retention of intratumorally administered drugs are necessary to maximize local stimulation.MethodsWe engineered Interleukin-12 (IL-12) with a peptide tag containing multiple phosphoserine (pSer) residues, through in-cell phosphorylation during recombinant expression in mammalian cells. We then inoculated mice with B16F10, or Ag104A tumors, treated established tumors intratumorally with a single dose of IL-12 mixed with alum, and monitored the tumor size and weights over time. Immunophenotyping of tumors and draining lymph nodes (dLNs) was conducted at several timepoints after treatment. Tumors and serum were also collected to perform bead-based Luminex analysis of many cytokines (including IL-12 and IFN-γ).ResultsCytokines with pSer tags bind tightly to the common vaccine adjuvant aluminum hydroxide (alum) via ligand exchange (72% pSer-IL-12 vs 3.5% IL-12, P<0.0001). Alum particles form a physical depot at injection sites that is persistent over weeks. So, intratumoral injection of pSer-IL-12-loaded alum led to >400-fold greater retention of protein relative to unanchored pSer-IL-12 with 2-fold lower serum ALT (a biomarker for IL-12 systemic toxicity). Further, a single dose of alum-tethered pSer-IL-12 induced 5-fold greater IFN-γ secretion (P=0.0031) at the tumor primarily by CD8+ T cells and doubled (P<0.0001) the proportion of tumor antigen-carrying, CD86-expressing CD103+ DCs in dLN relative to free IL-12. Further, intratumoral alum/pSer-IL-12 therapy enhanced responses to checkpoint blockade (anti-PD1), leading to a cure rate of 52% in poorly immunogenic B16F10 tumors compared to 0% for free IL-12. Local intratumoral treatment of ipsilateral tumors in mice also led to clearance of large, untreated contralateral tumors in 9/15 animals for alum/pSer-IL-12 vs. 5/17 animals for unanchored IL-12 (P=0.04).ConclusionsThus, intratumoral treatment with alum-anchored cytokines presents a safe, tumor-agnostic approach to improve local and systemic anti-cancer immunity.ReferencesWolchok JD, Chiarion-Sileni V, Gonzalez R, Rutkowski P, Grob JJ, Cowey CL, et al. Overall survival with combined nivolumab and ipilimumab in advanced melanoma. New England Journal of Medicine 2017;377(14):1345–56.Ansell SM, Lesokhin AM, Borrello I, Halwani A, Scott EC, Gutierrez M, et al. PD-1 Blockade with nivolumab in relapsed or refractory Hodgkin's lymphoma. New England Journal of Medicine [Internet]. 2015;372(4):311–9. Available from: http://www.nejm.org/doi/10.1056/NEJMoa1411087.Brahmer J, Reckamp KL, Baas P, Crinò L, Eberhardt WEE, Poddubskaya E, et al. Nivolumab versus docetaxel in advanced squamous-cell non–small-cell lung cancer. New England Journal of Medicine [Internet]. 2015;373(2):123–35. Available from: http://www.nejm.org/doi/10.1056/NEJMoa1504627.Bellmunt J, de Wit R, Vaughn DJ, Fradet Y, Lee J-L, Fong L, et al. Pembrolizumab as second-line therapy for advanced urothelial carcinoma. New England Journal of Medicine [Internet]. 2017;376(11):1015–26. Available from: http://www.nejm.org/doi/10.1056/NEJMoa1613683.Yi M, Jiao D, Xu H, Liu Q, Zhao W, Han X, et al. Biomarkers for predicting efficacy of PD-1/PD-L1 inhibitors [Internet]. Vol. 17, Molecular Cancer. BioMed Central Ltd.; 2018 [cited 2021 May 2]. p. 1–14. Available from: https://doi.org/10.1186/s12943-018-0864-3.Anderson KG, Stromnes IM, Greenberg PD. Obstacles posed by the tumor microenvironment to T cell activity: a case for synergistic therapies [Internet]. Vol. 31, Cancer Cell. Cell Press; 2017 [cited 2021 May 2]. p. 311–25. Available from: https://pubmed.ncbi.nlm.nih.gov/28292435/.Smyth MJ, Ngiow SF, Ribas A, Teng MWL. Combination cancer immunotherapies tailored to the tumour microenvironment [Internet]. Vol. 13, Nature Reviews Clinical Oncology. Nature Publishing Group; 2016;143–58. Available from: https://pubmed.ncbi.nlm.nih.gov/26598942/.Moynihan KD, Opel CF, Szeto GL, Tzeng A, Zhu EF, Engreitz JM, et al. Eradication of large established tumors in mice by combination immunotherapy that engages innate and adaptive immune responses. Nature Medicine 2016;22(12):1402–10.Milling L, Zhang Y, Irvine DJ. Delivering safer immunotherapies for cancer. Advanced Drug Delivery Reviews [Internet]. 2017;114:79–101. Available from: http://dx.doi.org/10.1016/j.addr.2017.05.011.Lasek W, Zagożdżon R, Jakobisiak M. Interleukin 12: still a promising candidate for tumor immunotherapy? Cancer Immunology, Immunotherapy 2014;63(5):419–35.Kirchner GI, Franzke A, Buer J, Beil W, Probst-Kepper M, Wittke F, et al. Pharmacokinetics of recombinant human interleukin-2 in advanced renal cell carcinoma patients following subcutaneous application. British Journal of Clinical Pharmacology [Internet] 1998;46(1):5–10. Available from: /pmc/articles/PMC1873983/.June CH, Warshauer JT, Bluestone JA. Is autoimmunity the Achilles' heel of cancer immunotherapy? Nature Medicine [Internet] 2017;23(5):540–7. Available from: http://www.nature.com/articles/nm.4321.Leonard JP, Sherman ML, Fisher GL, Buchanan LJ, Larsen G, Atkins MB, Sosman JA, Dutcher JP, Vogelzang JLR. Effects of single-dose interleukin-12 exposure on interleukin-12–Associated toxicity and interferon-γ Production. Blood 1997;2541–8.Atkins MB, Robertson MJ, Gordon M, Lotze MT, DeCoste M, DuBois JS, et al. Phase I evaluation of intravenous recombinant human interleukin 12 in patients with advanced malignancies. Clinical Cancer Research 1997;3(3).van Herpen CML, van der Voort R, van der Laak JAWM, Klasen IS, de Graaf AO, van Kempen LCL, et al. Intratumoral rhIL-12 administration in head and neck squamous cell carcinoma patients induces B cell activation. International Journal of Cancer [Internet] 2008;123(10):2354–61. Available from: https://pubmed.ncbi.nlm.nih.gov/18729197/.Pfreundschuh MG, Tilman Steinmetz H, Tüschen R, Schenk V, Diehl V, Schaadt M. Phase I study of intratumoral application of recombinant human tumor necrosis factor. European Journal of Cancer and Clinical Oncology [Internet] 1989;25(2). Available from: https://pubmed.ncbi.nlm.nih.gov/2702990/Ethics ApprovalAll animal studies and procedures were carried out following federal, state and local guidelines under an institutional animal care and use committee-approved animal protocol (Protocol no. 0720-070-23) by the Committee of Animal Care at MIT.
APA, Harvard, Vancouver, ISO, and other styles
17

Katsumata, Y., E. Inoue, M. Harigai, R. Kandane-Rathnayake, W. Louthrenoo, A. Hoi, V. Golder, et al. "OP0048 RISK OF FLARE AND DAMAGE ACCRUAL AFTER TAPERING GLUCOCORTICOIDS IN SEROLOGICALLY ACTIVE CLINICALLY QUIESCENT PATIENTS WITH SYSTEMIC LUPUS ERYTHEMATOSUS." Annals of the Rheumatic Diseases 82, Suppl 1 (May 30, 2023): 31–32. http://dx.doi.org/10.1136/annrheumdis-2023-eular.653.

Full text
Abstract:
BackgroundSome studies demonstrated that withdrawal of low-dose glucocorticoids in clinically quiescent systemic lupus erythematosus (SLE) patients increased the risk of flare [1]. An international survey of 130 clinicians showed that persistent abnormal serology led to a reluctance to reduce or discontinue medications [2].ObjectivesTo assess the risk of flare and damage accrual after tapering glucocorticoids in serologically active clinically quiescent (SACQ) patients with SLE. Association of other medications with flare in SACQ patients was also analyzed.MethodsWe used data from the Asia Pacific Lupus Collaboration cohort, prospectively collected from SLE patients (ACR/SLICC criteria) observed for at least 2 visits between 2013 and 2020. Disease activity and medication details were captured at enrolment and at routine visits. SACQ was defined at any visit as the state with serological activity (increased anti-dsDNA or hypocomplementemia) but without clinical activity as measured by SLEDAI-2K. Patients treated with 0 to 7.5 mg/day of prednisolone at a SACQ visit were analyzed after stratification according to the initial dosages of prednisolone. Cox proportional hazard models were used to assess the time-dependent relationship between decreasing prednisolone in SACQ patients and disease flares captured with the SELENA flare index at each subsequent visit, as well as subsequent damage accrual (≥1-point increase in SLICC/ACR damage index [SDI]). Each patient was observed for up to 2 years or until each outcome event occurred.ResultsFrom a total of 4,106 patients, 1,850 patients with SACQ and 8,905 visits were analyzed: 742, 271, and 180 patients experienced overall flare, severe flare, and increase in SDI, respectively. Tapering prednisolone was not associated with subsequent overall or severe flare: Each unit decrease in prednisolone dosage (1 mg/day) resulted in adjusted HRs 1.02 (95%CI, 0.99–1.05) and 0.98 (95%CI, 0.96–1.00) for overall and severe flare, respectively, in the group with initial prednisolone dosages of 0–7.5 mg/day. However, among SACQ patients, antimalarial use was significantly associated with reduced overall and severe flare in the groups with initial prednisolone of 0–7.5 or 0–5 mg/day. In addition, immunosuppressive use was significantly associated with reduced severe flare but not overall flare in these groups. Decreasing the dosage of prednisolone was significantly negatively associated with damage accrual in the groups with initial prednisolone dosages of 0–7.5 mg/day (adjusted HR [95%CI], 0.97 [0.96–0.99]) and 5–7.5 mg/day (adjusted HR [95%CI], 0.96 [0.94–0.99]) but not 0–5 mg/day (adjusted HR [95%CI], 0.98 [0.95–1.01]).Table 1.Summary results of association between decreasing the prednisolone dosages and disease flares or damage accrual in SLE patients with SACQInitial prednisolone dosage (mg/day)Overall disease flareSevere disease flareIncrease in SDI0 ≤ prednisolone ≤7.51.02 (0.99–1.05),p= 0.270.98 (0.96–1.00),p= 0.110.97 (0.96–0.99),p< 0.010 ≤ prednisolone ≤51.02 (0.98–1.06),p= 0.410.98 (0.96–1.01),p= 0.280.98 (0.95–1.01),p= 0.145 < prednisolone ≤7.51.01 (0.96–1.06),p= 0.840.98 (0.92–1.03),p= 0.410.97 (0.96–0.99),p< 0.01* HRs (95% CIs) per unit decrease in prednisolone dosages (1 mg/day) were calculated using Cox proportional hazard models and adjusted by initial prednisolone dosage, antimalarial, immunosuppressive, disease duration, SLEDAI-2K, age at visit, gender, and ethnicity.ConclusionTapering prednisolone was not significantly associated with subsequent flare in SLE patients who were SACQ. Antimalarial and immunosuppressive use were associated with reduced risk of flares in SACQ patients. Tapering prednisolone was associated with reduced risk of damage accrual in SACQ patients treated with more than 5 mg/day of prednisolone. These findings suggest glucocorticoid tapering is safe and protective in SLE patients in SACQ.References[1]Rheumatology (Oxford). 2021;60:5517[2]Lupus Sci Med. 2017;4:e000173AcknowledgementsWe acknowledge the unrestricted project grants received from AstraZeneca, BMS, Eli Lilly, GSK, Janssen, Merck Serono, and UCB to support data collection and project management contributing to this work.Disclosure of InterestsYasuhiro Katsumata Speakers bureau: GlaxoSmithKline K.K., AstraZeneca K.K., Sanofi K.K., Pfizer Japan Inc., Janssen Pharmaceutical K.K., Chugai Pharmaceutical Co., Ltd.Asahi Kasei Pharma, Astellas Pharma Inc., Mitsubishi Tanabe Pharma Corporation, Eisuke Inoue Speakers bureau: Bristol-Myers Squibb K.K., Eisai Co., Ltd., Consultant of: Nippontect Systems co., Ltd., Masayoshi Harigai Speakers bureau: AbbVie Japan GK, Ayumi Pharmaceutical Co., Boehringer Ingelheim Japan, Inc.,Bristol Myers Squibb Co., Ltd., Chugai Pharmaceutical Co., Ltd., Eisai Co., Ltd., Eli Lilly Japan K.K., GlaxoSmithKline K.K., Kissei Pharmaceutical Co., Ltd., Pfizer Japan Inc., Takeda Pharmaceutical Co., Ltd., Teijin Pharma Ltd., Consultant of: AbbVie, Boehringer-ingelheim, Bristol Myers Squibb Co., Kissei Pharmaceutical Co.,Ltd. Teijin Pharma, Grant/research support from: AbbVie Japan GK, Asahi Kasei Corp., Astellas Pharma Inc., Ayumi Pharmaceutical Co., Bristol Myers Squibb Co., Ltd., Chugai Pharmaceutical Co., Daiichi-Sankyo, Inc.,Eisai Co., Ltd., Kissei.Pharmaceutical Co., Ltd., Mitsubishi Tanabe Pharma Co., Nippon Kayaku Co., Ltd., Sekiui Medical, Shionogi & Co., Ltd., Taisho Pharmaceutical Co., Ltd., Takeda Pharmaceutical Co., Ltd., Teijin.Pharma Ltd., Rangi Kandane-Rathnayake: None declared, Worawit Louthrenoo: None declared, Alberta Hoi Speakers bureau: UCB, Janssen, Sandoz, Eli Lilly, Consultant of: Abbvie, GSK, Grant/research support from: AstraZeneca, GSK, BMS, Janssen, Merck Serono, Vera Golder: None declared, C.S. Lau Speakers bureau: AstraZeneca UK Ltd., Consultant of: AstraZeneca Pharmaceuticals LP, Jiacai Cho: None declared, Aisha Lateef: None declared, Yi-Hsing Chen: None declared, Shue Fen Luo: None declared, Yeong-Jian Jan Wu: None declared, Laniyati Hamijoyo: None declared, Zhanguo Li Consultant of: Pfizer, Roche, Janssen, Abbott, AbbVie, Bristol Myers Squibb, MSD, Celgene, Eli Lilly, GSK, Novartis, UCB Pharma, Grant/research support from: Pfizer, Roche, Janssen, Abbott, AbbVie, Bristol Myers Squibb, MSD, Celgene, Eli Lilly, GSK, Novartis, UCB Pharma, Sargunan Sockalingam Consultant of: Pfizer, AstraZeneca, ZP Therapeutics, Grant/research support from: Pfizer, AstraZeneca, ZP Therapeutics, Sandra Navarra Consultant of: Biogen, Boehringer Ingelheim, Astra Zeneca, Grant/research support from: Jannsen, Novartis, Pfizer, Glaxo Smith Kline, Leonid Zamora: None declared, Yanjie Hao: None declared, Zhuoli Zhang: None declared, Madelynn Chan: None declared, Shereen Oon: None declared, Kristine Ng Consultant of: AbbVie, Jun Kikuchi: None declared, Tsutomu Takeuchi Consultant of: AbbVie, Chugai, Mitsubishi-Tanabe, Grant/research support from: AbbVie, Mitsubishi-Tanabe, Eli Lilly Japan, Fiona Goldblatt: None declared, Sean O’Neill: None declared, Nicola Tugnet: None declared, Annie Law: None declared, Sang-Cheol Bae: None declared, Yoshiya Tanaka Speakers bureau: Behringer-Ingelheim, Eli Lilly, Abbvie, Gilead, AstraZeneca, Bristol-Myers, Chugai, Daiichi-Sankyo, Eisai, Pfizer, Mitsubishi-Tanabe, GlaxoSmithKline, Grant/research support from: Asahi-Kasei, Abbvie, Chugai, Eisai, Takeda, Daiichi-Sankyo, Behringer-Ingelheim, Naoaki Ohkubo: None declared, Sunil Kumar: None declared, Mandana Nikpour Speakers bureau: Actelion, GSK, Janssen, Pfizer, UCB, Paid instructor for: UCB, Consultant of: Boehringer Ingelheim, Certa Therapeutics, Eli.Lilly, GSK, Janssen, Pfizer, UCB, Grant/research support from: Actelion, Astra Zeneca, BMS, GSK, Janssen, UCB, Eric F. Morand Speakers bureau: AstraZeneca, EMD Serono, Gilead, Consultant of: AstraZeneca, BristolMyersSquibb, Biogen, Eli Lilly, EMD Serono, Novartis, Grant/research support from: AbbVie, Amgen, AstraZeneca, BristolMyersSquibb, Biogen, Eli Lilly, EMD Serono, Genentech, GSK, Janssen, UCB.
APA, Harvard, Vancouver, ISO, and other styles
18

Shayan, Hossein Khalili, Javad Farhoudi, and Alireza Vatankhah. "Flow condition identification and discharge calibration for submerged radial gatesBy YONG-XIN GUO, XIN-LEI GUO, YI-SEN WANG, TAO WANG, HUI FU and JIA-ZHEN LI, J. Hydraulic Res. 59(4), 2021, 683–690 https://doi.org.10.1080/00221686.2020.1818305." Journal of Hydraulic Research, November 15, 2022, 1–3. http://dx.doi.org/10.1080/00221686.2022.2106592.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Boileau, Gilles. "Shang dynasty's “nine generations chaos” and the reign of Wu Ding: towards a unilineal line of transmission of royal power." Bulletin of the School of Oriental and African Studies, August 17, 2023, 1–23. http://dx.doi.org/10.1017/s0041977x23000277.

Full text
Abstract:
Abstract This article explores the political crisis before Wu Ding. The accession of king Wu Ding to the throne was not a given but the result of a political move by his father Xiao Yi. It must be seen as one of the consequences of an earlier political crisis named the “nine generations chaos” by Sima Qian, during which an attempt to share royal power between two royal lines finally collapsed and led to a move by Pan Geng to a new capital. This new city has recently been discovered north of the Huai river. The political crisis of the time led Shang kings to try to implement a unilineal system of succession. Other steps, ritual in particular, were involved after the reign of the king Zu Jia, one of the reigning sons of Wu Ding, in order to ensure the primacy of the unilineal system of royal succession.
APA, Harvard, Vancouver, ISO, and other styles
20

Wang, Zhe, Yi-Xuan Zhang, Jun-Zhuo Shi, Chen-Chen Wang, Meng-Qi Zhang, Yi Yan, Yan-Ran Wang, et al. "The Mechanism of Triacetyl Andrographolide in Inhibiting Proliferation of Pulmonary Artery Smooth Muscle Cells." International Journal of Drug Discovery and Pharmacology, September 28, 2023, 105–16. http://dx.doi.org/10.53941/ijddp.2023.100009.

Full text
Abstract:
Article The Mechanism of Triacetyl Andrographolide in Inhibiting Proliferation of Pulmonary Artery Smooth Muscle Cells Zhe Wang 1,#, Yi-Xuan Zhang 2,#, Jun-Zhuo Shi 1,#, Chen-Chen Wang 1, Meng-Qi Zhang 1, Yi Yan 3, Yan-Ran Wang 1, Lu-Ling Zhao 1, Jie-Jian Kou 4, Qing-Hui Zhao 5, Xin-Mei Xie 1, Yang-Yang He 1,2, Jun-Ke Song 6,*, Guang Han 1,7,*, and Xiao-Bin Pang 1,2,* 1 School of Pharmacy, Henan University, Kaifeng 475004, China 2 Department of Anesthesiology, Huaihe Hospital of Henan University, Kaifeng 475004, China 3 Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200217, China 4 Department of Pharmacy, Huaihe Hospital of Henan University, Kaifeng 475004, China 5 Institute of Physical Culture, Huanghuai University, Zhumadian 463000, China 6 Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China 7 Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Kaifeng 475004, China. * Correspondence: smilejunke@imm.ac.cn (Jun-Ke Song); hang@henu.edu.cn ( Guang Han); pxb@vip.henu.edu.cn ( Xiao-Bin Pang) Received: 17 April 2023 Accepted: 27 July 2023 Abstract: This study examines the impact of triacetyl-diacyllactone (ADA) on the proliferation and migration of pulmonary artery smooth muscle cells (PASMCs) and elucidates its underlying mechanism. PASMCs derived from SD rats were cultured in vitro and randomly divided into four groups: control group, administration group, model group, and model administration group. The appropriate concentration of ADA for intervention was determined using the MTT assay. The proliferation ability of PASMCs in each group was assessed using the EdU assay. The migration ability of PASMCs in each group was evaluated using the Scratch wound healing assay and Transwell assay. Western blot analysis was performed to determine the protein expression levels of BMPR2, PCNA, and TGF-β1, as well as the phosphorylation levels of SMAD1 and SMAD2/3 in PASMCs from each group. Results show that at a concentration of 5 µmol/L, ADA did not impact the cell activity of PASMCs and instead exerted inhibitory effects on both the proliferation and migration of PASMCs induced by PDGF-BB. PDGF-BB was found to upregulate the expression levels of PCNA and TGF-β1, while downregulating the expression of BMPR2. Furthermore, PDGF-BB led to enhanced protein phosphorylation of SMAD1 and SMAD2/3. However, following ADA intervention, the expression levels of PCNA and TGF-β1 decreased, while the expression of BMPR2 increased. Additionally, protein phosphorylation of SMAD1 and SMAD2/3 decreased. Therefore, ADA can hinder the proliferation and migration of PASMCs induced by PDGF-BB, as well as suppress the upregulation of PCNA and TGF-β1 caused by PDGF-BB. Furthermore, the downregulation of BMPR2 may be associated with the inhibition of SMAD1 and SMAD2/3 signaling pathways.
APA, Harvard, Vancouver, ISO, and other styles
21

Anh, Duong Hong, Vu Minh Tuan, Van Thi Thanh Huyen, Nguyen Manh Huy, and Nguyen Thanh Dam. "Determination of 10-Hydroxy-2-Decenoic Acid Content – a Marker in Several Commercial Royal Jelly Products Collected in Vietnam." VNU Journal of Science: Natural Sciences and Technology 35, no. 4 (December 23, 2019). http://dx.doi.org/10.25073/2588-1140/vnunst.4964.

Full text
Abstract:
The optimized capillary electrophoresis (CE) was applied to separate and detect the 10-hydroxy-2-decenoic acid (10-HAD) in royal jelly products. The method only requires that the sample solution need to be centrifuged and filtered before analyzed by the home-made capillary electrophoresis system. Firstly, 10-HDA was separated in a fused silica column with a diameter of 50 um using 20 mM Tris/Acetic buffer (pH 8.5) as a background electrolyte and a separation voltage of -17kV. Then, 10-HDA was detected by capacitively coupled contactless conductivity detection (C4D) with the migration time less than 8 minutes. Nine commercial products of royal jelly with Vietnamese and imported origin including pure royal jelly cream, lyophilized royal jelly (powder and gel) and honey with royal jelly were collected for analysis. The results of this study showed that content of 10-HDA were detected in the range of 0.5 mg/g to 23.1 mg/g. Using paired t test showed that the difference between results obtained from CE-C4D method and from HPLC method as a reference method was not statistically significant. Keywords: 10-HDA, royal jelly products, CE-C4D. References [1] M. Viuda Martos, Y. Ruiz Navajas, J. Fernández López, J.A. Pérez Álvarez, Functional properties of honey, propolis, and royal jelly”, Journal of food science 73 (2007) 117-124. https://doi:10.1111/j. 1750-3841.2008.00966.x.[2] M.F. Ramadan, A. Al-Ghamdi, Bioactive compounds and health-promoting properties of royal jelly: A review, Journal of Functional Foods 4 (2012) 39- 52. https://doi.org/10.1016/j.jff. 2011. 12.007.[3] Dimitrios Kanelis, Chrysoula Tananaki, Vasilis Liolios, Maria Dimou, Georgios Goras, Maria Anna Rodopoulou, Emmanuel Karazafris, and Andreas Thrasyvoulou, A suggestion for royal jelly specifcations, Archives of Industrial Hygiene and Toxicology 66 (2015) 275-284. Https://doi: 10.1515/aiht-2015-66-2651.[4] Brazil Ministério Da Agricultura e Do Abaste Imento. Secretaria De Defesa Agropecuária. Instrução normativa nº3, de 19 de janeiro de 2001. Regulamento técnico para fxação de identidade e qualidade de geléia real, Regulamento técnico para fxação de identidade e qualidade de geléia real liofilizada. Http:// www.engetecno.com.br/port/ legislacao/mel_geleia_real.htm.[5] Mahmut Genc¸ Abdurrahman Aslan, Determination of trans-10-hydroxy-2-decenoic acid content in pure royal jelly and royal jelly products by column liquid chromatography, Journal of Chromatography A. 839 (1999) 265 – 268. Http://doi: 10.1016/s0021-9673(99)00151-x.[6] F. Ferioli, E. Armaforte, M.F. Caboni, Comparison of the Lipid Content, Fatty Acid Profile and Sterol Composition in Local Italian and Commercial Royal Jelly Samples” Journal of the American Oil Chemists' Society, 91(2014) 875-884. Http://doi. org/10.1007/s11746-014-2446-x.[7] J. Kim, J. Lee, Quantitative analysis of trans-10-hydroxy-2-decenoic acid in royal jelly products purchased in USA by high performance liquid chromatography”, Journal of Apicultural Science, 54 (2010) 77-85. Https://pdfs.semanticscholar. org/e85f/dfc1823d778a40c ca2eefa4be8ba4b4d98 6c.pdf.[8] C.I. Pavel, L.A. Mărghitaş, D.S. Dezmirean, L.I. Tomoş, V. Bonta, A. Şapcaliu, A. Buttstedt, Comparison between local and commercial royal jelly-use of antioxidant activity and 10-hydroxy-2-decenoic acid as quality parameter”, Journal of Apicultural Research 53 (2014) 116-123. https:// doi.org/10.3896/IBRA.1.53.1.12.[9] Mahmut Genc¸ Abdurrahman Aslan, Determination of trans-10-hydroxy-2-decenoic acid content in pure royal jelly and royal jelly products by column liquid chromatography, Journal of Chromatography A, 839 (1999) 265 – 268. Https://doi:10.1016/s0021-9673(99)00151-x.[10] Jinhui Zhou, Xiaofeng Xue, Yi Li, Jinzhen Zhang and Jing Zhao, Optimized determination method for trans-10-hydroxy-2-decenoic acid content in royal jelly by high-performance liquid chromatography with an internal standard, Journal of AOAC International, 90(2007) 244-249. https://www.ncbi.nlm.nih.gov/pubmed/17373456.[11] Federico Ferioli, Gian Luigi Marcazzan, Maria Fiorenza Caboni, Determination of (E)-10-hydroxy-2-decenoic acid content in pure royal jelly: A comparison between a new CZE method and HPLC”, J. Sep. Sci .30 (2007) 1061-1069. Http://doi:10.1002/jssc.200600416.[12] Orlando Muñoz, Susana Decap, Francisco Ruiz, José Arbildua, Octavio Monasterio, Determination of 10- hydroxy-2-decenoic acid in royal jelly by capillary electrophoresis, J. Chil. Chem. Soc., 56 (2010) 738-740. http://dx.doi.org/10.4067/S0717 97072011000300004.
APA, Harvard, Vancouver, ISO, and other styles
22

Van Nga, Vu, Le Thi Kim Anh, Dinh Thi My Dung, Nguyen Thi Binh Minh, Le Thi Diem Hong, and Vu Thi Thom. "Applying Logistic Regression to Predict Diabetic Nephropathy Based on Some Clinical and Paraclinical Characteristics of Type 2 Diabetic Patients." VNU Journal of Science: Medical and Pharmaceutical Sciences 37, no. 2 (June 28, 2021). http://dx.doi.org/10.25073/2588-1132/vnumps.4312.

Full text
Abstract:
Today, the incidence of type 2 diabetes mellitus is increasing rapidly on global. This disease is shown with many complications that significantly affect public health. One of them is kidney complications, which have a high incidence among diabetic patients in Vietnam (25.6-33.1%). Age, history of hypertension, and dyslipidemia are considered to be the main risk factors for diabetic nephropathy. Thus, early detection of these factors for kidney damage is significant for diagnosing, monitoring, treatment, and prognosis of diabetic patients. Our descriptive, cross-sectional study conducting on 120 diabetic patients at E Hospital has observed that blood cholesterol levels, HbA1c levels were independently related to eGFR decline below 60 mL/min/1.73m2. From those data, an equation to predict the risk of diabetic kidney disease was estimated as p = with k = Keyword: Type 2 diabetes, Diabetic nephropathy, Risk factor Today, the incidence of type 2 diabetes mellitus is increasing rapidly on global. This disease is shown with many complications that significantly affect public health. One of them is kidney complications, which have a high incidence among diabetic patients in Vietnam (25.6-33.1%). Age, history of hypertension, and dyslipidemia are considered to be the main risk factors for diabetic nephropathy. Thus, early detection of these factors for kidney damage is significant for diagnosing, monitoring, treatment, and prognosis of diabetic patients. Our descriptive, cross-sectional study conducting on 120 diabetic patients at E Hospital has observed that blood cholesterol levels, HbA1c levels were independently related to eGFR decline below 60 mL/min/1.73m2. From those data, an equation to predict the risk of diabetic kidney disease was estimated as p = with k = Keyword Type 2 diabetes, Diabetic nephropathy, Risk factor. References [1] N. H. Cho, J. Kirigia, J. C. Mnanya, K. Ogurstova, L. Guraiguata, W. Rathmann, G. Roglic, N. Forouhi, R. Dajani, A. Esteghmati, E. Boyko, L. Hambleton, O. L. M. Neto, P. A. Montoya, S. Joshi, J. Chan, J. Shaw, T.A. Samuels, M. Pavkov, A. Reja, IDF Diabetes Atlas Eight Edition, International Diabete Federation, England, 2017.[2] N. T. Khue, Diabetes – General Endocrinology, Ho Chi Minh Publisher, Ho Chi Minh city, 2003 (in Vietnamese). [3] H. H. Kiem, Clinical Nephrology, Medical Publishing House, Hanoi, 2010 (in Vietnamese). [4] T. H. Quang, Practice Diabetes - Endocrine Disease, Medical Publishing House Hanoi, Hanoi, 2010 (in Vietnamese). [5] D. T. M. Hao, T. T. A. Thu, Diabetic Kidney Disease: Attention Problems, Vietnam Journal of Diabetes and Endocrinology, Vol. 38, 2020, pp. 12-17 (in Vietnamese), https://doi.org/10.47122/vjde.2020.38.2. [6] K. Tziomalos, A. Vasilios G, Diabetic Nephropathy: New Risk Factors and Improvements in Diagnosis, The Review of Diabetic Studies: RDS, Vol. 12, No. 1-2, 2015, pp. 110-118, https://doi.org/10.1900/RDS.2015.12.110.[7] American Diabetes Association, 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2020, Journal Diabetes Care, Vol. 43, No. 1, 2020, pp. S14, https://doi.org/10.2337/dc20-S002.[8] A. S. Levey, J. Coresh, E. Balk, A. T. Kausz, A. Levin, M. W. Steffes, R. J. Hogg, R. D. Perrone, J. Lau, G. Eknoyan, National Kidney Foundation Practice Guidelines for Chronic Kidney Disease: Evaluation, Classification, and Stratification, Ann Intern Med, Vol. 139, 2003, pp. 137-147, https://doi.org/10.7326/0003-4819-139-2-200307150-00013.[9] D. S. Freedman, M. Horlick, G. S. Berenson, A Comparison of The Slaughter Skinfold-thickness Equations and BMI in Predicting Body Fatness and Cardiovascular Disease Risk Factor Levels in Children, The American Journal of Clinical Nutrition, Vol. 98, No. 6, 2013, pp. 1417-1424, https://doi.org/10.3945/ajcn.113.065961.[10] National Heart, Lung and Blood Institutes, National Cholesterol Education Program: ATP III Guidelines at-a-glance Quick Desk Reference, https://www.nhlbi.nih.gov/files/docs/guidelines/atglance.pdf, (accessed on: 5th April 2021).[11] K. Eckardt, B. Kasiske, D. Wheeler, K. Uhlig, D. Miskulin, A. Earley, S. Haynes, J. Lamont, KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease: Definition and Classification of CKD, Kidney International Supplements, Vol. 3, 2013, pp. 5-14, https://doi.org/10.1038/kisup.2012.77.[12] I. H. Boer, M. L. Caramori, J. C. N. Chan, H. J. L. Heerspink, C. Hurst, K. Khunti, A. Liew, E. D. Michos, S. D. navaneethan, P. Rossing, W. A. Olowu, T. Sadusky, N. Tandon, K. R. Tuttle, C. Wanner, K. G. Wilkens, S. Zoungas, KDIGO 2020 Clinical Practice Guideline for Diabetes Management in Chronic Kidney Disease, Kidney international, Vol. 98, No. 4S, 2020, pp. S1-S115, http://dx.doi.org/10.1016/j.kint.2020.06.019.[13] B. T. T. Huong, N. T. Giang, Values of Cystatin C in Early Diagnosis of Renal Disease in Patients with Typ 2 Diabetes in Thai Nguyen National Hospital, Vietnam Medical Journal, Vol. 498, No. 2, 2021, pp. 13-17 (in Vietnamese).[14] L. X. Truong, N. D. Tai, T. Q. P. Linh, T. T. Nhung, The Prevalence of The Positive Microalbumin Urine in The Type 2 Diabetic Patients at District 2 Hospital, Y Hoc TP. Ho Chi Minh, Vol. 22, No. 2, 2018, pp. 139-143 (in Vietnamese).[15] S. Yi, S. Park, Y. Lee, H Park, B. Balkau, J. Yi, Association Between Fasting Glucose and All-cause Mortality According to Sex and Age: A Prospective Cohort Study, Scientific Reports, Vol. 7, No. 1, 2017, pp. 1-9, https://doi.org/10.1038/s41598-017-08498-6.[16] R. Gupta, M. Sharma, N. K. Goyal, P. S. Lodha, K. K. Sharma, Gender Differences in 7 Years Trends in Cholesterol Lipoproteins and Lipids in India: Insights From A Hospital Database, Indian Journal of Endocrinology Metabolism, Vol. 20, No. 2, 2016, pp. 211-8, https://doi.org/10.4103/2230-8210.176362.[17] X. Zhang, Z. Meng, X. Li, M. Liu, X. Ren, M. Zhu, Q. He, Q Zhang, K. Song, Q. Jia, C. Zhang, X Wang, X. Liu, The Association Between Total Bilirubin and Serum Triglyceride in Both Sexes in Chinese, Lipids In Health and Disease, Vol. 17, No. 1, 2017, pp. 1-8, https://doi.org/10.1186/s12944-018-0857-7.[18] S. Palazhy, V. Viswanathan, Lipid Abnormalities in Type 2 Diabetes Mellitus Patients with Overt Nephropathy, Diabetes Metabolism Journal, Vol. 41, No. 2, 2017, pp. 128-134, https://doi.org/ 10.4093/dmj.2017.41.2.128.[19] R. I. Papacocea, D. Timofte, M. Tanasescu, A. Balcangiu stroescu, D. G. Balan, A. Tulin, O. Stiru, I. A. Vacaroiu, A. Mihai, C. C. Popa, C. Cosconel, M. Enyedi, D. Miricescu, L. Raducu, D. Ionescu, Kidney Aging Process and The Management of The Elderly Patient with Renal Impairment, Experimental and Therapeutic Medicine, Vol. 21, 2021, pp. 266, https://doi.org/10.3892/etm.2021.9697.[20] R. D. Lindeman, Overview: Renal Physiology and Pathophysiology of Aging, Am J Kidney Dis, Vol. 16, 1990, pp. 275–282, https://doi.org/10.1016/s0272-6386(12)80002-3.[21] G. Zoppini, G. Targher, M. Chonchol, V. Ortalda, C. Negri, V. Stoicio, E. Bonora, Predictors of Estimated GFR Decline in Patients With Type 2 Diabetes and Preserved Kidney Function, Clinical Journal of the American Society of Nephrology, Vol. 7, No. 3, 2012, pp. 401-408, https://doi.org/10.2215/CJN.07650711.[22] R. Trevisan, A. R. Dodesini, G. Lepore, Lipids and Renal Disease, Journal of the American Society of Nephrology, Vol. 17, No. 2-4, 2006, pp. S145-S147. https://doi.org/10.1681/ASN.2005121320.[23] V. T. Samuel, G. I. Shulman, Mechanisms for Insulin Resistance: Common Threads and Missing Links, Cell, Vol. 148, No. 5, 2012, pp. 852-871, https://doi.org/10.1016/j.cell.2012.02.017.[24] W. Patricia, D. Gloria Michelle, F. Alessia, Systemic and Renal Lipids in Kidney Disease Development and Progression, American Journal of Physiology-Renal Physiology, Vol. 310, No. 6, 2016, pp. F433-F445, https://doi.org/ 10.1152/ajprenal.00375.2015.[25] F. M. Sacks, M. P. Hermans, P. Fioretto, P. Valensi, T. Davis, E. Horton, C. Wanner, K. A. Rubeaan, I. Barzon, L. Bishop, E. Bonora, P. Bunnag, L. Chuang, C. Deerochanawong, R. Goldenberg, B. Harshfiled, C. Hernandez, S. H. Botein, H. Itoh, W. Jia, Y. Jiang, T. Kadowaki, N. Laranjo, L. Leiter, T. Miwwa, M. Odawara, K. Ohashi, A. Ohno, C. Pan, J. Pan, J. P. Botet, Z. Reiner, C. M. Rotella, R. Simo, M. Tanaka, E. T. Reiner, D. T. Barima, G. Zoppini, V. J. Carey, Association between Plasma Triglycerides and High-density Lipoprotein Cholesterol and Microvascular Kidney Disease and Retinopathy in Type 2 Diabetes Mellitus: A Global Case–control Study In 13 Countries, Circulation. Vol. 129, No. 9, 2014, pp. 999-1008, https://doi.org/10.1161/CIRCULATIONAHA.113.002529.[26] Y. Wang, X. Qiu, L. Lv, C. Wang, Z. Ye, S. Li, Q. Liu, T. Lou, X. Liu, Correlation Between Serum Lipid Levels and Measured Glomerular Filtration Rate In Chinese Patients With Chronic Kidney Disease, PLoS One, Vol. 11, No. 10, 2016, pp. e0163767, https://doi.org/10.1371/journal.pone.0163767.[27] N. J. Radcliffe, J. Seah, M. Clarke, R. J. Maclsaac, G. Jerrums, E. I. Ekinci, Clinical Predictive Factors in Diabetic Kidney Disease Progression, Journal of Diabetes Investigation, Vol. 8, No. 1, 2017, pp. 6-18, https://doi.org/10.1111/jdi.12533.[28] D. D. Miao, E. C. Pan, Q. Zhang, Z. M. Sun, Y. Qin, M. Wu, Development and Validation of A Model for Predicting Diabetic Nephropathy in Chinese People, Biomedical and Environmental Sciences, Vol. 30, No. 2, 2017, pp. 106-112, https://doi.org/10.3967/bes2017.014.[29] R. G. Nelson, M. E. Grams, S. H. Ballew, Y. Sang, F. Azizi, S. J. Chadban, L. Chaker, S. C. Dunning, C. Fox, Y. Hirakawa, K. Iseki, J. Ix, T. H. Jafar, A. Kottgen, D. M. J. Naimark, T. Ohjubo, G. J. Prescott, C. M. Bebholz, C. Sabanayagam, T. Sairenchi, B. Schottker, Y. Shibagaki, M. Tonelli, L. Zhang, R. T. Gansevoort, K. Matsushita, M. Woodward, J. Coresh, V. Shalev, Development of Risk Prediction Equations For Incident Chronic Kidney Disease, Jama, Vol. 322, No. 21, 2019, pp. 2104-2114, https://doi.org/10.1001/jama.2019.17379.
APA, Harvard, Vancouver, ISO, and other styles
23

Thanh Huyen, Le, Dao Sy Duc, Nguyen Xuan Hoan, Nguyen Huu Tho, and Nguyen Xuan Viet. "Synthesis of Fe3O4-Reduced Graphene Oxide Modified Tissue-Paper and Application in the Treatment of Methylene Blue." VNU Journal of Science: Natural Sciences and Technology 35, no. 3 (September 20, 2019). http://dx.doi.org/10.25073/2588-1140/vnunst.4883.

Full text
Abstract:
Graphene-based composites have received a great deal of attention in recent year because the presence of graphene can enhance the conductivity, strength of bulk materials and help create composites with superior qualities. Moreover, the incorporation of metal oxide nanoparticles such as Fe3O4 can improve the catalytic efficiency of composite material. In this work, we have synthesized a composite material with the combination of reduced graphene oxide (rGO), and Fe3O4 modified tissue-paper (mGO-PP) via a simple hydrothermal method, which improved the removal efficiency of the of methylene blue (MB) in water. MB blue is used as the model of contaminant to evaluate the catalytic efficiency of synthesized material by using a Fenton-like reaction. The obtained materials were characterized by SEM, XRD. The removal of materials with methylene blue is investigated by UV-VIS spectroscopy, and the result shows that mGO-PP composite is the potential composite for the color removed which has the removal efficiency reaching 65% in acetate buffer pH = 3 with the optimal time is 7 h. Keywords Graphene-based composite, methylene blue, Fenton-like reaction. References [1] Ma Joshi, Rue Bansal, Reng Purwar, Colour removal from textile effluents, Indian Journal of Fibre & Textile Research, 29 (2004) 239-259 http://nopr.niscair.res.in/handle/123456789/24631.[2] Kannan Nagar, Sundaram Mariappan, Kinetics and mechanism of removal of methylene blue by adsorption on various carbons-a comparative study, Dyes and pigments, 51 (2001) 25-40 https://doi.org/10.1016/S0143-7208(01)00056-0.[3] K Rastogi, J. N Sahu, B. C Meikap, M. N Biswas, Removal of methylene blue from wastewater using fly ash as an adsorbent by hydrocyclone, Journal of hazardous materials, 158 (2008) 531-540.https://doi.org/10.1016/j.jhazmat.2008.01. 105.[4] Qin Qingdong, Ma Jun, Liu Ke, Adsorption of anionic dyes on ammonium-functionalized MCM-41, Journal of Hazardous Materials, 162 (2009) 133-139 https://doi.org/10.1016/j.jhazmat. 2008.05.016.[5] Mui Muruganandham, Rps Suri, Sh Jafari, Mao Sillanpää, Lee Gang-Juan, Jaj Wu, Muo Swaminathan, Recent developments in homogeneous advanced oxidation processes for water and wastewater treatment, International Journal of Photoenergy, 2014 (2014). http://dx. doi.org/10.1155/2014/821674.[6] Herney Ramirez, Vicente Miguel , Madeira Luis Heterogeneous photo-Fenton oxidation with pillared clay-based catalysts for wastewater treatment: a review, Applied Catalysis B: Environmental, 98 (2010) 10-26 https://doi.org/ 10.1016/j.apcatb.2010.05.004.[7] Guo Rong, Jiao Tifeng, Li Ruifei, Chen Yan, Guo Wanchun, Zhang Lexin, Zhou Jingxin, Zhang Qingrui, Peng Qiuming, Sandwiched Fe3O4/carboxylate graphene oxide nanostructures constructed by layer-by-layer assembly for highly efficient and magnetically recyclable dye removal, ACS Sustainable Chemistry & Engineering, 6 (2017) 1279-1288 https://doi.org/10.1021/acssuschemeng.7b03635.[8] Sun Chao, Yang Sheng-Tao, Gao Zhenjie, Yang Shengnan, Yilihamu Ailimire, Ma Qiang, Zhao Ru-Song, Xue Fumin, Fe3O4/TiO2/reduced graphene oxide composites as highly efficient Fenton-like catalyst for the decoloration of methylene blue, Materials Chemistry and Physics, 223 (2019) 751-757 https://doi.org/ 10.1016/j.matchemphys.2018.11.056.[9] Guo Hui, Ma Xinfeng, Wang Chubei, Zhou Jianwei, Huang Jianxin, Wang Zijin, Sulfhydryl-Functionalized Reduced Graphene Oxide and Adsorption of Methylene Blue, Environmental Engineering Science, 36 (2019) 81-89 https://doi. org/10.1089/ees.2018.0157.[10] Zhao Lianqin, Yang Sheng-Tao, Feng Shicheng, Ma Qiang, Peng Xiaoling, Wu Deyi, Preparation and application of carboxylated graphene oxide sponge in dye removal, International journal of environmental research and public health, 14 (2017) 1301 https://doi.org/10.3390/ijerph14111301.[11] Yu Dandan, Wang Hua, Yang Jie, Niu Zhiqiang, Lu Huiting, Yang Yun, Cheng Liwei, Guo Lin, Dye wastewater cleanup by graphene composite paper for tailorable supercapacitors, ACS applied materials & interfaces, 9 (2017) 21298-21306 https://doi.org/10.1021/acsami.7b05318.[12] Wang Hou, Yuan Xingzhong, Wu Yan, Huang Huajun, Peng Xin, Zeng Guangming, Zhong Hua, Liang Jie, Ren MiaoMiao, Graphene-based materials: fabrication, characterization and application for the decontamination of wastewater and wastegas and hydrogen storage/generation, Advances in Colloid and Interface Science, 195 (2013) 19-40 https://doi. org/10.1016/j.cis.2013.03.009.[13] Marcano Daniela C, Kosynkin Dmitry V, Berlin Jacob M, Sinitskii Alexander, Sun Zhengzong, Slesarev Alexander, Alemany Lawrence B, Lu Wei, Tour James M, Improved synthesis of graphene oxide, ACS nano, 4 (2010) 4806-4814 https://doi.org/10.1021/nn1006368.[14] Zhang Jiali, Yang Haijun, Shen Guangxia, Cheng Ping, Zhang Jingyan, Guo Shouwu, Reduction of graphene oxide via L-ascorbic acid, Chemical Communications, 46 (2010) 1112-1114 http://doi. org/10.1039/B917705A [15] Gong Ming, Zhou Wu, Tsai Mon-Che, Zhou Jigang, Guan Mingyun, Lin Meng-Chang, Zhang Bo, Hu Yongfeng, Wang Di-Yan, Yang Jiang, Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis, Nature communications, 5 (2014) 4695 https:// doi.org/10.1038/ncomms5695.[16] Wu Zhong-Shuai, Yang Shubin, Sun Yi, Parvez Khaled, Feng Xinliang, Müllen Klaus, 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction, Journal of the American Chemical Society, 134 (2012) 9082-9085 https://doi.org/10.1021/ja3030565.[17] Nguyen Son Truong, Nguyen Hoa Tien, Rinaldi Ali, Nguyen Nam Van, Fan Zeng, Duong Hai Minh, Morphology control and thermal stability of binderless-graphene aerogels from graphite for energy storage applications, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 414 (2012) 352-358 https://doi.org/ 10.1016/j.colsurfa.2012.08.048.[18] Deng Yang, Englehardt James D, Treatment of landfill leachate by the Fenton process, Water research, 40 (2006) 3683-3694 https://doi.org/ 10.1016/j.watres.2006.08.009.
APA, Harvard, Vancouver, ISO, and other styles
24

Kuang, Lanlan. "Staging the Silk Road Journey Abroad: The Case of Dunhuang Performative Arts." M/C Journal 19, no. 5 (October 13, 2016). http://dx.doi.org/10.5204/mcj.1155.

Full text
Abstract:
The curtain rose. The howling of desert wind filled the performance hall in the Shanghai Grand Theatre. Into the center stage, where a scenic construction of a mountain cliff and a desert landscape was dimly lit, entered the character of the Daoist priest Wang Yuanlu (1849–1931), performed by Chen Yizong. Dressed in a worn and dusty outfit of dark blue cotton, characteristic of Daoist priests, Wang began to sweep the floor. After a few moments, he discovered a hidden chambre sealed inside one of the rock sanctuaries carved into the cliff.Signaled by the quick, crystalline, stirring wave of sound from the chimes, a melodious Chinese ocarina solo joined in slowly from the background. Astonished by thousands of Buddhist sūtra scrolls, wall paintings, and sculptures he had just accidentally discovered in the caves, Priest Wang set his broom aside and began to examine these treasures. Dawn had not yet arrived, and the desert sky was pitch-black. Priest Wang held his oil lamp high, strode rhythmically in excitement, sat crossed-legged in a meditative pose, and unfolded a scroll. The sound of the ocarina became fuller and richer and the texture of the music more complex, as several other instruments joined in.Below is the opening scene of the award-winning, theatrical dance-drama Dunhuang, My Dreamland, created by China’s state-sponsored Lanzhou Song and Dance Theatre in 2000. Figure 1a: Poster Side A of Dunhuang, My Dreamland Figure 1b: Poster Side B of Dunhuang, My DreamlandThe scene locates the dance-drama in the rock sanctuaries that today are known as the Dunhuang Mogao Caves, housing Buddhist art accumulated over a period of a thousand years, one of the best well-known UNESCO heritages on the Silk Road. Historically a frontier metropolis, Dunhuang was a strategic site along the Silk Road in northwestern China, a crossroads of trade, and a locus for religious, cultural, and intellectual influences since the Han dynasty (206 B.C.E.–220 C.E.). Travellers, especially Buddhist monks from India and central Asia, passing through Dunhuang on their way to Chang’an (present day Xi’an), China’s ancient capital, would stop to meditate in the Mogao Caves and consult manuscripts in the monastery's library. At the same time, Chinese pilgrims would travel by foot from China through central Asia to Pakistan, India, Nepal, Bangladesh, and Sri Lanka, playing a key role in the exchanges between ancient China and the outside world. Travellers from China would stop to acquire provisions at Dunhuang before crossing the Gobi Desert to continue on their long journey abroad. Figure 2: Dunhuang Mogao CavesThis article approaches the idea of “abroad” by examining the present-day imagination of journeys along the Silk Road—specifically, staged performances of the various Silk Road journey-themed dance-dramas sponsored by the Chinese state for enhancing its cultural and foreign policies since the 1970s (Kuang).As ethnomusicologists have demonstrated, musicians, choreographers, and playwrights often utilise historical materials in their performances to construct connections between the past and the present (Bohlman; Herzfeld; Lam; Rees; Shelemay; Tuohy; Wade; Yung: Rawski; Watson). The ancient Silk Road, which linked the Mediterranean coast with central China and beyond, via oasis towns such as Samarkand, has long been associated with the concept of “journeying abroad.” Journeys to distant, foreign lands and encounters of unknown, mysterious cultures along the Silk Road have been documented in historical records, such as A Record of Buddhist Kingdoms (Faxian) and The Great Tang Records on the Western Regions (Xuanzang), and illustrated in classical literature, such as The Travels of Marco Polo (Polo) and the 16th century Chinese novel Journey to the West (Wu). These journeys—coming and going from multiple directions and to different destinations—have inspired contemporary staged performance for audiences around the globe.Home and Abroad: Dunhuang and the Silk RoadDunhuang, My Dreamland (2000), the contemporary dance-drama, staged the journey of a young pilgrim painter travelling from Chang’an to a land of the unfamiliar and beyond borders, in search for the arts that have inspired him. Figure 3: A scene from Dunhuang, My Dreamland showing the young pilgrim painter in the Gobi Desert on the ancient Silk RoadFar from his home, he ended his journey in Dunhuang, historically considered the northwestern periphery of China, well beyond Yangguan and Yumenguan, the bordering passes that separate China and foreign lands. Later scenes in Dunhuang, My Dreamland, portrayed through multiethnic music and dances, the dynamic interactions among merchants, cultural and religious envoys, warriors, and politicians that were making their own journey from abroad to China. The theatrical dance-drama presents a historically inspired, re-imagined vision of both “home” and “abroad” to its audiences as they watch the young painter travel along the Silk Road, across the Gobi Desert, arriving at his own ideal, artistic “homeland”, the Dunhuang Mogao Caves. Since his journey is ultimately a spiritual one, the conceptualisation of travelling “abroad” could also be perceived as “a journey home.”Staged more than four hundred times since it premiered in Beijing in April 2000, Dunhuang, My Dreamland is one of the top ten titles in China’s National Stage Project and one of the most successful theatrical dance-dramas ever produced in China. With revenue of more than thirty million renminbi (RMB), it ranks as the most profitable theatrical dance-drama ever produced in China, with a preproduction cost of six million RMB. The production team receives financial support from China’s Ministry of Culture for its “distinctive ethnic features,” and its “aim to promote traditional Chinese culture,” according to Xu Rong, an official in the Cultural Industry Department of the Ministry. Labeled an outstanding dance-drama of the Chinese nation, it aims to present domestic and international audiences with a vision of China as a historically multifaceted and cosmopolitan nation that has been in close contact with the outside world through the ancient Silk Road. Its production company has been on tour in selected cities throughout China and in countries abroad, including Austria, Spain, and France, literarily making the young pilgrim painter’s “journey along the Silk Road” a new journey abroad, off stage and in reality.Dunhuang, My Dreamland was not the first, nor is it the last, staged performances that portrays the Chinese re-imagination of “journeying abroad” along the ancient Silk Road. It was created as one of many versions of Dunhuang bihua yuewu, a genre of music, dance, and dramatic performances created in the early twentieth century and based primarily on artifacts excavated from the Mogao Caves (Kuang). “The Mogao Caves are the greatest repository of early Chinese art,” states Mimi Gates, who works to increase public awareness of the UNESCO site and raise funds toward its conservation. “Located on the Chinese end of the Silk Road, it also is the place where many cultures of the world intersected with one another, so you have Greek and Roman, Persian and Middle Eastern, Indian and Chinese cultures, all interacting. Given the nature of our world today, it is all very relevant” (Pollack). As an expressive art form, this genre has been thriving since the late 1970s contributing to the global imagination of China’s “Silk Road journeys abroad” long before Dunhuang, My Dreamland achieved its domestic and international fame. For instance, in 2004, The Thousand-Handed and Thousand-Eyed Avalokiteśvara—one of the most representative (and well-known) Dunhuang bihua yuewu programs—was staged as a part of the cultural program during the Paralympic Games in Athens, Greece. This performance, as well as other Dunhuang bihua yuewu dance programs was the perfect embodiment of a foreign religion that arrived in China from abroad and became Sinicized (Kuang). Figure 4: Mural from Dunhuang Mogao Cave No. 45A Brief History of Staging the Silk Road JourneysThe staging of the Silk Road journeys abroad began in the late 1970s. Historically, the Silk Road signifies a multiethnic, cosmopolitan frontier, which underwent incessant conflicts between Chinese sovereigns and nomadic peoples (as well as between other groups), but was strongly imbued with the customs and institutions of central China (Duan, Mair, Shi, Sima). In the twentieth century, when China was no longer an empire, but had become what the early 20th-century reformer Liang Qichao (1873–1929) called “a nation among nations,” the long history of the Silk Road and the colourful, legendary journeys abroad became instrumental in the formation of a modern Chinese nation of unified diversity rooted in an ancient cosmopolitan past. The staged Silk Road theme dance-dramas thus participate in this formation of the Chinese imagination of “nation” and “abroad,” as they aestheticise Chinese history and geography. History and geography—aspects commonly considered constituents of a nation as well as our conceptualisations of “abroad”—are “invariably aestheticized to a certain degree” (Bakhtin 208). Diverse historical and cultural elements from along the Silk Road come together in this performance genre, which can be considered the most representative of various possible stagings of the history and culture of the Silk Road journeys.In 1979, the Chinese state officials in Gansu Province commissioned the benchmark dance-drama Rain of Flowers along the Silk Road, a spectacular theatrical dance-drama praising the pure and noble friendship which existed between the peoples of China and other countries in the Tang dynasty (618-907 C.E.). While its plot also revolves around the Dunhuang Caves and the life of a painter, staged at one of the most critical turning points in modern Chinese history, the work as a whole aims to present the state’s intention of re-establishing diplomatic ties with the outside world after the Cultural Revolution. Unlike Dunhuang, My Dreamland, it presents a nation’s journey abroad and home. To accomplish this goal, Rain of Flowers along the Silk Road introduces the fictional character Yunus, a wealthy Persian merchant who provides the audiences a vision of the historical figure of Peroz III, the last Sassanian prince, who after the Arab conquest of Iran in 651 C.E., found refuge in China. By incorporating scenes of ethnic and folk dances, the drama then stages the journey of painter Zhang’s daughter Yingniang to Persia (present-day Iran) and later, Yunus’s journey abroad to the Tang dynasty imperial court as the Persian Empire’s envoy.Rain of Flowers along the Silk Road, since its debut at Beijing’s Great Hall of the People on the first of October 1979 and shortly after at the Theatre La Scala in Milan, has been staged in more than twenty countries and districts, including France, Italy, Japan, Thailand, Russia, Latvia, Hong Kong, Macao, Taiwan, and recently, in 2013, at the Lincoln Center for the Performing Arts in New York.“The Road”: Staging the Journey TodayWithin the contemporary context of global interdependencies, performing arts have been used as strategic devices for social mobilisation and as a means to represent and perform modern national histories and foreign policies (Davis, Rees, Tian, Tuohy, Wong, David Y. H. Wu). The Silk Road has been chosen as the basis for these state-sponsored, extravagantly produced, and internationally staged contemporary dance programs. In 2008, the welcoming ceremony and artistic presentation at the Olympic Games in Beijing featured twenty apsara dancers and a Dunhuang bihua yuewu dancer with long ribbons, whose body was suspended in mid-air on a rectangular LED extension held by hundreds of performers; on the giant LED screen was a depiction of the ancient Silk Road.In March 2013, Chinese president Xi Jinping introduced the initiatives “Silk Road Economic Belt” and “21st Century Maritime Silk Road” during his journeys abroad in Kazakhstan and Indonesia. These initiatives are now referred to as “One Belt, One Road.” The State Council lists in details the policies and implementation plans for this initiative on its official web page, www.gov.cn. In April 2013, the China Institute in New York launched a yearlong celebration, starting with "Dunhuang: Buddhist Art and the Gateway of the Silk Road" with a re-creation of one of the caves and a selection of artifacts from the site. In March 2015, the National Development and Reform Commission (NDRC), China’s top economic planning agency, released a new action plan outlining key details of the “One Belt, One Road” initiative. Xi Jinping has made the program a centrepiece of both his foreign and domestic economic policies. One of the central economic strategies is to promote cultural industry that could enhance trades along the Silk Road.Encouraged by the “One Belt, One Road” policies, in March 2016, The Silk Princess premiered in Xi’an and was staged at the National Centre for the Performing Arts in Beijing the following July. While Dunhuang, My Dreamland and Rain of Flowers along the Silk Road were inspired by the Buddhist art found in Dunhuang, The Silk Princess, based on a story about a princess bringing silk and silkworm-breeding skills to the western regions of China in the Tang Dynasty (618-907) has a different historical origin. The princess's story was portrayed in a woodblock from the Tang Dynasty discovered by Sir Marc Aurel Stein, a British archaeologist during his expedition to Xinjiang (now Xinjiang Uygur autonomous region) in the early 19th century, and in a temple mural discovered during a 2002 Chinese-Japanese expedition in the Dandanwulike region. Figure 5: Poster of The Silk PrincessIn January 2016, the Shannxi Provincial Song and Dance Troupe staged The Silk Road, a new theatrical dance-drama. Unlike Dunhuang, My Dreamland, the newly staged dance-drama “centers around the ‘road’ and the deepening relationship merchants and travellers developed with it as they traveled along its course,” said Director Yang Wei during an interview with the author. According to her, the show uses seven archetypes—a traveler, a guard, a messenger, and so on—to present the stories that took place along this historic route. Unbounded by specific space or time, each of these archetypes embodies the foreign-travel experience of a different group of individuals, in a manner that may well be related to the social actors of globalised culture and of transnationalism today. Figure 6: Poster of The Silk RoadConclusionAs seen in Rain of Flowers along the Silk Road and Dunhuang, My Dreamland, staging the processes of Silk Road journeys has become a way of connecting the Chinese imagination of “home” with the Chinese imagination of “abroad.” Staging a nation’s heritage abroad on contemporary stages invites a new imagination of homeland, borders, and transnationalism. Once aestheticised through staged performances, such as that of the Dunhuang bihua yuewu, the historical and topological landscape of Dunhuang becomes a performed narrative, embodying the national heritage.The staging of Silk Road journeys continues, and is being developed into various forms, from theatrical dance-drama to digital exhibitions such as the Smithsonian’s Pure Land: Inside the Mogao Grottes at Dunhuang (Stromberg) and the Getty’s Cave Temples of Dunhuang: Buddhist Art on China's Silk Road (Sivak and Hood). They are sociocultural phenomena that emerge through interactions and negotiations among multiple actors and institutions to envision and enact a Chinese imagination of “journeying abroad” from and to the country.ReferencesBakhtin, M.M. The Dialogic Imagination: Four Essays. Austin, Texas: University of Texas Press, 1982.Bohlman, Philip V. “World Music at the ‘End of History’.” Ethnomusicology 46 (2002): 1–32.Davis, Sara L.M. Song and Silence: Ethnic Revival on China’s Southwest Borders. New York: Columbia University Press, 2005.Duan, Wenjie. “The History of Conservation of Mogao Grottoes.” International Symposium on the Conservation and Restoration of Cultural Property: The Conservation of Dunhuang Mogao Grottoes and the Related Studies. Eds. Kuchitsu and Nobuaki. Tokyo: Tokyo National Research Institute of Cultural Properties, 1997. 1–8.Faxian. A Record of Buddhistic Kingdoms. Translated by James Legge. New York: Dover Publications, 1991.Herzfeld, Michael. Ours Once More: Folklore, Ideology, and the Making of Modern Greece. Austin: University of Texas Press, 1985.Kuang, Lanlan. Dunhuang bi hua yue wu: "Zhongguo jing guan" zai guo ji yu jing zhong de jian gou, chuan bo yu yi yi (Dunhuang Performing Arts: The Construction and Transmission of “China-scape” in the Global Context). Beijing: She hui ke xue wen xian chu ban she, 2016.Lam, Joseph S.C. State Sacrifice and Music in Ming China: Orthodoxy, Creativity and Expressiveness. New York: State University of New York Press, 1998.Mair, Victor. T’ang Transformation Texts: A Study of the Buddhist Contribution to the Rise of Vernacular Fiction and Drama in China. Cambridge, Mass.: Council on East Asian Studies, 1989.Pollack, Barbara. “China’s Desert Treasure.” ARTnews, December 2013. Sep. 2016 <http://www.artnews.com/2013/12/24/chinas-desert-treasure/>.Polo, Marco. The Travels of Marco Polo. Translated by Ronald Latham. Penguin Classics, 1958.Rees, Helen. Echoes of History: Naxi Music in Modern China. Oxford: Oxford University Press, 2000.Shelemay, Kay Kaufman. “‘Historical Ethnomusicology’: Reconstructing Falasha Liturgical History.” Ethnomusicology 24 (1980): 233–258.Shi, Weixiang. Dunhuang lishi yu mogaoku yishu yanjiu (Dunhuang History and Research on Mogao Grotto Art). Lanzhou: Gansu jiaoyu chubanshe, 2002.Sima, Guang 司马光 (1019–1086) et al., comps. Zizhi tongjian 资治通鉴 (Comprehensive Mirror for the Aid of Government). Beijing: Guji chubanshe, 1957.Sima, Qian 司马迁 (145-86? B.C.E.) et al., comps. Shiji: Dayuan liezhuan 史记: 大宛列传 (Record of the Grand Historian: The Collective Biographies of Dayuan). Beijing: Zhonghua shuju, 1959.Sivak, Alexandria and Amy Hood. “The Getty to Present: Cave Temples of Dunhuang: Buddhist Art on China’s Silk Road Organised in Collaboration with the Dunhuang Academy and the Dunhuang Foundation.” Getty Press Release. Sep. 2016 <http://news.getty.edu/press-materials/press-releases/cave-temples-dunhuang-buddhist-art-chinas-silk-road>.Stromberg, Joseph. “Video: Take a Virtual 3D Journey to Visit China's Caves of the Thousand Buddhas.” Smithsonian, December 2012. Sep. 2016 <http://www.smithsonianmag.com/smithsonian-institution/video-take-a-virtual-3d-journey-to-visit-chinas-caves-of-the-thousand-buddhas-150897910/?no-ist>.Tian, Qing. “Recent Trends in Buddhist Music Research in China.” British Journal of Ethnomusicology 3 (1994): 63–72.Tuohy, Sue M.C. “Imagining the Chinese Tradition: The Case of Hua’er Songs, Festivals, and Scholarship.” Ph.D. Dissertation. Indiana University, Bloomington, 1988.Wade, Bonnie C. Imaging Sound: An Ethnomusicological Study of Music, Art, and Culture in Mughal India. Chicago: University of Chicago Press, 1998.Wong, Isabel K.F. “From Reaction to Synthesis: Chinese Musicology in the Twentieth Century.” Comparative Musicology and Anthropology of Music: Essays on the History of Ethnomusicology. Eds. Bruno Nettl and Philip V. Bohlman. Chicago: University of Chicago Press, 1991. 37–55.Wu, Chengen. Journey to the West. Tranlsated by W.J.F. Jenner. Beijing: Foreign Languages Press, 2003.Wu, David Y.H. “Chinese National Dance and the Discourse of Nationalization in Chinese Anthropology.” The Making of Anthropology in East and Southeast Asia. Eds. Shinji Yamashita, Joseph Bosco, and J.S. Eades. New York: Berghahn, 2004. 198–207.Xuanzang. The Great Tang Dynasty Record of the Western Regions. Hamburg: Numata Center for Buddhist Translation & Research, 1997.Yung, Bell, Evelyn S. Rawski, and Rubie S. Watson, eds. Harmony and Counterpoint: Ritual Music in Chinese Context. Stanford: Stanford University Press, 1996.
APA, Harvard, Vancouver, ISO, and other styles
25

Thanh Binh, Nguyen Thi, Nguyen Thi Hai Yen, Dang Kim Thu, Nguyen Thanh Hai, and Bui Thanh Tung. "The Potential of Medicinal Plants and Bioactive Compounds in the Fight Against COVID-19." VNU Journal of Science: Medical and Pharmaceutical Sciences 37, no. 3 (September 14, 2021). http://dx.doi.org/10.25073/2588-1132/vnumps.4372.

Full text
Abstract:
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel coronavirus , is causing a serious worldwide COVID-19 pandemic. The emergence of strains with rapid spread and unpredictable changes is the cause of the increase in morbidity and mortality rates. A number of drugs as well as vaccines are currently being used to relieve symptoms, prevent and treat the disease caused by this virus. However, the number of approved drugs is still very limited due to their effectiveness and side effects. In such a situation, medicinal plants and bioactive compounds are considered a highly valuable source in the development of new antiviral drugs against SARS-CoV-2. This review summarizes medicinal plants and bioactive compounds that have been shown to act on molecular targets involved in the infection and replication of SARS-CoV-2. Keywords: Medicinal plants, bioactive compounds, antivirus, SARS-CoV-2, COVID-19 References [1] R. Lu, X. Zhao, J. Li, P. Niu, B. Yang, H. Wu et al., Genomic Characterisation and Epidemiology of 2019, Novel Coronavirus: Implications for Virus Origins and Receptor Binding, The Lancet, Vol. 395, 2020, pp. 565-574, https://doi.org/10.1016/S0140-6736(20)30251-8.[2] World Health Organization, WHO Coronavirus (COVID-19) Dashboard, https://covid19.who.int, 2021 (accessed on: August 27, 2021).[3] H. Wang, P. Yang, K. Liu, F. Guo, Y. Zhang et al., SARS Coronavirus Entry into Host Cells Through a Novel Clathrin- and Caveolae-Independent Endocytic Pathway, Cell Research, Vol. 18, No. 2, 2008, pp. 290-301, https://doi.org/10.1038/cr.2008.15.[4] A. Zumla, J. F. W. Chan, E. I. Azhar, D. S. C. Hui, K. Y. Yuen., Coronaviruses-Drug Discovery and Therapeutic Options, Nature Reviews Drug Discovery, Vol. 15, 2016, pp. 327-347, https://doi.org/10.1038/nrd.2015.37.[5] A. Prasansuklab, A. Theerasri, P. Rangsinth, C. Sillapachaiyaporn, S. Chuchawankul, T. Tencomnao, Anti-COVID-19 Drug Candidates: A Review on Potential Biological Activities of Natural Products in the Management of New Coronavirus Infection, Journal of Traditional and Complementary Medicine, Vol. 11, 2021, pp. 144-157, https://doi.org/10.1016/j.jtcme.2020.12.001.[6] R. E. Ferner, J. K. Aronson, Chloroquine and Hydroxychloroquine in Covid-19, BMJ, Vol. 369, 2020, https://doi.org/10.1136/bmj.m1432[7] J. Remali, W. M. Aizat, A Review on Plant Bioactive Compounds and Their Modes of Action Against Coronavirus Infection, Frontiers in Pharmacology, Vol. 11, 2021, https://doi.org/10.3389/fphar.2020.589044.[8] Y. Chen, Q. Liu, D. Guo, Emerging Coronaviruses: Genome Structure, Replication, and Pathogenesis, Medical Virology, Vol. 92, 2020, pp. 418‐423. https://doi.org/10.1002/jmv.25681.[9] B. Benarba, A. Pandiella, Medicinal Plants as Sources of Active Molecules Against COVID-19, Frontiers in Pharmacology, Vol. 11, 2020, https://doi.org/10.3389/fphar.2020.01189.[10] N. T. Chien, P. V. Trung, N. N. Hanh, Isolation Tribulosin, a Spirostanol Saponin from Tribulus terrestris L, Can Tho University Journal of Science, Vol. 10, 2008, pp. 67-71 (in Vietnamese).[11] V. Q. Thang Study on Extracting Active Ingredient Protodioscin from Tribulus terrestris L.: Doctoral dissertation, VNU University of Science, 2018 (in Vietnamese).[12] Y. H. Song, D. W. Kim, M. J. C. Long, H. J. Yuk, Y. Wang, N. Zhuang et al., Papain-Like Protease (Plpro) Inhibitory Effects of Cinnamic Amides from Tribulus terrestris Fruits, Biological and Pharmaceutical Bulletin, Vol. 37, No. 6, 2014, pp. 1021-1028, https://doi.org/10.1248/bpb.b14-00026.[13] D. Dermawan, B. A. Prabowo, C. A. Rakhmadina, In Silico Study of Medicinal Plants with Cyclodextrin Inclusion Complex as The Potential Inhibitors Against SARS-Cov-2 Main Protease (Mpro) and Spike (S) Receptor, Informatics in Medicine Unlocked, Vol. 25, 2021, pp. 1-18, https://doi.org/10.1016/j.imu.2021.100645.[14] R. Dang, S. Gezici, Immunomodulatory Effects of Medicinal Plants and Natural Phytochemicals in Combating Covid-19, The 6th International Mediterranean Symposium on Medicinal and Aromatic Plants (MESMAP-6), Izmir, Selcuk (Ephesus), Turkey, 2020, pp. 12-13.[15] G. Jiangning, W. Xinchu, W. Hou, L. Qinghua, B. Kaishun, Antioxidants from a Chinese Medicinal Herb–Psoralea corylifolia L., Food Chemistry, Vol. 9, No. 2, 2005, pp. 287-292, https://doi.org/10.1016/j.foodchem.2004.04.029.[16] B. Ruan, L. Y. Kong, Y. Takaya, M. Niwa, Studies on The Chemical Constituents of Psoralea corylifolia L., Journal of Asian Natural Products Research, Vol. 9, No. 1, 2007, pp. 41-44, https://doi.org/10.1080/10286020500289618.[17] D. T. Loi, Vietnamese Medicinal Plants and Herbs, Medical Publishing House, Hanoi, 2013 (in Vietnamese).[18] S. Mazraedoost, G. Behbudi, S. M. Mousavi, S. A. Hashemi, Covid-19 Treatment by Plant Compounds, Advances in Applied NanoBio-Technologies, Vol. 2, No. 1, 2021, pp. 23-33, https://doi.org/10.47277/AANBT/2(1)33.[19] B. A. Origbemisoye, S. O. Bamidele, Immunomodulatory Foods and Functional Plants for COVID-19 Prevention: A Review, Asian Journal of Medical Principles and Clinical Practice, 2020, pp. 15-26, https://journalajmpcp.com/index.php/AJMPCP/article/view/30124[20] A. Mandal, A. K. Jha, B. Hazra, Plant Products as Inhibitors of Coronavirus 3CL Protease, Frontiers in Pharmacology, Vol. 12, 2021, pp. 1-16, https://doi.org/10.3389/fphar.2021.583387[21] N. H. Tung, V. D. Loi, B. T. Tung, L.Q. Hung, H. B. Tien et al., Triterpenen Ursan Frame Isolated from the Roots of Salvia Miltiorrhiza Bunge Growing in Vietnam, VNU Journal of Science: Medical and Pharmaceutical Sciences, Vol. 32, No. 2, 2016, pp. 58-62, https://js.vnu.edu.vn/MPS/article/view/3583 (in Vietnamese).[22] J. Y. Park, J. H. Kim, Y. M. Kim, H. J. Jeong, D. W. Kim, K. H. Park et al., Tanshinones as Selective and Slow-Binding Inhibitors for SARS-CoV Cysteine Proteases. Bioorganic and Medicinal Chemistry, Vol. 20, No. 19, 2012, pp. 5928-5935, https://doi.org/10.1016/j.bmc.2012.07.038.[23] F. Hamdani, N. Houari, Phytotherapy of Covid-19. A Study Based on a Survey in North Algeria, Phytotherapy, Vol. 18, No. 5, 2020, pp. 248-254, https://doi.org/10.3166/phyto-2020-0241.[24] P. T. L. Huong, N. T. Dinh, Chemical Composition And Antibacterial Activity of The Essential Oil From The Leaves of Regrowth Eucalyptus Collected from Viet Tri City, Phu Tho Province, Vietnam Journal of Science, Technology and Engineering, Vol. 18, No. 1, 2020, pp. 54-61 (in Vietnamese).[25] M. Asif, M. Saleem, M. Saadullah, H. S. Yaseen, R. Al Zarzour, COVID-19 and Therapy with Essential Oils Having Antiviral, Anti-Inflammatory, and Immunomodulatory Properties, Inflammopharmacology, Vol. 28, 2020, pp. 1153-1161, https://doi.org/10.1007/s10787-020-00744-0.[26] I. Jahan, O. Ahmet, Potentials of Plant-Based Substance to Inhabit and Probable Cure for The COVID-19, Turkish Journal of Biology, Vol. 44, No. SI-1, 2020, pp. 228-241, https://doi.org/10.3906/biy-2005-114.[27] A. D. Sharma, I. Kaur, Eucalyptus Essential Oil Bioactive Molecules from Against SARS-Cov-2 Spike Protein: Insights from Computational Studies, Res Sq., 2021, pp. 1-6, https://doi.org/10.21203/ rs.3.rs-140069/v1. [28] K. Rajagopal, P. Varakumar, A. Baliwada, G. Byran, Activity of Phytochemical Constituents of Curcuma Longa (Turmeric) and Andrographis Paniculata Against Coronavirus (COVID-19): An in Silico Approach, Future Journal of Pharmaceutical Sciences, Vol. 6, No. 1, 2020, pp. 1-10, https://doi.org/10.1186/s43094-020-00126-x[29] J. Lan, J. Ge, J. Yu, S. Shan, H. Zhou, S. Fan et al., Structure of The SARS-CoV-2 Spike Receptor-Binding Domain Bound to The ACE2 Receptor, Nature, Vol. 581, No. 7807, 2020, pp. 215-220, https://doi.org/10.1038/s41586-020-2180-5.[30] M. Letko, A. Marzi, V. Munster, Functional Assessment of Cell Entry and Receptor Usage for SARS-Cov-2 and Other Lineage B Betacoronaviruses, Nature Microbiology, Vol. 5, No. 4, 2020, pp. 562-569, https://doi.org/10.1038/s41564-020-0688-y.[31] C. Yi, X. Sun, J. Ye, L. Ding, M. Liu, Z. Yang et al., Key Residues of The Receptor Binding Motif in The Spike Protein of SARS-Cov-2 That Interact with ACE2 and Neutralizing Antibodies, Cellular and Molecular Immunology, Vol. 17, No. 6, 2020, pp. 621-630, https://doi.org/10.1038/s41423-020-0458-z.[32] N. T. Thom, Study on The Composition and Biological Activities of Flavonoids from The Roots of Scutellaria baicalensis: Doctoral Dissertation, Hanoi University of Science and Technology, 2018 (in Vietnamese).[33] Y. J. Tang, F. W. Zhou, Z. Q. Luo, X. Z. Li, H. M. Yan, M. J. Wang et al., Multiple Therapeutic Effects of Adjunctive Baicalin Therapy in Experimental Bacterial Meningitis, Inflammation, Vol. 33, No. 3, 2010, pp. 180-188, https://doi.org/10.1007/s10753-009-9172-9.[34] H. Liu, F. Ye, Q. Sun, H. Liang, C. Li, S. Li et al., Scutellaria Baicalensis Extract and Baicalein Inhibit Replication of SARS-Cov-2 and Its 3C-Like Protease in Vitro, Journal of Enzyme Inhibition and Medicinal Chemistry, Vol. 36, No. 1, 2021, pp. 497-503, https://doi.org/10.1080/14756366.2021.1873977.[35] Z. Iqbal, H. Nasir, S. Hiradate, Y. Fujii, Plant Growth Inhibitory Activity of Lycoris Radiata Herb. and The Possible Involvement of Lycorine as an Allelochemical, Weed Biology and Management, Vol. 6, No. 4, 2006, pp. 221-227, https://doi.org/10.1111/j.1445-6664.2006.00217.x.[36] S. Y. Li, C. Chen, H. Q. Zhang, H. Y. Guo, H. Wang, L. Wang et al., Identification of Natural Compounds with Antiviral Activities Against SARS-Associated Coronavirus, Antiviral Research, Vol. 67, No. 1, 2005, pp. 18-23, https://doi.org/10.1016/j.antiviral.2005.02.007.[37] S. Kretzing, G. Abraham, B. Seiwert, F. R. Ungemach, U. Krügel, R. Regenthal, Dose-dependent Emetic Effects of The Amaryllidaceous Alkaloid Lycorine in Beagle Dogs, Toxicon, Vol. 57, No. 1, 2011, pp. 117-124, https://doi.org/10.1016/j.toxicon.2010.10.012.[38] Y. N. Zhang, Q. Y. Zhang, X. D. Li, J. Xiong, S. Q. Xiao, Z. Wang, et al., Gemcitabine, Lycorine and Oxysophoridine Inhibit Novel Coronavirus (SARS-Cov-2) in Cell Culture, Emerging Microbes & Infections, Vol. 9, No. 1, 2020, pp. 1170-1173, https://doi.org/10.1080/22221751.2020.1772676.[39] Y. H. Jin, J. S. Min, S. Jeon, J. Lee, S. Kim, T. Park et al., Lycorine, a Non-Nucleoside RNA Dependent RNA Polymerase Inhibitor, as Potential Treatment for Emerging Coronavirus Infections, Phytomedicine, Vol. 86, 2021, pp. 1-8, https://doi.org/10.1016/j.phymed.2020.153440.[40] H. V. Hoa, P. V. Trung, N. N. Hanh, Isolation Andrographolid and Neoandrographolid from Andrographis Paniculata Nees, Can Tho University Journal of Science, Vol. 10, 2008, pp. 25-30 (in Vietnamese)[41] S. K. Enmozhi, K. Raja, I. Sebastine, J. Joseph, Andrographolide as a Potential Inhibitor Of SARS-Cov-2 Main Protease: An in Silico Approach, Journal of Biomolecular Structure and Dynamics, Vol. 39, No. 9, 2021, pp. 3092-3098, https://doi.org/10.1080/07391102.2020.1760136.[42] S. A. Lakshmi, R. M. B. Shafreen, A. Priya, K. P. Shunmugiah, Ethnomedicines of Indian Origin for Combating COVID-19 Infection by Hampering The Viral Replication: Using Structure-Based Drug Discovery Approach, Journal of Biomolecular Structure and Dynamics, Vol. 39, No. 13, 2020, pp. 4594-4609, https://doi.org/10.1080/07391102.2020.1778537.[43] N. P. L. Laksmiani, L. P. F. Larasanty, A. A. G. J. Santika, P. A. A. Prayoga, A. A. I. K. Dewi, N. P. A. K. Dewi, Active Compounds Activity from The Medicinal Plants Against SARS-Cov-2 Using in Silico Assay, Biomedical and Pharmacology Journal, Vol. 13, No. 2, 2020, pp. 873-881, https://dx.doi.org/10.13005/bpj/1953.[44] N. A. Murugan, C. J. Pandian, J. Jeyakanthan, Computational Investigation on Andrographis Paniculata Phytochemicals to Evaluate Their Potency Against SARS-Cov-2 in Comparison to Known Antiviral Compounds in Drug Trials, Journal of Biomolecular Structure and Dynamics, Vol. 39, No. 12, 2020, pp. 4415-4426, https://doi.org/10.1080/07391102.2020.1777901.[45] S. Hiremath, H. V. Kumar, M. Nandan, M. Mantesh, K. Shankarappa,V. Venkataravanappa et al., In Silico Docking Analysis Revealed The Potential of Phytochemicals Present in Phyllanthus Amarus and Andrographis Paniculata, Used in Ayurveda Medicine in Inhibiting SARS-Cov-2, 3 Biotech, Vol. 11, No. 2, 2021, pp. 1-18, https://doi.org/10.1007/s13205-020-02578-7.[46] K. S. Ngiamsuntorn, A. Suksatu, Y. Pewkliang, P. Thongsri, P. Kanjanasirirat, S. Manopwisedjaroen, et al., Anti-SARS-Cov-2 Activity of Andrographis Paniculata Extract and Its Major Component Andrographolide in Human Lung Epithelial Cells and Cytotoxicity Evaluation in Major Organ Cell Representatives, Journal of Natural Products, Vol. 84, No. 4, 2021, pp. 1261-1270, https://doi.org/10.1021/acs.jnatprod.0c01324.[47] D. X. Em, N. T. T. Dai, N. T. T. Tram, D. X. Chu, Four Compounds Isolated from Azadirachta Indica Jus leaves. F., Meliaceae, Pharmaceutical Journal, Vol. 59, No. 7, 2019, pp. 33-36 (in Vietnamese).[48] V. V Do, N. T. Thang, N. T. Minh, N. N. Hanh, Isolation, Purification and Investigation on Antimicrobial Activity of Salanin from Neem Seed Kernel (Azadirachta Indica A. Juss) of The Neem Tree Planted in Ninh Thuan Province, Vietnam, Journal of Science and Technology, Vol. 44, No. 2, 2006, pp. 24-31 (in Vietnamese).[49] P. I. Manzano Santana, J. P. P. Tivillin, I. A. Choez Guaranda, A. D. B. Lucas, A. Katherine, Potential Bioactive Compounds of Medicinal Plants Against New Coronavirus (SARS-Cov-2): A Review, Bionatura, Vol. 6, No. 1, 2021, pp. 1653-1658, https://doi.org/10.21931/RB/2021.06.01.30[50] S. Borkotoky, M. Banerjee, A Computational Prediction of SARS-Cov-2 Structural Protein Inhibitors from Azadirachta Indica (Neem), Journal of Biomolecular Structure and Dynamics, Vol. 39, No. 11, 2021, pp. 4111-4121, https://doi.org/10.1080/07391102.2020.1774419.[51] R. Jager, R. P. Lowery, A. V. Calvanese, J. M. Joy, M. Purpura, J. M. Wilson, Comparative Absorption of Curcumin Formulations, Nutrition Journal, Vol. 13, No. 11, 2014, https://doi.org/10.1186/1475-2891-13-11.[52] D. Praditya, L. Kirchhoff, J. Bruning, H. Rachmawati, J. Steinmann, E. Steinmann, Anti-infective Properties of the Golden Spice Curcumin, Front Microbiol, Vol. 10, No. 912, 2019, https://doi.org/10.3389/fmicb.2019.00912.[53] C. C. Wen, Y. H. Kuo, J. T. Jan, P. H. Liang, S. Y. Wang, H. G. Liu et al., Specific Plant Terpenoids and Lignoids Possess Potent Antiviral Activities Against Severe Acute Respiratory Syndrome Coronavirus, Journal of Medicinal Chemistry, Vol. 50, No. 17, 2007, pp. 4087-4095, https://doi.org/10.1021/jm070295s.[54] R. Lu, X. Zhao, J. Li, P. Niu, B. Yang, H. Wu et al., Genomic Characterisation and Epidemiology of 2019 Novel Coronavirus: Implications for Virus Origins and Receptor Binding, The Lancet, Vol. 395, No. 10224, 2020, pp. 565-574, https://doi.org/10.1016/S0140-6736(20)30251-8.[55] M. Kandeel, M. Al Nazawi, Virtual Screening and Repurposing of FDA Approved Drugs Against COVID-19 Main Protease, Life Sciences, Vol. 251, No. 117627, 2020, pp. 1-5, https://doi.org/10.1016/j.lfs.2020.117627.[56] V. K. Maurya, S. Kumar, A. K. Prasad, M. L. B. Bhatt, S. K. Saxena, Structure-Based Drug Designing for Potential Antiviral Activity of Selected Natural Products from Ayurveda Against SARS-CoV-2 Spike Glycoprotein and Its Cellular Receptor, Virusdisease, Vol. 31, No. 2, 2020, pp. 179-193, https://doi.org/10.1007/s13337-020-00598-8.[57] M. Hoffmann, H. Kleine Weber, S. Schroeder, N. Kruger, T. Herrler, S. Erichsen et al., SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor, Cell, Vol. 181, No. 2, 2020, pp. 271-280, https://doi.org/10.1016/j.cell.2020.02.052.[58] S. Katta, A. Srivastava, R. L. Thangapazham, I. L. Rosner, J. Cullen, H. Li et al., Curcumin-Gene Expression Response in Hormone Dependent and Independent Metastatic Prostate Cancer Cells, International Journal of Molecular Sciences, Vol. 20, No. 19, 2019, pp. 4891-4907, https://doi.org/10.3390/ijms20194891.[59] D. Ting, N. Dong, L. Fang, J. Lu, J. Bi, S. Xiao et al., Multisite Inhibitors for Enteric Coronavirus: Antiviral Cationic Carbon Dots Based on Curcumin, ACS Applied Nano Materials, Vol. 1, No. 10, 2018, pp. 5451-5459, https://doi.org/10.1021/acsanm.8b00779.[60] T. Huynh, H. Wang, B. Luan, In Silico Exploration of the Molecular Mechanism of Clinically Oriented Drugs for Possibly Inhibiting SARS-CoV-2's Main Protease, the Journal of Physical Chemistry Letters, Vol. 11, No. 11, 2020, pp. 4413-4420, https://doi.org/10.1021/acs.jpclett.0c00994.[61] D. D'Ardes, A. Boccatonda, I. Rossi, M. T. Guagnano, COVID-19 and RAS: Unravelling an Unclear Relationship, International Journal of Molecular Sciences, Vol. 21, No. 8, 2020, pp. 3003-3011, https://doi.org/10.3390/ijms21083003. [62] X. F. Pang, L. H. Zhang, F. Bai, N. P. Wang, R. E. Garner, R. J. McKallip et al., Attenuation of Myocardial Fibrosis with Curcumin is Mediated by Modulating Expression of Angiotensin II AT1/AT2 Receptors and ACE2 in Rats, Drug Design Development Therapy, Vol. 9, 2015, pp. 6043-6054, https://doi.org/10.2147/DDDT.S95333.[63] Y. Yao, W. Wang, M. Li, H. Ren, C. Chen, J. Wang et al., Curcumin Exerts its Anti-Hypertensive Effect by Down-Regulating the AT1 Receptor in Vascular Smooth Muscle Cells, Scientific Reports, Vol. 6, No. 25579, 2016, pp. 1-6, https://doi.org/10.1038/srep25579.[64] V. J. Costela Ruiz, R. Illescas Montes, J. M. Puerta Puerta, C. Ruiz, L. Melguizo Rodríguez, SARS-CoV-2 Infection: The Role of Cytokines in COVID-19 Disease, Cytokine Growth Factor Reviews, Vol. 54, 2020, pp. 62-75, https://doi.org/10.1016/j.cytogfr.2020.06.001.[65] H. Valizadeh, S. Abdolmohammadi Vahid, S. Danshina, M. Ziya Gencer, A. Ammari, A. Sadeghi et al., Nano-Curcumin Therapy, a Promising Method in Modulating Inflammatory Cytokines in COVID-19 Patients, International Immunopharmacology, Vol. 89 (PtB), No. 107088, 2020, pp. 1-12, https://doi.org/10.1016/j.intimp.2020.107088.[66] Y. H. Lo, R. D. Lin, Y. P. Lin, Y. L. Liu, M. H. Lee, Active Constituents from Sophora Japonica Exhibiting Cellular Tyrosinase Inhibition in Human Epidermal Melanocytes, Journal of Ethnopharmacology, Vol. 124, No. 3, 2009, pp. 625-629, https://doi.org/10.1016/j.jep.2009.04.053.[67] A. Robaszkiewicz, A. Balcerczyk, G. Bartosz, Antioxidative and Prooxidative Effects of Quercetin on A549 Cells, Cell Biology International, Vol. 31, No. 10, 2007, pp. 1245-1250, https://doi.org/10.1016/j.cellbi.2007.04.009[68] N. Uchide, H. Toyoda, Antioxidant Therapy as a Potential Approach to Severe Influenza-associated Complications, Molecules (Basel, Switzerland), Vol. 16, No. 3, 2011, pp. 2032-2052, https://doi.org/10.3390/molecules16032032.[69] M. P. Nair, C. Kandaswami, S. Mahajan, K. C. Chadha, R. Chawda, H. Nair et al., The Flavonoid, Quercetin, Differentially Regulates Th-1 (IFNgamma) and Th-2 (IL4) Cytokine Gene Expression by Normal Peripheral Blood Mononuclear Cells, Biochimica et Biophysica Acta - Molecular Cell Research, Vol. 1593, No. 1, 2002, pp. 29-36, https://doi.org/10.1016/s0167-4889(02)00328-2.[70] X. Chen, Z. Wang, Z. Yang, J. Wang, Y. Xu, R. X. Tan et al., Houttuynia Cordata Blocks HSV Infection Through Inhibition of NF-κB Activation, Antiviral Research, Vol. 92, No. 2, 2011, pp. 341-345, https://doi.org/10.1016/j.antiviral.2011.09.005.[71] T. N. Kaul, E. J. Middleton, P. L. Ogra, Antiviral Effect of Flavonoids on Human Viruses, Journal of Medical Virology, Vol. 15. No. 1, 1985, pp. 71-79, https://doi.org/10.1002/jmv.1890150110.[72] K. Zandi, B. T. Teoh, S. S. Sam, P. F. Wong, M. R. Mustafa, S. AbuBakar, Antiviral Activity of Four Types of Bioflavonoid Against Dengue Virus Type-2, Virology Journal, Vol. 8, No. 1, 2011, pp. 560-571, https://doi.org/10.1186/1743-422X-8-560.[73] J. Y. Park, H. J. Yuk, H. W. Ryu, S. H. Lim, K. S. Kim, K. H. Park et al., Evaluation of Polyphenols from Broussonetia Papyrifera as Coronavirus Protease Inhibitors, Journal of Enzyme Inhibition and Medicinal Chemistry, Vol. 32, No. 1, 2017, pp. 504-515, https://doi.org/10.1080/14756366.2016.1265519.[74] S. C. Cheng, W. C. Huang, J. H. S. Pang, Y. H. Wu, C. Y. Cheng, Quercetin Inhibits the Production of IL-1β-Induced Inflammatory Cytokines and Chemokines in ARPE-19 Cells via the MAPK and NF-κB Signaling Pathways, International Journal of Molecular Sciences, Vol. 20, No. 12, 2019, pp. 2957-2981, https://doi.org/10.3390/ijms20122957. [75] O. J. Lara Guzman, J. H. Tabares Guevara, Y. M. Leon Varela, R. M. Álvarez, M. Roldan, J. A. Sierra et al., Proatherogenic Macrophage Activities Are Targeted by The Flavonoid Quercetin, The Journal of Pharmacology and Experimental Therapeutics, Vol. 343, No. 2, 2012, pp. 296-303, https://doi.org/10.1124/jpet.112.196147.[76] A. Saeedi Boroujeni, M. R. Mahmoudian Sani, Anti-inflammatory Potential of Quercetin in COVID-19 Treatment, Journal of Inflammation, Vol. 18, No. 1, 2021, pp. 3-12, https://doi.org/10.1186/s12950-021-00268-6.[77] M. Smith, J. C. Smith, Repurposing Therapeutics for COVID-19: Supercomputer-based Docking to the SARS-CoV-2 Viral Spike Protein and Viral Spike Protein-human ACE2 Interface, ChemRxiv, 2020, pp. 1-28, https://doi.org/10.26434/chemrxiv.11871402.v4.[78] S. Khaerunnisa, H. Kurniawan, R. Awaluddin, S. Suhartati, S. Soetjipto, Potential Inhibitor of COVID-19 Main Protease (Mpro) from Several Medicinal Plant Compounds by Molecular Docking Study, Preprints, 2020, pp. 1-14, https://doi.org/10.20944/preprints202003.0226.v1.[79] J. M. Calderón Montaño, E. B. Morón, C. P. Guerrero, M. L. Lázaro, A Review on the Dietary Flavonoid Kaempferol, Mini Reviews in Medicinal Chemistry, Vol. 11, No. 4, 2011, pp. 298-344, https://doi.org/10.2174/138955711795305335.[80] A. Y. Chen, Y. C. Chen, A Review of the Dietary Flavonoid, Kaempferol on Human Health and Cancer Chemoprevention, Food Chem, Vol. 138, No. 4, 2013, pp. 2099-2107, https://doi.org/10.1016/j.foodchem.2012.11.139.[81] S. Schwarz, D. Sauter, W. Lu, K. Wang, B. Sun, T. Efferth et al., Coronaviral Ion Channels as Target for Chinese Herbal Medicine, Forum on Immunopathological Diseases and Therapeutics, Vol. 3, No. 1, 2012, pp. 1-13, https://doi.org/10.1615/ForumImmunDisTher.2012004378.[82] R. Zhang, X. Ai, Y. Duan, M. Xue, W. He, C. Wang et al., Kaempferol Ameliorates H9N2 Swine Influenza Virus-induced Acute Lung Injury by Inactivation of TLR4/MyD88-mediated NF-κB and MAPK Signaling Pathways, Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, Vol. 89, 2017, pp. 660-672, https://doi.org/10.1016/j.biopha.2017.02.081.[83] K. W. Chan, V. T. Wong, S. C. W. Tang, COVID-19: An Update on the Epidemiological, Clinical, Preventive and Therapeutic Evidence and Guidelines of Integrative Chinese-Western Medicine for the Management of 2019 Novel Coronavirus Disease, The American Journal of Chinese medicine, Vol. 48, No. 3, 2020, pp. 737-762, https://doi.org/10.1142/S0192415X20500378.[84] Y. F. Huang, C. Bai, F. He, Y. Xie, H. Zhou, Review on the Potential Action Mechanisms of Chinese Medicines in Treating Coronavirus Disease 2019 (COVID-19), Pharmacological Research, Vol. 158, No. 104939, 2020, pp. 1-10, https://doi.org/10.1016/j.phrs.2020.104939.[85] L. Xu, X. Zheng, Y. Wang, Q. Fan, M. Zhang, R. Li et al., Berberine Protects Acute Liver Failure in Mice Through Inhibiting Inflammation and Mitochondria-dependent Apoptosis, European Journal of Pharmacology, Vol. 819, 2018, pp. 161-168, https://doi.org/10.1016/j.ejphar.2017.11.013.[86] X. Chen, H. Guo, Q. Li, Y. Zhang, H. Liu, X. Zhang et al., Protective Effect of Berberine on Aconite‑induced Myocardial Injury and the Associated Mechanisms, Molecular Medicine Reports, Vol. 18, No. 5, 2018, pp. 4468-4476, https://doi.org/10.3892/mmr.2018.9476.[87] K. Hayashi, K. Minoda, Y. Nagaoka, T. Hayashi, S. Uesato, Antiviral Activity of Berberine and Related Compounds Against Human Cytomegalovirus, Bioorganic & Medicinal Chemistry Letters, Vol. 17, No. 6, 2007, pp. 1562-1564, https://doi.org/10.1016/j.bmcl.2006.12.085.[88] A. Warowicka, R. Nawrot, A. Gozdzicka Jozefiak, Antiviral Activity of Berberine, Archives of Virology, Vol. 165, No. 9, 2020, pp. 1935-1945, https://doi.org/10.1007/s00705-020-04706-3.[89] Z. Z. Wang, K. Li, A. R. Maskey, W. Huang, A. A. Toutov, N. Yang et al., A Small Molecule Compound Berberine as an Orally Active Therapeutic Candidate Against COVID-19 and SARS: A Computational and Mechanistic Study, FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology, Vol. 35, No. 4, 2021, pp. e21360-21379, https://doi.org/10.1096/fj.202001792R.[90] A. Pizzorno, B. Padey, J. Dubois, T. Julien, A. Traversier, V. Dulière et al., In Vitro Evaluation of Antiviral Activity of Single and Combined Repurposable Drugs Against SARS-CoV-2, Antiviral Research, Vol. 181, No. 104878, 2020, https://doi.org/10.1016/j.antiviral.2020.104878.[91] B. Y. Zhang, M. Chen, X. C. Chen, K. Cao, Y. You, Y. J. Qian et al., Berberine Reduces Circulating Inflammatory Mediators in Patients with Severe COVID-19, The British Journal of Surgery, Vol. 108, No. 1, 2021, pp. e9-e11, https://doi.org/10.1093/bjs/znaa021.[92] K. P. Latté, K. E. Appel, A. Lampen, Health Benefits and Possible Risks of Broccoli - an Overview, Food and Chemical Toxicology : an International Journal Published for the British Industrial Biological Research Association, Vol. 49, No. 12, 2011, pp. 3287-3309, https://doi.org/10.1016/j.fct.2011.08.019.[93] C. Sturm, A. E. Wagner, Brassica-Derived Plant Bioactives as Modulators of Chemopreventive and Inflammatory Signaling Pathways, International Journal of Molecular Sciences, Vol. 18, No. 9, 2017, pp. 1890-1911, https://doi.org/10.3390/ijms18091890.[94] R. T. Ruhee, S. Ma, K. Suzuki, Sulforaphane Protects Cells against Lipopolysaccharide-Stimulated Inflammation in Murine Macrophages, Antioxidants (Basel, Switzerland), Vol. 8, No. 12, 2019, pp. 577-589, https://doi.org/10.3390/antiox8120577.[95] S. M. Ahmed, L. Luo, A. Namani, X. J. Wang, X. Tang, Nrf2 Signaling Pathway: Pivotal Roles in Inflammation, Biochimica et Biophysica Acta Molecular Basis of Disease, Vol. 1863, No. 2, 2017, pp. 585-597, https://doi.org/10.1016/j.bbadis.2016.11.005.[96] Z. Sun, Z. Niu, S. Wu, S. Shan, Protective Mechanism of Sulforaphane in Nrf2 and Anti-Lung Injury in ARDS Rabbits, Experimental Therapeutic Medicine, Vol. 15, No. 6, 2018, pp. 4911-4951, https://doi.org/10.3892/etm.2018.6036.[97] H. Y. Cho, F. Imani, L. Miller DeGraff, D. Walters, G. A. Melendi, M. Yamamoto et al., Antiviral Activity of Nrf2 in a Murine Model of Respiratory Syncytial Virus Disease, American Journal of Respiratory and Critical Care Medicine, Vol. 179, No. 2, 2009, pp. 138-150, https://doi.org/10.1164/rccm.200804-535OC.[98] M. J. Kesic, S. O. Simmons, R. Bauer, I. Jaspers, Nrf2 Expression Modifies Influenza A Entry and Replication in Nasal Epithelial Cells, Free Radical Biology & Medicine, Vol. 51, No. 2, 2011, pp. 444-453, https://doi.org/10.1016/j.freeradbiomed.2011.04.027.[99] A. Cuadrado, M. Pajares, C. Benito, J. J. Villegas, M. Escoll, R. F. Ginés et al., Can Activation of NRF2 Be a Strategy Against COVID-19?, Trends in Pharmacological Sciences, Vol. 41, No. 9, 2020, pp. 598-610, https://doi.org/10.1016/j.tips.2020.07.003.[100] J. Gasparello, E. D'Aversa, C. Papi, L. Gambari, B. Grigolo, M. Borgatti et al., Sulforaphane Inhibits the Expression of Interleukin-6 and Interleukin-8 Induced in Bronchial Epithelial IB3-1 Cells by Exposure to the SARS-CoV-2 Spike Protein, Phytomedicine : International Journal of Phytotherapy and Phytopharmacology, Vol. 87, No. 53583, 2021, https://doi.org/10.1016/j.phymed.2021.153583.
APA, Harvard, Vancouver, ISO, and other styles
26

Chavdarov, Anatoliy V. "Special Issue No. – 10, June, 2020 Journal > Special Issue > Special Issue No. – 10, June, 2020 > Page 5 “Quantative Methods in Modern Science” organized by Academic Paper Ltd, Russia MORPHOLOGICAL AND ANATOMICAL FEATURES OF THE GENUS GAGEA SALISB., GROWING IN THE EAST KAZAKHSTAN REGION Authors: Zhamal T. Igissinova,Almash A. Kitapbayeva,Anargul S. Sharipkhanova,Alexander L. Vorobyev,Svetlana F. Kolosova,Zhanat K. Idrisheva, DOI: https://doi.org/10.26782/jmcms.spl.10/2020.06.00041 Abstract: Due to ecological preferences among species of the genus GageaSalisb, many plants are qualified as rare and/or endangered. Therefore, the problem of rational use of natural resources, in particular protection of early spring plant species is very important. However, literary sources analysis only reveals data on the biology of species of this genus. The present research,conducted in the spring of 2017-2019, focuses on anatomical and morphological features of two Altai species: Gagealutea and Gagea minima; these features were studied, clarified and confirmed by drawings and photographs. The anatomical structure of the stem and leaf blade was studied in detail. The obtained research results will prove useful for studies of medicinal raw materials and honey plants. The aforementioned species are similar in morphological features, yet G. minima issmaller in size, and its shoots appear earlier than those of other species Keywords: Flora,gageas,Altai species,vegetative organs., Refference: I. Atlas of areas and resources of medicinal plants of Kazakhstan.Almaty, 2008. II. Baitenov M.S. Flora of Kazakhstan.Almaty: Ġylym, 2001. III. DanilevichV. G. ThegenusGageaSalisb. of WesternTienShan. PhD Thesis, St. Petersburg,1996. IV. EgeubaevaR.A., GemedzhievaN.G. The current state of stocks of medicinal plants in some mountain ecosystems of Kazakhstan.Proceedings of the international scientific conference ‘”Results and prospects for the development of botanical science in Kazakhstan’, 2002. V. Kotukhov Yu.A. New species of the genus Gagea (Liliaceae) from Southern Altai. Bot. Journal.1989;74(11). VI. KotukhovYu.A. ListofvascularplantsofKazakhstanAltai. Botan. Researches ofSiberiaandKazakhstan.2005;11. VII. KotukhovYu. The current state of populations of rare and endangered plants in Eastern Kazakhstan. Almaty: AST, 2009. VIII. Kotukhov Yu.A., DanilovaA.N., AnufrievaO.A. Synopsisoftheonions (AlliumL.) oftheKazakhstanAltai, Sauro-ManrakandtheZaisandepression. BotanicalstudiesofSiberiaandKazakhstan. 2011;17: 3-33. IX. Kotukhov, Yu.A., Baytulin, I.O. Rareandendangered, endemicandrelictelementsofthefloraofKazakhstanAltai. MaterialsoftheIntern. scientific-practical. conf. ‘Sustainablemanagementofprotectedareas’.Almaty: Ridder, 2010. X. Krasnoborov I.M. et al. The determinant of plants of the Republic of Altai. Novosibirsk: SB RAS, 2012. XI. Levichev I.G. On the species status of Gagea Rubicunda. Botanical Journal.1997;6:71-76. XII. Levichev I.G. A new species of the genus Gagea (Liliaceae). Botanical Journal. 2000;7: 186-189. XIII. Levichev I.G., Jangb Chang-gee, Seung Hwan Ohc, Lazkovd G.A.A new species of genus GageaSalisb.(Liliaceae) from Kyrgyz Republic (Western Tian Shan, Chatkal Range, Sary-Chelek Nature Reserve). Journal of Asia-Pacific Biodiversity.2019; 12: 341-343. XIV. Peterson A., Levichev I.G., Peterson J. Systematics of Gagea and Lloydia (Liliaceae) and infrageneric classification of Gagea based on molecular and morphological data. Molecular Phylogenetics and Evolution.2008; 46. XV. Peruzzi L., Peterson A., Tison J.-M., Peterson J. Phylogenetic relationships of GageaSalisb.(Liliaceae) in Italy, inferred from molecular and morphological data matrices. Plant Systematics and Evolution; 2008: 276. XVI. Rib R.D. Honey plants of Kazakhstan. Advertising Digest, 2013. XVII. Scherbakova L.I., Shirshikova N.A. Flora of medicinal plants in the vicinity of Ust-Kamenogorsk. Collection of materials of the scientific-practical conference ‘Unity of Education, Science and Innovation’. Ust-Kamenogorsk: EKSU, 2011. XVIII. syganovA.P. PrimrosesofEastKazakhstan. Ust-Kamenogorsk: EKSU, 2001. XIX. Tsyganov A.P. Flora and vegetation of the South Altai Tarbagatay. Berlin: LAP LAMBERT,2014. XX. Utyasheva, T.R., Berezovikov, N.N., Zinchenko, Yu.K. ProceedingsoftheMarkakolskStateNatureReserve. Ust-Kamenogorsk, 2009. XXI. Xinqi C, Turland NJ. Gagea. Flora of China.2000;24: 117-121. XXII. Zarrei M., Zarre S., Wilkin P., Rix E.M. Systematic revision of the genus GageaSalisb. (Liliaceae) in Iran.BotJourn Linn Soc.2007;154. XXIII. Zarrei M., Wilkin P., Ingroille M.J., Chase M.W. A revised infrageneric classification for GageaSalisb. (Tulipeae; Liliaceae): insights from DNA sequence and morphological data.Phytotaxa.2011:5. View | Download INFLUENCE OF SUCCESSION CROPPING ON ECONOMIC EFFICIENCY OF NO-TILL CROP ROTATIONS Authors: Victor K. Dridiger,Roman S. Stukalov,Rasul G. Gadzhiumarov,Anastasiya A. Voropaeva,Viktoriay A. Kolomytseva, DOI: https://doi.org/10.26782/jmcms.spl.10/2020.06.00042 Abstract: This study was aimed at examining the influence of succession cropping on the economic efficiency of no-till field crop rotations on the black earth in the zone of unstable moistening of the Stavropol krai. A long-term stationary experiment was conducted to examine for the purpose nine field crop rotation patterns different in the number of fields (four to six), set of crops, and their succession in crop rotation. The respective shares of legumes, oilseeds, and cereals in the cropping pattern were 17 to 33, 17 to 40, and 50 to 67 %. It has been established that in case of no-till field crop cultivation the economic efficiency of plant production depends on the set of crops and their succession in rotation. The most economically efficient type of crop rotation is the soya-winter wheat-peas-winter wheat-sunflower-corn six-field rotation with two fields of legumes: in this rotation 1 ha of crop rotation area yields 3 850 grain units per ha at a grain unit prime cost of 5.46 roubles; the plant production output return and profitability were 20,888 roubles per ha and 113 %, respectively. The high production profitabilities provided by the soya-winter wheat-sunflower four-field and the soya-winter-wheat-sunflower-corn-winter wheat five-field crop rotation are 108.7 and 106.2 %, respectively. The inclusion of winter wheat in crop rotation for two years in a row reduces the second winter wheat crop yield by 80 to 100 %, which means a certain reduction in the grain unit harvesting rate to 3.48-3.57 thousands per ha of rotation area and cuts the production profitability down to 84.4-92.3 %. This is why, no-till cropping should not include winter wheat for a second time Keywords: No-till technology,crop rotation,predecessor,yield,return,profitability, Refference: I Badakhova G. Kh. and Knutas A. V., Stavropol Krai: Modern Climate Conditions [Stavropol’skiykray: sovremennyyeklimaticheskiyeusloviya]. Stavropol: SUE Krai Communication Networks, 2007. II Cherkasov G. N. and Akimenko A. S. Scientific Basis of Modernization of Crop Rotations and Formation of Their Systems according to the Specializations of Farms in the Central Chernozem Region [Osnovy moderniz atsiisevooborotoviformirovaniyaikh sistem v sootvetstvii so spetsi-alizatsiyeykhozyaystvTsentral’nogoChernozem’ya]. Zemledelie. 2017; 4: 3-5. III Decree 330 of July 6, 2017 the Ministry of Agriculture of Russia “On Approving Coefficients of Converting to Agricultural Crops to Grain Units [Ob utverzhdeniikoeffitsiyentovperevoda v zernovyyee dinitsysel’s kokhozyaystvennykhkul’tur]. IV Dridiger V. K., About Methods of Research of No-Till Technology [O metodikeissledovaniytekhnologii No-till]//Achievements of Science and Technology of AIC (Dostizheniyanaukiitekhniki APK). 2016; 30 (4): 30-32. V Dridiger V. K. and Gadzhiumarov R. G. Growth, Development, and Productivity of Soya Beans Cultivated On No-Till Technology in the Zone of Unstable Moistening of Stavropol Region [Rost, razvitiyeiproduktivnost’ soiprivozdelyvaniipotekhnologii No-till v zone ne-ustoychivog ouvlazhneniyaStavropol’skogokraya]//Oil Crops RTBVNIIMK (Maslichnyyekul’turyNTBVNIIMK). 2018; 3 (175): 52–57. VI Dridiger V. K., Godunova E. I., Eroshenko F. V., Stukalov R. S., Gadzhiumarov, R. G., Effekt of No-till Technology on erosion resistance, the population of earthworms and humus content in soil (Vliyaniyetekhnologii No-till naprotivoerozionnuyuustoychivost’, populyatsiyudozhdevykhcherveyisoderzhaniyegumusa v pochve)//Research Journal of Pharmaceutical, Biological and Chemical Sciences. 2018; 9 (2): 766-770. VII Karabutov A. P., Solovichenko V. D., Nikitin V. V. et al., Reproduction of Soil Fertility, Productivity and Energy Efficiency of Crop Rotations [Vosproizvodstvoplodorodiyapochv, produktivnost’ ienergeticheskayaeffektivnost’ sevooborotov]. Zemledelie. 2019; 2: 3-7. VIII Kulintsev V. V., Dridiger V. K., Godunova E. I., Kovtun V. I., Zhukova M. P., Effekt of No-till Technology on The Available Moisture Content and Soil Density in The Crop Rotation [Vliyaniyetekhnologii No-till nasoderzhaniyedostupnoyvlagiiplotnost’ pochvy v sevoob-orote]// Research Journal of Pharmaceutical, Biological and Chemical Sciences. 2017; 8 (6): 795-99. IX Kulintsev V. V., Godunova E. I., Zhelnakova L. I. et al., Next-Gen Agriculture System for Stavropol Krai: Monograph [SistemazemledeliyanovogopokoleniyaStavropol’skogokraya: Monogtafiya]. Stavropol: AGRUS Publishers, Stavropol State Agrarian University, 2013. X Lessiter Frank, 29 reasons why many growers are harvesting higher no-till yields in their fields than some university scientists find in research plots//No-till Farmer. 2015; 44 (2): 8. XI Rodionova O. A. Reproduction and Exchange-Distributive Relations in Farming Entities [Vosproizvodstvoiobmenno-raspredelitel’nyyeotnosheniya v sel’skokhozyaystvennykhorganizatsiyakh]//Economy, Labour, and Control in Agriculture (Ekonomika, trud, upravleniye v sel’skomkhozyaystve). 2010; 1 (2): 24-27. XII Sandu I. S., Svobodin V. A., Nechaev V. I., Kosolapova M. V., and Fedorenko V. F., Agricultural Production Efficiency: Recommended Practices [Effektivnost’ sel’skokhozyaystvennogoproizvodstva (metodicheskiyerekomendatsii)]. Moscow: Rosinforagrotech, 2013. XIII Sotchenko V. S. Modern Corn Cultivation Technologies [Sovremennayatekhnologiyavozdelyvaniya]. Moscow: Rosagrokhim, 2009. View | Download DEVELOPMENT AND TESTING OF AUTONOMOUS PORTABLE SEISMOMETER DESIGNED FOR USE AT ULTRALOW TEMPERATURES IN ARCTIC ENVIRONMENT Authors: Mikhail A. Abaturov,Yuriy V. Sirotinskiy, DOI: https://doi.org/10.26782/jmcms.spl.10/2020.06.00043 Abstract: This paper is concerned with solving one of the issues of the general problem of designing geophysical equipment for the natural climatic environment of the Arctic. The relevance of the topic has to do with an increased global interest in this region. The paper is aimed at considering the basic principles of developing and the procedure of testing seismic instruments for use at ultralow climatic temperatures. In this paper the indicated issue is considered through the example of a seismic module designed for petroleum and gas exploration by passive seismoacoustic methods. The seismic module is a direct-burial portable unit of around 5 kg in weight, designed to continuously measure and record microseismic triaxial orthogonal (ZNE) noise in a range from 0.1 to 45 Hz during several days in autonomous mode. The functional chart of designing the seismic module was considered, and concrete conclusions were made for choosing the necessary components to meet the ultralow-temperature operational requirements. The conclusions made served for developing appropriate seismic module. In this case, the components and tools used included a SAFT MP 176065 xc low-temperature lithium cell, industrial-spec electronic component parts, a Zhaofeng Geophysical ZF-4.5 Chinese primary electrodynamic seismic sensor, housing seal parts made of frost-resistant silicone materials, and finely dispersed silica gel used as water-retaining sorbent to avoid condensation in the housing. The paper also describes a procedure of low-temperature collation tests at the lab using a New Brunswick Scientific freezing plant. The test results proved the operability of the developed equipment at ultralow temperatures down to -55°C. In addition, tests were conducted at low microseismic noises in the actual Arctic environment. The possibility to detect signals in a range from 1 to 10 Hz at the level close to the NLNM limit (the Peterson model) has been confirmed, which allows monitoring and exploring petroleum and gas deposits by passive methods. As revealed by this study, the suggested approaches are efficient in developing high-precision mobile seismic instruments for use at ultralow climatic temperatures. The solution of the considered instrumentation and methodical issues is of great practical significance as a constituent of the generic problem of Arctic exploration. Keywords: Seismic instrumentation,microseismic monitoring,Peterson model,geological exploration,temperature ratings,cooling test, Refference: I. AD797: Ultralow Distortion, Ultralow Noise Op Amp, Analog Devices, Inc., Data Sheet (Rev. K). Analog Devices, Inc. URL: https://www.analog.com/media/en/technical-documentation/data-sheets/AD797.pdf(Date of access September 2, 2019). II. Agafonov, V. M., Egorov, I. V., and Shabalina, A. S. Operating Principles and Technical Characteristics of a Small-Sized Molecular–Electronic Seismic Sensor with Negative Feedback [Printsipyraboty I tekhnicheskiyekharakteristikimalogabaritnogomolekulyarno-elektronnogoseysmodatchika s otritsatel’noyobratnoysvyaz’yu]. SeysmicheskiyePribory (Seismic Instruments). 2014; 50 (1): 1–8. DOI: 10.3103/S0747923914010022. III. Antonovskaya, G., Konechnaya, Ya.,Kremenetskaya, E., Asming, V., Kvaema, T., Schweitzer, J., Ringdal, F. Enhanced Earthquake Monitoring in the European Arctic. Polar Science. 2015; 1 (9): 158-167. IV. Anthony, R. E., Aster, R. C., Wiens, D., Nyblade, Andr., Anandakrishnan, Sr., Huerta, Audr., Winberry, J. P., Wilson, T., and Rowe, Ch. The Seismic Noise Environment of Antarctica. Seismological Research Letters. 2015; 86(1): 89-100. DOI: 10.1785/0220150005 V. Brincker, R., Lago, T. L., Andersen, P., and Ventura, C. Improving the Classical Geophone Sensor Element by Digital Correction. In Conference Proceedings: IMAC-XXIII: A Conference & Exposition on Structural Dynamics Society for Experimental Mechanics, 2005. URL: https://www.researchgate.net/publication/242452637_Improving_the_Classical_Geophone_Sensor_Element_by_Digital_Correction(Date of access September 2, 2019). VI. Bylaw 164 of the State Committee for Construction of the Russian Federation “On adopting amendments to SNiP 31-01-99 “Construction climatology”. URL: https://base.garant.ru/2322381/(Date of access September 2, 2019). VII. Chao Xu, Junbo Wang, Deyong Chen, Jian Chen, Bowen Liu, Wenjie Qi, XichenZheng, Hua Wei, Guoqing Zhang. The Electrochemical Seismometer Based on a Novel Designed.Sensing Electrode for Undersea Exploration. 20th International Conference on Solid-State Sensors, Actuators and Microsystems &Eurosensors XXXIII (TRANSDUCERS &EUROSENSORS XXXIII). IEEE, 2019. DOI: 10.1109/TRANSDUCERS.2019.8808450. VIII. Chebotareva, I. Ya. New algorithms of emission tomography for passive seismic monitoring of a producing hydrocarbon deposit: Part I. Algorithms of processing and numerical simulation [Novyye algoritmyemissionnoyto mografiidlyapassivnogoseysmicheskogomonitoringarazrabatyvayemykhmestorozhdeniyuglevodorodov. Chast’ I: Algoritmyobrabotki I chislennoyemodelirovaniye]. FizikaZemli. 2010; 46(3):187-98. DOI: 10.1134/S106935131003002X IX. Danilov, A. V. and Konechnaya, Ya. V. Analytical comparison of seismic instruments for stationary surveys in the Arctic [Sravnitel’nyyanalizseysmicheskoyapparaturydlyastatsionarnykhnablyudeniy v Arktike]. DSYS. URL: https://dsys.ru/upload/id254_docPDF_FranzJosefLand.pdf(Date of access September 2, 2019). X. Dew point temperature calculator. Maple Tech. International LLC. URL: https://www.calculator.net/dew-point-calculator.html?airtemperature=20&airtemperatureunit=celsius&humidity=0.34&dewpoint=&dewpointunit=celsius&x=51&y=14(Date of access September 2, 2019). XI. Frolov, A. S. Matching of wave fields recorded by different geophysical receivers [Soglasovaniyevolnovykhpoley, poluchennykh s primeneniyemrazlichnoyregistriruyushcheyapparatury]. Abstracts IX International scientific and technical conference competition of young specialists “Geophysics-2013”. Saint-Petersburg: Gubkin University, 2013. URL: https://www.gubkin.ru/faculty/geology_and_geophysics/chairs_and_departments/exploration_geophysics_and_computers_systems/files/2013_SPb_Frolov.pdf. (Date of access September 2, 2019). XII. Gibbons, S. J., Asming, V., Fedorov, A., Fyen, J., Kero, J., Kozlovskaya, E., Kværna, T., Liszka, L., Näsholm, S.P., Raita, T., Roth, M., Tiira, T., Vinogradov, Yu. The European Arctic: A laboratory for seismoacoustic studies. Seism. Res. Letters. 2015; 86 (3): 917–928. XIII. GOST 8.395-80. State system for ensuring the uniformity of measurements. Reference conditions of measurements while calibrating. General requirements [Gosudarstvennayasistemaobespecheniyaedinstvaizmereniy. Normal’nyyeusloviyaizmereniypripoverke. Obshchiyetrebovaniya]. Moscow: Standartinform, 2008. URL: http://gostrf.com/normadata/1/4294821/4294821960.pdf (Date of access September 2, 2019). XIV. Guralp 6TD. Operators’ Guide. Document Number: MAN-T60-0002, Issue J: April, 2017. Guralp Systems Limited. URL: https://www.guralp.com/documents/MAN-T60-0002.pdf (Date of access September 2, 2019). XV. Inshakova, A. S., Barykina, E. S., and Kozlov, V. V. Role of silica gel in adsorption air drying [Rol’ silikagelya v adsorbtsionnoyosushkevozdukha]. AlleyaNauki (Alley of Science). 2017; 15. URL: https://www.alley- science.ru/domains_data/files/November2017/ROL%20SILIKAGELYa%20V%20ADSORBCIONNOY%20OSUShKE%20VOZDUHA.pdf(Date of access September 2, 2019). XVI. Ioffe, D. and Pozdnyakov, P. Searching for Hidden Reserves of Modern Microchip Circuits. Part I [Poiskskrytykhrezervovsovremennykhmikroskhem. Chast’ I].Komponenty I tekhnologii (Components and Technologies). 2015; 4: 144-46. XVII. Jiang Xu, Xi Wang, Ningyi Yuan, Jianning Ding, Si Qin, Joselito M. Razal, Xuehang Wang, ShanhaiGe, Gogotsi, Yu. Extending the low temperature operational limit of Li-ion battery to −80 °C. Energy Storage Materials (IF0). Published 2019-04-27. DOI: 10.1016/j.ensm.2019.04.033. XVIII. Kouznetsov, O. L., Lyasch, Y. F., Chirkin, I. A., Rizanov, E. G., LeRoy, S. D., Koligaev, S. O. Long-term monitoring of microseismic emissions: Earth tides, fracture distribution, and fluid content. SEG, APPG Interpretation. 2016: 4 (2): T191–T204. XIX. Laverov, N. P., Bogoyavlenskiy, V. I., Bogoyavlenskiy, I. V. Fundamental Aspects of Rational Management of the Petroleum and Gas Resources of the Arctic and the Russian Continental Shelf: Strategy, Prospects, and Problems [Fundamental’nyyeaspektyratsional’nogoosvoyeniyaresursovneftiigazaArktiki I shel’faRossii: strategiya, perspektivyi problem].Arktika: ekologiya I ekonomika [Arctic: Ecology and Economy]. 2016; 2 (22): 4-13. XX. Lee, P. Low Noise Amplifier Selection Guide for Optimal Noise Performance, Analog Devices, Inc., AN-940 Application Note. Analog Devices, Inc. URL: https://www.analog.com/media/en/technical-documentation/application-notes/AN-940.pdf(Date of access September 2, 2019). XXI. Markatis, N., Polychronopoulou, K., Tselentis, Ak. Passive seismic tomography: A passive concept actively evolving. First Break. 2012; 30 (7): 83-90. XXII. Matveev, I. V. and Matveeva, N. V. Portable seismic recorder “SEISAR-5” with very low energy consumption for autonomous work in harsh climatic conditions [Portativnyyseysmicheskiyregistrator «Seysar-5» s ochen’ nizkimenergopotrebleniyemdlyaavtonomnoyraboty v slozhnykhklimatic heskikhusloviyakh]. Nauka I tekhnologicheskierazrabotki (Science and Technological Developments). 2017; 96 (3): 33-40. [Special Issue “Applied Geophysics: New Developments and Results. Part 1. Seismology and Seismic Exploration]. DOI: 10.21455/std2017.3-3. XXIII. Mishra, R. The Temperature Ratings of Electronic Parts.Electronics Cooling magazine. URL: http://www.electronics-cooling.com/2004/02/the-temperature-ratings-of-electronic-parts(Date of access September 2, 2019). XXIV. Moore, Sue E.; Stabeno, Phyllis J.; Van Pelt, Thomas I. The Synthesis of Arctic Research (SOAR) project. Deep-Sea Research Part II. 152: 1-7. DOI: 10.1016/j.dsr2.2018.05.013. XXV. MS-SPORT Viscous Silicone Lubricant with Fluoroplastic. ToR2257-010-45540231-2003. OOO VMPAUTO, URL: https://smazka.ru/attachments/get/469/ms-sport-tds.pdf(Date of access September 2, 2019). XXVI. New Brunswick™ Premium -86 °C Freezers. Operating manual. URL: https://www.eppendorf.com/product-media/doc/en/142770_Operating-Manual/New-Brunswick_Freezers_Operating-manual-86-C-Premium-Freezers.pdf(Date of access September 2, 2019). XXVII. New seismic digitizer/recorder for passive seismic monitoring applications. LandTech Enterprises. URL: http://www.landtechsa.com/Images/Instrument/SRi32L/SRi32L.pdf(Date of access September 2, 2019). XXVIII. Parker, T., Winberry, P., Huerta, A., Bainbridge, G., Devanney, P. Direct Burial Broadband Seismic Instrumentation for Polar Environments. Nanometrics Inc. URL: https://www.nanometrics.ca/sites/default/files/2017-11/direct_burial_bb_seismic_instrumentation_for_polar_environments.pdf. (Date of access September 2, 2019). XXIX. Peterson, J. Observation and Modeling of Seismic Background Noise. Albuquerque, New Mexico: US Department of Interior Geological Survey, 1993. XXX. Razinkov, O.G., Sidorov-Biryukov, D. D., Townsend, B., Parker, T., Bainbridge, G., Greiss, R. Strengths and Applications of Direct Burial Seismic Instruments [Preimushchestva I oblastiprimeneniyaseysmicheskikhpriborovdlyapryamoyustanovki v grunt] in Proc. VI Sci. Tech. Conf. “Problems of Complex Geophysical Monitoring of the Russian Far East”, Petropavlovsk-Kamchatskiy: Geophysical Survey, Russian Academy of Sciences, 2017. URL: http://www.emsd.ru/conf2017lib/pdf/techn/razinkov.pdf (Date of access September 2, 2019). XXXI. Roux, Ph., Wathelet, M., Roueff, Ant. The San Andreas Fault revisited through seismic-noise and surface-wave tomography. Geophysical Research Letters. 2011; 38 (13). DOI: 10.1029/2011GL047811. XXXII. Rubber O-ring seals for hydraulic and pneumatic equipment. Specifications [Kol’tsarezinovyyeuplotnitel’nyyekruglogosecheniyadlyagidravlicheskikh I pnevmaticheskikhustroystv. Tekhnicheskiyeusloviya]. GOST 18829-2017 Interstate standard. Moscow: Standartinform, 2017. URL: https://files.stroyinf.ru/Data/645/64562.pdf (Date of access September 2, 2019). XXXIII. Sanina, I., Gabsatarova, I., Chernykh, О.,Riznichenko, О., Volosov, S., Nesterkina, M., Konstantinovskaya, N. The Mikhnevo small aperture array enhances the resolution property of seismological observations on the East European Platform. Journal of Seismology (JOSE). 2011; 15 (3): 545-56. (DOI: 10.1007/sl0950-010-9211-х). XXXIV. SM-3VK Magnetoelectric Seismic Pickup. Specifications. ToR-4314-001-02698826-01. N. Laverov Federal Centre for Integrated Arctic Research, Russian Academy of Sciences. URL: http://fciarctic.ru/index.php?page=ckpg (Date of access September 2, 2019). XXXV. Sobisevich, A. L.,Presnov, D. A.,Agafonov, V. M.,Sobisevich, L. E. Autonomous geohydroacoustic ice buoy of new generation [Vmorazhivayemyyavtonomnyygeogidroakusticheskiy buy novogopokoleniya]. Nauka I tekhnologicheskierazrabotki (Science and Technological Developments). 2018; 97 (1): 25–34. [Special issue “Precise Geophysical Monitoring of Natural Hazards. Part 1. Instruments andTechnologies”]. DOI: 10.21455/ std2018.1-3. XXXVI. Zhukov, Y. V. Issues of resistance and reliability of electronic equipment products to the exposure factors [Voprosystoykosti i nadezhnostiizdeliyradioelektronnoytekhniki k vneshnimvozdeystvuyushchimfaktoram]. Provintsial’nyyenauchnyyezapiski (The journal Provincial scientific proceedings). 2019; 1 (9): 118-124. View | Download COMPARATIVE ANALYSIS OF RESULTS OF TREATMENT OF PATIENTS WITH FOOT PATHOLOGY WHO UNDERWENT WEIL OPEN OSTEOTOMY BY CLASSICAL METHOD AND WITHOUT STEOSYNTHESIS Authors: Yuriy V. Lartsev,Dmitrii A. Rasputin,Sergey D. Zuev-Ratnikov,Pavel V.Ryzhov,Dmitry S. Kudashev,Anton A. Bogdanov, DOI: https://doi.org/10.26782/jmcms.spl.10/2020.06.00044 Abstract: The article considers the problem of surgical correction of the second metatarsal bone length. The article analyzes the results of treatment of patients with excess length of the second metatarsal bones that underwent osteotomy with and without osteosynthesis. The results of treatment of patients who underwent metatarsal shortening due to classical Weil-osteotomy with and without osteosynthesis were analyzed. The first group consisted of 34 patients. They underwent classical Weil osteotomy. The second group included 44 patients in whomosteotomy of the second metatarsal bone were not by the screw. When studying the results of the treatment in the immediate postoperative period, weeks 6, 12, slightly better results were observed in patients of the first group, while one year after surgical treatment the results in both groups were comparable. One year after surgical treatment, there were 2.9% (1 patient) of unsatisfactory results in the first group and 4.5% (2 patients) in the second group. Considering the comparability of the results of treatment in remote postoperative period, the choice of concrete method remains with the operating surgeon. Keywords: Flat feet,hallux valgus,corrective osteotomy,metatarsal bones, Refference: I. A novel modification of the Stainsby procedure: surgical technique and clinical outcome [Text] / E. Concannon, R. MacNiocaill, R. Flavin [et al.] // Foot Ankle Surg. – 2014. – Dec., Vol. 20(4). – P. 262–267. II. Accurate determination of relative metatarsal protrusion with a small intermetatarsal angle: a novel simplified method [Text] / L. Osher, M.M. Blazer, S. Buck [et al.] // J. Foot Ankle Surg. – 2014. – Sep.-Oct., Vol. 53(5). – P. 548–556. III. Argerakis, N.G. The radiographic effects of the scarf bunionectomy on rearfoot alignment [Text] / N.G. Argerakis, L.Jr. Weil, L.S. Sr. Weil // Foot Ankle Spec. – 2015. – Apr., Vol. 8(2). – P. 89–94. IV. Bauer, T. Percutaneous forefoot surgery [Text] / T. Bauer // Orthop. Traumatol. Surg. Res. – 2014. – Feb., Vol. 100(1 Suppl.). – P. S191–S204. V. Biomechanical Evaluation of Custom Foot Orthoses for Hallux Valgus Deformity [Text] // J. Foot Ankle Surg. – 2015. – Sep.-Oct., Vol.54(5). – P. 852–855. VI. Chopra, S. Characterization of gait in female patients with moderate to severe hallux valgus deformity [Text] / S. Chopra, K. Moerenhout, X. Crevoisier // Clin. Biomech. (Bristol, Avon). – 2015. – Jul., Vol. 30(6). – P. 629–635. VII. Computer assisted planning and custom-made surgical guide for malunited pronation deformity after first metatarsophalangeal joint arthrodesis in rheumatoid arthritis: a case report [Text] / M. Hirao, S. Ikemoto, H. Tsuboi [et al.] // Comput. Aided Surg. – 2014. – Vol. 19(1-3). – P. 13–19. VIII. Correlation between static radiographic measurements and intersegmental angular measurements during gait using a multisegment foot model [Text] / D.Y. Lee, S.G. Seo, E.J. Kim [et al.] // Foot Ankle Int. – 2015. – Jan., Vol.36(1). – P. 1–10. IX. Correlative study between length of first metatarsal and transfer metatarsalgia after osteotomy of first metatarsal [Text]: [Article in Chinese] / F.Q. Zhang, B.Y. Pei, S.T. Wei [et al.] // Zhonghua Yi XueZaZhi. – 2013. – Nov. 19, Vol. 93(43). – P. 3441–3444. X. Dave, M.H. Forefoot Deformity in Rheumatoid Arthritis: A Comparison of Shod and Unshod Populations [Text] / M.H. Dave, L.W. Mason, K. Hariharan // Foot Ankle Spec. – 2015. – Oct., Vol. 8(5). – P. 378–383. XI. Does arthrodesis of the first metatarsophalangeal joint correct the intermetatarsal M1M2 angle? Analysis of a continuous series of 208 arthrodeses fixed with plates [Text] / F. Dalat, F. Cottalorda, M.H. Fessy [et al.] // Orthop. Traumatol. Surg. Res. – 2015. – Oct., Vol. 101(6). – P. 709–714. XII. Dynamic plantar pressure distribution after percutaneous hallux valgus correction using the Reverdin-Isham osteotomy [Text]: [Article in Spanish] / G. Rodríguez-Reyes, E. López-Gavito, A.I. Pérez-Sanpablo [et al.] // Rev. Invest. Clin. – 2014. – Jul., Vol. 66, Suppl. 1. – P. S79-S84. XIII. Efficacy of Bilateral Simultaneous Hallux Valgus Correction Compared to Unilateral [Text] / A.V. Boychenko, L.N. Solomin, S.G. Parfeyev [et al.] // Foot Ankle Int. – 2015. – Nov., Vol. 36(11). – P. 1339–1343. XIV. Endolog technique for correction of hallux valgus: a prospective study of 30 patients with 4-year follow-up [Text] / C. Biz, M. Corradin, I. Petretta [et al.] // J. OrthopSurg Res. – 2015. – Jul. 2, № 10. – P. 102. XV. First metatarsal proximal opening wedge osteotomy for correction of hallux valgus deformity: comparison of straight versus oblique osteotomy [Text] / S.H. Han, E.H. Park, J. Jo [et al.] // Yonsei Med. J. – 2015. – May, Vol. 56(3). – P. 744–752. XVI. Long-term outcome of joint-preserving surgery by combination metatarsal osteotomies for shortening for forefoot deformity in patients with rheumatoid arthritis [Text] / H. Niki, T. Hirano, Y. Akiyama [et al.] // Mod. Rheumatol. – 2015. – Sep., Vol. 25(5). – P. 683–638. XVII. Maceira, E. Transfer metatarsalgia post hallux valgus surgery [Text] / E. Maceira, M. Monteagudo // Foot Ankle Clin. – 2014. – Jun., Vol. 19(2). – P.285–307. XVIII. Nielson, D.L. Absorbable fixation in forefoot surgery: a viable alternative to metallic hardware [Text] / D.L. Nielson, N.J. Young, C.M. Zelen // Clin. Podiatr. Med. Surg. – 2013. – Jul., Vol. 30(3). – P. 283–293 XIX. Patient’s satisfaction after outpatient forefoot surgery: Study of 619 cases [Text] / A. Mouton, V. Le Strat, D. Medevielle [et al.] // Orthop. Traumatol. Surg. Res. – 2015. – Oct., Vol. 101(6 Suppl.). – P. S217–S220. XX. Preference of surgical procedure for the forefoot deformity in the rheumatoid arthritis patients–A prospective, randomized, internal controlled study [Text] / M. Tada, T. Koike, T. Okano [et al.] // Mod. Rheumatol. – 2015. – May., Vol. 25(3). – P.362–366. XXI. Redfern, D. Percutaneous Surgery of the Forefoot [Text] / D. Redfern, J. Vernois, B.P. Legré // Clin. Podiatr. Med. Surg. – 2015. – Jul., Vol. 32(3). – P. 291–332. XXII. Singh, D. Bullous pemphigoid after bilateral forefoot surgery [Text] / D. Singh, A. Swann // Foot Ankle Spec. – 2015. – Feb., Vol. 8(1). – P. 68–72. XXIII. Treatment of moderate hallux valgus by percutaneous, extra-articular reverse-L Chevron (PERC) osteotomy [Text] / J. Lucas y Hernandez, P. Golanó, S. Roshan-Zamir [et al.] // Bone Joint J. – 2016. – Mar., Vol. 98-B(3). – P. 365–373. XXIV. Weil, L.Jr. Scarf osteotomy for correction of hallux abducto valgus deformity [Text] / L.Jr. Weil, M. Bowen // Clin. Podiatr. Med. Surg. – 2014. – Apr., Vol.31(2). – P. 233–246. View | Download QUANTITATIVE ULTRASONOGRAPHY OF THE STOMACH AND SMALL INTESTINE IN HEALTHYDOGS Authors: Roman A. Tcygansky,Irina I. Nekrasova,Angelina N. Shulunova,Alexander I.Sidelnikov, DOI: https://doi.org/10.26782/jmcms.spl.10/2020.06.00045 Abstract: Purpose.To determine the quantitative echogenicity indicators (and their ratio) of the layers of stomach and small intestine wall in healthy dogs. Methods. A prospective 3-year study of 86 healthy dogs (aged 1-7 yrs) of different breeds and of both sexes. Echo homogeneity and echogenicity of the stomach and intestines wall were determined by the method of Silina, T.L., et al. (2010) in absolute values ​​of average brightness levels of ultrasound image pixels using the 8-bit scale with 256 shades of gray. Results. Quantitative echogenicity indicators of the stomach and the small intestine wall in dogs were determined. Based on the numerical values ​​characterizing echogenicity distribution in each layer of a separate structure of the digestive system, the coefficient of gastric echogenicity is determined as 1:2.4:1.1 (mucosa/submucosa/muscle layers, respectively), the coefficient of duodenum and jejunum echogenicity is determined as 1:3.5:2 and that of ileum is 1:1.8:1. Clinical significance. The echogenicity coefficient of the wall of the digestive system allows an objective assessment of the stomach and intestines wall and can serve as the basis for a quantitative assessment of echogenicity changes for various pathologies of the digestive system Keywords: Ultrasound (US),echogenicity,echogenicity coefficient,digestive system,dogs,stomach,intestines, Refference: I. Agut, A. Ultrasound examination of the small intestine in small animals // Veterinary focus. 2009.Vol. 19. No. 1. P. 20-29. II. Bull. 4.RF patent 2398513, IPC51A61B8 / 00 A61B8 / 14 (2006.01) A method for determining the homoechogeneity and the degree of echogenicity of an ultrasound image / T. Silina, S. S. Golubkov. – No. 2008149311/14; declared 12/16/2008; publ. 09/10/2010 III. Choi, M., Seo, M., Jung, J., Lee, K., Yoon, J., Chang, D., Park, RD. Evaluation of canine gastric motility with ultrasonography // J. of Veterinary Medical Science. – 2002. Vol. 64. – № 1. – P. 17-21. IV. Delaney, F., O’Brien, R.T., Waller, K.Ultrasound evaluation of small bowel thickness compared to weight in normal dogs // Veterinary Radiology and Ultrasound. 2003 Vol. 44, № 5. Р 577-580. V. Diana, A., Specchi, S., Toaldo, M.B., Chiocchetti, R., Laghi, A., Cipone, M. Contrast-enhanced ultrasonography of the small bowel in healthy cats // Veterinary Radiology and Ultrasound. – 2011. – Vol. 52, № 5. – Р. 555-559. VI. Garcia, D.A.A., Froes, T.R. Errors in abdominal ultrasonography in dogs and cats // J. of Small Animal Practice. – 2012. Vol. 53. – № 9. – P. 514-519. VII. Garcia, D.A.A., Froes, T.R. Importance of fasting in preparing dogs for abdominal ultrasound examination of specific organs // J. of Small Animal Practice. – 2014. Vol. 55. – № 12. – P. 630-634. VIII. Gaschen, L., Granger, L.A., Oubre, O., Shannon, D., Kearney, M., Gaschen, F. The effects of food intake and its fat composition on intestinal echogenicity in healthy dogs // Veterinary Radiology and Ultrasound. 2016. Vol. 57. № 5. P. 546-550 IX. Gaschen, L., Kircher, P., Stussi, A., Allenspach, K., Gaschen, F., Doherr, M., Grone, A. Comparison of ultrasonographic findings with clinical activity index (CIBDAI) and diagnosis in dogs with chronic enteropathies // Veterinary radiology and ultrasound. – 2008. – Vol. 49. – № 1. – Р. 56-64. X. Gil, E.M.U. Garcia, D.A.A. Froes, T.R. In utero development of the fetal intestine: Sonographic evaluation and correlation with gestational age and fetal maturity in dogs // Theriogenology. 2015. Vol. 84, №5. Р. 681-686. XI. Gladwin, N.E. Penninck, D.G., Webster, C.R.L. Ultrasonographic evaluation of the thickness of the wall layers in the intestinal tract of dogs // American Journal of Veterinary Research. 2014. Vol. 75, №4. Р. 349-353. XII. Gory, G., Rault, D.N., Gatel, L, Dally, C., Belli, P., Couturier, L., Cauvin, E. Ultrasonographic characteristics of the abdominal esophagus and cardia in dogs // Veterinary Radiology and Ultrasound. 2014. Vol. 55, № 5. P. 552-560. XIII. Günther, C.S. Lautenschläger, I.E., Scholz, V.B. Assessment of the inter- and intraobserver variability for sonographical measurement of intestinal wall thickness in dogs without gastrointestinal diseases | [Inter-und Intraobserver-Variabilitätbei der sonographischenBestimmung der Darmwanddicke von HundenohnegastrointestinaleErkrankungen] // Tierarztliche Praxis Ausgabe K: Kleintiere – Heimtiere. 2014. Vol. 42 №2. Р. 71-78. XIV. Hanazono, K., Fukumoto, S., Hirayama, K., Takashima, K., Yamane, Y., Natsuhori, M., Kadosawa, T., Uchide, T. Predicting Metastatic Potential of gastrointestinal stromal tumors in dog by ultrasonography // J. of Veterinary Medical Science. – 2012. Vol. 74. – № 11. – P. 1477-1482. XV. Heng, H.G., Lim, Ch.K., Miller, M.A., Broman, M.M.Prevalence and significance of an ultrasonographic colonic muscularishyperechoic band paralleling the serosal layer in dogs // Veterinary Radiology and Ultrasound. 2015. Vol. 56 № 6. P. 666-669. XVI. Ivančić, M., Mai, W. Qualitative and quantitative comparison of renal vs. hepatic ultrasonographic intensity in healthy dogs // Veterinary Radiology and Ultrasound. 2008. Vol. 49. № 4. Р. 368-373. XVII. Lamb, C.R., Mantis, P. Ultrasonographic features of intestinal intussusception in 10 dogs // J. of Small Animal Practice. – 2008. Vol. 39. – № 9. – P. 437-441. XVIII. Le Roux, A. B., Granger, L.A., Wakamatsu, N, Kearney, M.T., Gaschen, L.Ex vivo correlation of ultrasonographic small intestinal wall layering with histology in dogs // Veterinary Radiology and Ultrasound.2016. Vol. 57. № 5. P. 534-545. XIX. Nielsen, T. High-frequency ultrasound of Peyer’s patches in the small intestine of young cats / T. Nielsen [et al.] // Journal of Feline Medicine and Surgery. – 2015. – Vol. 18, № 4. – Р. 303-309. XX. PenninckD.G. Gastrointestinal tract. In Nyland T.G., Mattoon J.S. (eds): Small Animal Diagnostic Ultrasound. Philadelphia: WB Saunders. 2002, 2nd ed. Р. 207-230. XXI. PenninckD.G. Gastrointestinal tract. In: PenninckD.G.,d´Anjou M.A. Atlas of Small Animal Ultrasonography. Blackwell Publishing, Iowa. 2008. Р. 281-318. XXII. Penninck, D.G., Nyland, T.G., Kerr, L.Y., Fisher, P.E. Ultrasonographic evaluation of gastrointestinal diseases in small animals // Veterinary Radiology. 1990. Vol. 31. №3. P. 134-141. XXIII. Penninck, D.G.,Webster, C.R.L.,Keating, J.H. The sonographic appearance of intestinal mucosal fibrosis in cats // Veterinary Radiology and Ultrasound. – 2010. – Vol. 51, № 4. – Р. 458-461. XXIV. Pollard, R.E.,Johnson, E.G., Pesavento, P.A., Baker, T.W., Cannon, A.B., Kass, P.H., Marks, S.L. Effects of corn oil administered orally on conspicuity of ultrasonographic small intestinal lesions in dogs with lymphangiectasia // Veterinary Radiology and Ultrasound. 2013. Vol. 54. № 4. P. 390-397. XXV. Rault, D.N., Besso, J.G., Boulouha, L., Begon, D., Ruel, Y. Significance of a common extended mucosal interface observed in transverse small intestine sonograms // Veterinary Radiology and Ultrasound. 2004. Vol. 45. №2. Р. 177-179. XXVI. Sutherland-Smith, J., Penninck, D.G., Keating, J.H., Webster, C.R.L. Ultrasonographic intestinal hyperechoic mucosal striations in dogs are associated with lacteal dilation // Veterinary Radiology and Ultrasound. – 2007. Vol. 48. – № 1. – P. 51-57. View | Download EVALUATION OF ADAPTIVE POTENTIAL IN MEDICAL STUDENTS IN THE CONTEXT OF SEASONAL DYNAMICS Authors: Larisa A. Merdenova,Elena A. Takoeva,Marina I. Nartikoeva,Victoria A. Belyayeva,Fatima S. Datieva,Larisa R. Datieva, DOI: https://doi.org/10.26782/jmcms.spl.10/2020.06.00046 Abstract: The aim of this work was to assess the functional reserves of the body to quantify individual health; adaptation, psychophysiological characteristics of the health quality of medical students in different seasons of the year. When studying the temporal organization of physiological functions, the rhythm parameters of physiological functions were determined, followed by processing the results using the Cosinor Analysis program, which reveals rhythms with an unknown period for unequal observations, evaluates 5 parameters of sinusoidal rhythms (mesor, amplitude, acrophase, period, reliability). The essence of desynchronization is the mismatch of circadian rhythms among themselves or destruction of the rhythms architectonics (instability of acrophases or their disappearance). Desynchronization with respect to the rhythmic structure of the body is of a disregulatory nature, most pronounced in pathological desynchronization. High neurotism, increased anxiety reinforces the tendency to internal desynchronization, which increases with stress. During examination stress, students experience a decrease in the stability of the temporary organization of the biosystem and the tension of adaptive mechanisms develops, which affects attention, mental performance and the quality of adaptation to the educational process. Time is shortened and the amplitude of the “initial minute” decreases, personal and situational anxiety develops, and the level of psychophysiological adaptation decreases. The results of the work are priority because they can be used in assessing quality and level of health. Keywords: Desynchronosis,biorhythms,psycho-emotional stress,mesor,acrophase,amplitude,individual minute, Refference: I. Arendt, J., Middleton, B. Human seasonal and circadian studies in Antarctica (Halley, 75_S) – General and Comparative Endocrinology. 2017: 250-259. (http://dx.doi.org/10.1016/j.ygcen.2017.05.010). II. BalandinYu.P. A brief methodological guide on the use of the agro-industrial complex “Health Sources” / Yu.P. Balandin, V.S. Generalov, V.F. Shishlov. Ryazan, 2007. III. Buslovskaya L.K. Adaptation reactions in students at exam stress/ L.K. Buslovskaya, Yu.P. Ryzhkova. Scientific bulletin of Belgorod State University. Series: Natural Sciences. 2011;17(21):46-52. IV. Chutko L. S. Sindromjemocionalnogovygoranija – Klinicheskie I psihologicheskieaspekty./ L.S Chutko. Moscow: MEDpress-inform, 2013. V. Eroshina K., Paul Wilkinson, Martin Mackey. The role of environmental and social factors in the occurrence of diseases of the respiratory tract in children of primary school age in Moscow. Medicine. 2013:57-71. VI. Fagrell B. “Microcirculation of the Skin”. The physiology and pharmacology of the microcirculation. 2013:423. VII. Gurova O.A. Change in blood microcirculation in students throughout the day. New research. 2013; 2 (35):66-71. VIII. Khetagurova L.G. – Stress/Ed. L.G. Khetagurov. Vladikavkaz: Project-Press Publishing House, 2010. IX. Khetagurova L.G., Urumova L.T. et al. Stress (chronomedical aspects). International Journal of Experimental Education 2010; 12: 30-31. X. Khetagurova L.G., Salbiev K.D., Belyaev S.D., Datieva F.S., Kataeva M.R., Tagaeva I.R. Chronopathology (experimental and clinical aspects/ Ed. L.G. Khetagurov, K.D. Salbiev, S.D.Belyaev, F.S. Datiev, M.R. Kataev, I.R. Tagaev. Moscow: Science, 2004. XI. KlassinaS.Ya. Self-regulatory reactions in the microvasculature of the nail bed of fingers in person with psycho-emotional stress. Bulletin of new medical technologies, 2013; 2 (XX):408-412. XII. Kovtun O.P., Anufrieva E.V., Polushina L.G. Gender-age characteristics of the component composition of the body in overweight and obese schoolchildren. Medical Science and Education of the Urals. 2019; 3:139-145. XIII. Kuchieva M.B., Chaplygina E.V., Vartanova O.T., Aksenova O.A., Evtushenko A.V., Nor-Arevyan K.A., Elizarova E.S., Efremova E.N. A comparative analysis of the constitutional features of various generations of healthy young men and women in the Rostov Region. Modern problems of science and education. 2017; 5:50-59. XIV. Mathias Adamsson1, ThorbjörnLaike, Takeshi Morita – Annual variation in daily light expo-sure and circadian change of melatonin and cortisol consent rations at a northern latitude with large seasonal differences in photoperiod length – Journal of Physiological Anthropology. 2017; 36: 6 – 15. XV. Merdenova L.A., Tagaeva I.R., Takoeva E.A. Features of the study of biological rhythms in children. The results of fundamental and applied research in the field of natural and technical sciences. Materials of the International Scientific and Practical Conference. Belgorod, 2017, pp. 119-123. XVI. Ogarysheva N.V. The dynamics of mental performance as a criterion for adapting to the teaching load. Bulletin of the Samara Scientific Center of the Russian Academy of Sciences. 2014;16:5 (1): S.636-638. XVII. Pekmezovi T. Gene-environment interaction: A genetic-epidemiological approach. Journal of Medical Biochemistry. 2010;29:131-134. XVIII. Rapoport S.I., Chibisov S.M. Chronobiology and chronomedicine: history and prospects/Ed. S.M. Chibisov, S.I. Rapoport ,, M.L. Blagonravova. Chronobiology and Chronomedicine: Peoples’ Friendship University of Russia (RUDN) Press. Moscow, 2018. XIX. Roustit M., Cracowski J.L. “Non-invasive assessment of skin microvascular function in humans: an insight into methods” – Microcirculation 2012; 19 (1): 47-64. XX. Rud V.O., FisunYu.O. – References of the circadian desinchronosis in students. Ukrainian Bulletin of Psychoneurology. 2010; 18(2) (63): 74-77. XXI. Takoeva Z. A., Medoeva N. O., Berezova D. T., Merdenova L. A. et al. Long-term analysis of the results of chronomonitoring of the health of the population of North Ossetia; Vladikavkaz Medical and Biological Bulletin. 2011; 12(12,19): 32-38. XXII. Urumova L.T., Tagaeva I.R., Takoeva E.A., Datieva L.R. – The study of some health indicators of medical students in different periods of the year. Health and education in the XXI century. 2016; 18(4): 94-97. XXIII. Westman J. – Complex diseases. In: Medical genetics for the modern clinician. USA: Lippincott Williams & Wilkins, 2006. XXIV. Yadrischenskaya T.V. Circadian biorhythms of students and their importance in educational activities. Problems of higher education. Pacific State University Press. 2016; 2:176-178. View | Download TRIADIC COMPARATIVE ANALYSIS Authors: Stanislav A.Kudzh,Victor Ya. Tsvetkov, DOI: https://doi.org/10.26782/jmcms.spl.10/2020.06.00047 Abstract: The present study of comparison methods based on the triadic model introduces the following concepts: the relation of comparability and the relation of comparison, and object comparison and attributive comparison. The difference between active and passive qualitative comparison is shown, two triadic models of passive and active comparison and models for comparing two and three objects are described. Triadic comparison models are proposed as an alternative to dyadic comparison models. Comparison allows finding the common and the different; this approach is proposed for the analysis of the nomothetic and ideographic method of obtaining knowledge. The nomothetic method identifies and evaluates the general, while the ideographic method searches for unique in parameters and in combinations of parameters. Triadic comparison is used in systems and methods of argumentation, as well as in the analysis of consistency/inconsistency. Keywords: Comparative analysis,dyad,triad,triadic model,comparability relation,object comparison,attributive comparison,nomothetic method,ideographic method, Refference: I. AltafS., Aslam.M.Paired comparison analysis of the van Baarenmodel using Bayesian approach with noninformativeprior.Pakistan Journal of Statistics and Operation Research 8(2) (2012) 259{270. II. AmooreJ. E., VenstromD Correlations between stereochemical assessments and organoleptic analysis of odorous compounds. Olfaction and Taste (2016) 3{17. III. BarnesJ., KlingerR. Embedding projection for targeted cross-lingual sentiment: model comparisons and a real-world study. Journal of Artificial Intelligence Research 66 (2019) 691{742. doi.org/10.1613/jair.1.11561 IV. Castro-SchiloL., FerrerE.Comparison of nomothetic versus idiographic-oriented methods for making predictions about distal outcomes from time series data. Multivariate Behavioral Research 48(2) (2013) 175{207. V. De BonaG.et al. Classifying inconsistency measures using graphs. Journal of Artificial Intelligence Research 66 (2019) 937{987. VI. FideliR. La comparazione. Milano: Angeli, 1998. VII. GordonT. F., PrakkenH., WaltonD. The Carneades model of argument and burden of proof. Artificial Intelligence 10(15) (2007) 875{896. VIII. GrenzS.J. The social god and the relational self: A Triad theology of the imago Dei. Westminster: John Knox Press, 2001. IX. HermansH.J. M.On the integration of nomothetic and idiographic research methods in the study of personal meaning.Journal of Personality 56(4) (1988) 785{812. X. JamiesonK. G., NowakR. Active ranking using pairwise comparisons.Advances in Neural Information Processing Systems (2011) 2240{2248. XI. JongsmaC.Poythress’s triad logic: a review essay. Pro Rege 42(4) (2014) 6{15. XII. KärkkäinenV.M. Trinity and Religious Pluralism: The Doctrine of the Trinity in Christian Theology of Religions. London: Routledge, 2017. XIII. KudzhS. A., TsvetkovV.Ya. Triadic systems. Russian Technology Magazine 7(6) (2019) 74{882. XIV. NelsonK.E.Some observations from the perspective of the rare event cognitive comparison theory of language acquisition.Children’s Language 6 (1987) 289{331. XV. NiskanenA., WallnerJ., JärvisaloM.Synthesizing argumentation frameworks from examples. Journal of Artificial Intelligence Research 66 (2019) 503{554. XVI. PührerJ.Realizability of three-valued semantics for abstract dialectical frameworks.Artificial Intelligence 278 (2020) 103{198. XVII. SwansonG.Frameworks for comparative research: structural anthropology and the theory of action. In: Vallier, Ivan (Ed.). Comparative methods in sociology: essays on trends and applications.Berkeley: University of California Press, 1971 141{202. XVIII. TsvetkovV.Ya.Worldview model as the result of education.World Applied Sciences Journal 31(2) (2014) 211{215. XIX. TsvetkovV. Ya. Logical analysis and variable scales. Slavic Forum 4(22) (2018) 103{109. XX. Wang S. et al. Transit traffic analysis zone delineating method based on Thiessen polygon. Sustainability 6(4) (2014) 1821{1832. View | Download DEVELOPING TECHNOLOGY OF CREATING WEAR-RESISTANT CERAMIC COATING FOR ICE CYLINDER." JOURNAL OF MECHANICS OF CONTINUA AND MATHEMATICAL SCIENCES spl10, no. 1 (June 28, 2020). http://dx.doi.org/10.26782/jmcms.spl.10/2020.06.00048.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography