Academic literature on the topic 'Yield predictions'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Yield predictions.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Yield predictions"
Yadav, Kamini, and Hatim M. E. Geli. "Prediction of Crop Yield for New Mexico Based on Climate and Remote Sensing Data for the 1920–2019 Period." Land 10, no. 12 (December 15, 2021): 1389. http://dx.doi.org/10.3390/land10121389.
Full textMia, Md Suruj, Ryoya Tanabe, Luthfan Nur Habibi, Naoyuki Hashimoto, Koki Homma, Masayasu Maki, Tsutomu Matsui, and Takashi S. T. Tanaka. "Multimodal Deep Learning for Rice Yield Prediction Using UAV-Based Multispectral Imagery and Weather Data." Remote Sensing 15, no. 10 (May 10, 2023): 2511. http://dx.doi.org/10.3390/rs15102511.
Full textChatterjee, Sabyasachi, Swarup Kumar Mondal, Anupam Datta, and Hritik Kumar Gupta. "Enhancing Feature Optimization for Crop Yield Prediction Models." Current Agriculture Research Journal 12, no. 2 (September 10, 2024): 739–49. http://dx.doi.org/10.12944/carj.12.2.19.
Full textUlfa, Fathiyya, Thomas G. Orton, Yash P. Dang, and Neal W. Menzies. "Developing and Testing Remote-Sensing Indices to Represent within-Field Variation of Wheat Yields: Assessment of the Variation Explained by Simple Models." Agronomy 12, no. 2 (February 3, 2022): 384. http://dx.doi.org/10.3390/agronomy12020384.
Full textLutman, Peter J. W., Ruth Risiott, and H. Peter Ostermann. "Investigations into Alternative Methods to Predict the Competitive Effects of Weeds on Crop Yields." Weed Science 44, no. 2 (June 1996): 290–97. http://dx.doi.org/10.1017/s0043174500093917.
Full textYan, Zhangpeng, Weimin Zhai, and Chao Li. "A novel motherboard test item yield prediction model based on parallel feature extraction." Journal of Physics: Conference Series 2816, no. 1 (August 1, 2024): 012078. http://dx.doi.org/10.1088/1742-6596/2816/1/012078.
Full textGrzesiak, W., R. Lacroix, J. Wójcik, and P. Blaszczyk. "A comparison of neural network and multiple regression predictions for 305-day lactation yield using partial lactation records." Canadian Journal of Animal Science 83, no. 2 (June 1, 2003): 307–10. http://dx.doi.org/10.4141/a02-002.
Full textVishwajeet Singh, Med Ram Verma, and Subhash Kumar Yadav. "PREDICTIVE MODELLING FOR SUGARCANE PRODUCTION: A COMPREHENSIVE COMPARISON OF ARIMA AND MACHINE LEARNING ALGORITHMS." Applied Biological Research 26, no. 2 (May 30, 2024): 199–209. http://dx.doi.org/10.48165/abr.2024.26.01.23.
Full textEngen, Martin, Erik Sandø, Benjamin Lucas Oscar Sjølander, Simon Arenberg, Rashmi Gupta, and Morten Goodwin. "Farm-Scale Crop Yield Prediction from Multi-Temporal Data Using Deep Hybrid Neural Networks." Agronomy 11, no. 12 (December 18, 2021): 2576. http://dx.doi.org/10.3390/agronomy11122576.
Full textSemenov, Mikhail A., Rowan A. C. Mitchell, Andrew P. Whitmore, Malcolm J. Hawkesford, Martin A. J. Parry, and Peter R. Shewry. "Shortcomings in wheat yield predictions." Nature Climate Change 2, no. 6 (April 11, 2012): 380–82. http://dx.doi.org/10.1038/nclimate1511.
Full textDissertations / Theses on the topic "Yield predictions"
Vagh, Yunous. "Mining climate data for shire level wheat yield predictions in Western Australia." Thesis, Edith Cowan University, Research Online, Perth, Western Australia, 2013. https://ro.ecu.edu.au/theses/695.
Full textYildirim, Sibel [Verfasser], Urs [Akademischer Betreuer] Schmidhalter, Eckart [Gutachter] Priesack, and Urs [Gutachter] Schmidhalter. "Wheat and maize yield development in Bavaria until 2045 : Usage of statistical models for predictions / Sibel Yildirim ; Gutachter: Eckart Priesack, Urs Schmidhalter ; Betreuer: Urs Schmidhalter." München : Universitätsbibliothek der TU München, 2020. http://d-nb.info/122807318X/34.
Full textFerragina, Alessandro. "New phenotypes predictions obtained by innovative infrared spectroscopy calibrations and their genetic analysis in dairy cattle populations." Doctoral thesis, Università degli studi di Padova, 2015. http://hdl.handle.net/11577/3424294.
Full textL’obiettivo principale di questa tesi è stato quello di valutare l’efficienza della spettroscopia a infrarosso per la predizione, a livello individuale, di “nuovi fenotipi” che descrivono le proprietà tecnologiche del latte bovino. Sono stati testati approcci statistici di calibrazione classici e innovativi, e sono stati inoltre stimati e valutati i parametri genetici delle predizioni ottenute per verificarne la possibile inclusione negli indici di selezione come metodo indiretto. Su un totale di 1,264 campioni di latte individuale, sono state effettuate le analisi che hanno previsto l’impiego di una procedura standard di micro-caseificazione per la misura di 7 caratteri relativi alla trasformazione casearia, in particolare sono state rilevate 3 misure di resa espresse come percentuale del latte lavorato, (%CYs; resa a fresco, resa in solidi totali, acqua ritenuta nella cagliata) e 4 misure di recupero di nutrienti nella cagliata o persi nel siero (%RECs; grasso, proteina, solidi totali ed energia). Le proprietà di coagulazione tradizionali (tempo di coagulazione, RCT; tempo di rassodamento, k20; consistenza del coagulo a 30 e 45 minuti dall’aggiunta del caglio, a30 e a45 rispettivamente) sono state misurate con un Formagraph (Foss Electric A/S, Hillerød, Denmark) in un test della consistenza del coagulo (CF) di 90 min. Utilizzando tutte le 360 informazioni di CF per campione registrate nei 90 min, sono stati inoltre ricavati, attraverso un modello matematico, dei nuovi parametri (tempo di coagulazione modellizzato, RCTeq; valore asintotico potenziale di CF per un tempo infinito, CFP; costante di rassodamento, kCF; costante di sineresi, kSR; valore massimo di CF, CFmax; tempo necessario affinché CF raggiunga il livello massimo, tmax). Per ogni campione sono stati raccolti due spettri a infrarosso in trasformata di Fourier (FTIR), utilizzando un MilkoScan FT6000 (Foss Electric, Hillerød, Denmark) nel range spettrale compreso tra 5,000 e 900 onde × cm-1, i due spettri sono stati mediati prima delle analisi. Un primo processo di calibrazione è stato effettuato per la predizione di %CYs e %RECs, utilizzando il software WinISI II (Infrasoft International LLC, State College, PA) in cui sono implementati dei modelli basati sulla partial least square regression (PLS). I risultati ottenuti hanno mostrato ottime accuratezze di predizione tranne che per il recupero di grasso. Per migliorare le accuratezze di predizione, sono stati testati dei modelli Bayesiani, comunemente usati in genomica, e confrontati con la PLS. Dai risultati ottenuti, per alcuni caratteri difficili da predire, si è visto che i modelli Bayesiani hanno delle prestazioni migliori. Utilizzando una procedura di validazione esterna come metodo di valutazione delle prestazioni di calibrazione, la PLS è stata utilizzata per la predizione di %CYs e %RECs, mentre i modelli Bayesiani sono stati utilizzati per la predizione delle proprietà di coagulazione e per i parametri derivanti dalla modellizzazione della consistenza del coagulo. In entrambi i casi i risultati ottenuti, relativi all’accuratezza di predizione, hanno mostrato un’efficienza medio bassa. Inoltre, sono stati stimati i parametri genetici dei valori predetti nel processo di validazione e nonostante la medio-bassa accuratezza delle predizioni, le ereditabilità dei valori predetti sono state simili o più alte dei corrispondenti valori misurati. L’impiego dei valori predetti come metodo di selezione indiretta è stato valutato attraverso la stima delle correlazioni genetiche tra valori predetti e misurati. I risultati hanno dimostrato, anche in questo caso che le correlazioni genetiche erano sempre superiori a quelle fenotipiche e nella maggior parte dei casi vicine o superiori al 90%. Infine, le equazioni di predizione sviluppate per %CYs e %RECs, sono state impiegate per la predizione di questi fenotipi su un set di dati costituito da circa 200,000 spettri di campioni individuali di latte di vacche di razza Frisona, Bruna e Pezzata Rossa italiane. I parametri genetici delle predizioni ottenute per ogni carattere sono stati stimati, dimostrando di essere ereditabili, con valori di ereditabilità simili a quelli dei valori misurati. Le correlazioni genetiche tra i valori predetti di %CYs e %RECs, e quelli relativi ai dati produttivi e di composizione del latte, hanno dimostrato che i modelli di selezione in uso hanno un effetto limitato sul miglioramento dei parametri tecnologici. Proteina e grasso del latte non spiegano tutta la variabilità genetica di %CYs e, in particolare, di %RECs, quindi per il miglioramento dell’attitudine casearia e conseguente valorizzazione economica del latte, questi caratteri andrebbero selezionati direttamente
Bayazit, Dervis. "Yield Curve Estimation And Prediction With Vasicek Model." Master's thesis, METU, 2004. http://etd.lib.metu.edu.tr/upload/12605126/index.pdf.
Full textMisailidis, Nikiforos. "Understanding and predicting alcohol yield from wheat." Thesis, University of Manchester, 2010. https://www.research.manchester.ac.uk/portal/en/theses/understanding-and-predicting-alcohol-yield-from-wheat(845cbadd-5825-488e-94e7-160c60b2ef0d).html.
Full textVaradan, Sridhar. "Efficient vlsi yield prediction with consideration of partial correlations." [College Station, Tex. : Texas A&M University, 2007. http://hdl.handle.net/1969.1/ETD-TAMU-2503.
Full textLima, Isabel Maria Sarmento de Beires de Abreu e. "Previsão de produção da casta Touriga Franca na Região do Douro com base nas componentes de rendimento." Master's thesis, ISA, 2014. http://hdl.handle.net/10400.5/6801.
Full textYield predicting is a great advantage for winegrowers' competitiveness. To determine which variables explain most of the yield's variation at harvest in a Touriga Franca parcel at Quinta do Vale D. Maria (Douro), a sample of 98 grapevines was selected and its yield components studied through2013. Using an 18 grapevine subsample, 3 yield predicting models were achieved. The first uses "bunch number/vine", "average stem weight/bunch", "berry weight/spur" and "average berry number/ bunch" and explains 92% of yield variation per vine with the smallest statistical deviation measures, offering the best quality estimate. The second uses "fertility index/spur" and "bunch number" to explain 73% of yield variation per vine, with intermediate deviation measures. The third model allows a yield estimate through bunch number per vine, with a R2 of 0,72 , but higher deviation measures than the previous one. The last two models are determined through observation, avoiding bunch destruction. The choice of which model to use depends on the quality of the estimate and the practicality desired by the winegrower. This work showed good results relating to yield predicting for Touriga Franca, a poorly studied variety despite its importance in Douro. The implementing of these procedures will enable production control in the biggest parcel in Quinta do Vale D. Maria.
Iqbal, Muhammad Mutahir. "Analysis of long-term experiment on cotton using a blend of theoretical and new graphical methods to study treatment effects over time." Thesis, University of Kent, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.298101.
Full textMsadala, V. P. "Sediment yield prediction based on analytical methods and mathematical modelling." Thesis, Stellenbosch : University of Stellenbosch, 2009. http://hdl.handle.net/10019.1/2863.
Full textENGLISH ABSTRACT: A study of the state of reservoir sedimentation in South Africa based on reservoir sediment deposit data, has shown that a considerable number of reservoirs have serious sedimentation problems. The analysis of the reservoir sediment deposit data showed that almost 25% of the total number of reservoirs have lost between 10 to 30% of their original storage capacity. The average storage loss due to sedimentation in South African reservoirs is approximately 0.3% per year while the average annual storage loss for all the reservoirs in the world is 0.8%. The aim of this research was to develop sediment yield prediction methods based on analytical approaches and mathematical modelling. The sediment yield prediction methods can be used in planning and management of water resources particularly in reservoir sedimentation control. The catchment erosion and sediment yield modelling methods can be applied in temporal and spatial analysis of sediment yields which results are essential for detailed design of water resources, particularly in the identification of critical erosion areas, sediment sources and formulation of catchment management strategies. Current analytical methods for the prediction of sediment yield have been reviewed. Nine sediment yield regions have been demarcated based on the observed sediment yields and catchment characteristics. Empirical and probabilistic approaches were investigated. The probabilistic approach is based on analysis of the observed sediment yields that were calculated from reservoir sediment deposit, river suspended sediment sampling data and soil erodibility data. The empirical equations have been derived from regression analysis of the variables that were envisaged to have a significant effect on erosion and sediment yields in South Africa. Empirical equations have been developed and shown to have accurate and reliable predictive capability in six of the nine regions. The probabilistic approach has been recommended for the prediction of sediment yields in the remaining three regions where reliable regression equations could not be derived. The predictive accuracy of both the probabilistic and empirical approaches was checked and verified using the discrepancy ratio and graphs of the observed and calculated data. While the analytical methods are needed to predict the sediment yield for the whole catchment, mathematical modelling to predict sediment yields is applied for more detailed analysis of sediment yield within the catchment. An evaluation of available catchment sediment yield mathematical modelling systems was carried out. The main criteria for the choice of a numerical model to be adopted for detailed evaluation was based on the following considerations: the model’s capabilities, user requirements and its application. The SHETRAN model (Ewen et al., 2000) was therefore specifically chosen because of its ability to simulate relatively larger catchment areas (it can handle catchment scales from less than 1km2 to 2500km2), its ability to simulate erosion in channels, gullies and landslides, its applicability to a wide range of land-use types and ability to simulate land use changes. Another model, ACRU (Smithers et al., 2002) was also reviewed. The aim of the model evaluation was to provide a conceptual understanding of catchment sediment yield modelling processes comprising model set up, calibration, validation and simulation. The detailed evaluation of the SHETRAN model was done through a case study of Glenmaggie Dam in Australia. The flow was calibrated and validated using data from 1975 to 1984, and 1996 to 2006 respectively. The results for both the calibration and validation were reasonable and reliable. The sediment load was validated against turbidity derived sediment load data from 1996 to 2006. The model was used to identify sources of sediment and areas of higher sediment yield. The land use of a selected sub-catchment was altered to analyse the impact of land use and vegetative cover on the sediment yield. Based on the results, the SHETRAN model was confirmed to be a reliable model for catchment sediment yield modelling including simulation of different land uses.
AFRIKAANSE OPSOMMING: ‘n Studie van die stand van damtoeslikking in Suid-Afrika toon dat daar ernstige toeslikkingsprobleme by baie reservoirs bestaan. ’n Ontleding van die toeslikkingsyfers gegrond op damkomopmetings toon dat omtrent 25% van die totale getal reservoirs tussen 10 en 30% van hulle oorspronklike opgaarvermoë verloor het. Die gemiddelde tempo van damtoeslikking in Suid-Afrika is 0.3%/jaar, wat laer is as die wêreld gemiddeld van 0.8%/jaar. Die oogmerk met hierdie navorsing was om sedimentlewering voorspellingsmetodes te ontwikkel deur gebruik te maak van analitiese metodes en wiskundige modellering. Die sedimentlewering voorspellingsmetodes kan gebruik word vir die beplanning en bestuur van waterbronne en veral vir damtoeslikking beheer. Die opvangsgebied erosie en die sedimentlewering modelleringsmetodes kan toegepas word in tydveranderlike en ruimtelike ontleding van sedimentlewering. Hierdie inligting word benodig vir die detail ontwerp van waterhulpbronne en veral vir die identifisering van kritiese erosiegebiede, bronne van sediment en die formulering van opvangsgebied-bestuur strategië. ‘n Literatuuroorsig oor die huidige metodes vir die voorspelling van erosie en sedimentlewering is gedoen. Nege sedimentasie streke is afgebaken in Suid-Afrika, gegrond op waargenome damtoeslikkingsdata en opvangsgebied-eienskappe. Proefondervindelike en waarskynlikheidsbenaderinge is ondersoek. Die waarskynlikheidsbenadering is gegrond op die ontleding van waargenome damtoeslikking wat bereken is uit reservoir opmeting data en rivier gesuspendeerde sediment data, asook data oor gronderosie. Die proefondervindelike metode se vergelykings is afgelei vanuit regressie ontleding van die veranderlikes wat ‘n belangrike invloed het op die erosie en sedimentlewering in Suid-Afrika. Daar is bevestig dat die ontwikkelde proefondervindelike (empiriese) vergelykings ‘n akkurate en betroubare voorspellingsvermoë in ses van die nege streke het. Die waarskynlikheidsbenadering is aanbeveel vir die voorspelling van sedimentlewering in die ander drie streke, waar betroubare regressie vergelykings nie afgelei kon word nie. Die voorspellingsakkuraatheid van albei metodes is nagegaan en bevestig deur gebruik te maak van die teenstrydigheidsverhouding en grafieke van die waargenome en berekende data. Analitiese metodes van sedimentleweringsvoorspelling is nodig vir ‘n volle opvangsgebied, terwyl wiskundige modellering om sedimentlewerings te voorspel gebruik kan word om ‘n meer in diepte ontleding van die sedimentlewering binne ‘n opvanggebied te doen. ‘n Evaluasie van beskikbare wiskundige modelle wat opvangsgebied sedimentlewering kan voorspel, is gedoen. Die hoofkriteria vir die keuse van ‘n model vir gebruik by gedetailleerde ontleding is gegrond op die volgende: die vermoëns van die model, wat verbruikers benodig en die aanwending van die model. Die SHETRAN model (Ewen et al., 2000) is spesifiek gekies weens sy vermoë om relatief groter opvangsgebiede te simuleer (dit kan opvangsgebiede van 1km2 tot 2500km2 wees) asook om erosie in kanale, dongas en grondverskuiwing simuleer. Dit kan toegepas word op ‘n wye reeks grondtipes en kan ook die gevolge simuleer as die gebruik van die grond verander. ‘n Ander model, ACRU (Smithers et al., 2002) is ook ondersoek. Die doel van die modelevaluering was om ‘n konseptuele begrip te kry van sedimentlewering modelleringsprosesse wat die opstelling, kalibrasie, toetsing en simulasies insluit. Die volledige evaluasie van SHETRAN is gedoen deur middel van ‘n gevalle-studie van die Glenmaggiedam in Australia. Die riviervloei is gekalibreer en getoets deur gebruik te maak van data wat strek van 1975 tot 1984, en van 1996 tot 2006 onderskeidelik. Die resultate van beide die kalibrasie en die toetswas redelik en betroubaar. Die sedimentlading is gekalibreer teen velddata van 1996 tot 2006. Die model is gebruik om bronne van sediment te identifiseer, asook gebiede met ‘n hoër sedimentlewering. Die gebruik van die grond op ‘n gekose sub-opvangsgebied is verander om die impak van grondgebruik en plantbedekking op sedimentlewering te ontleed. Die resultate bewys dat die SHETRAN model ‘n betroubare model is vir groot opvangsgebied sedimentlewering modellering, asook vir die simulasie van verskillende grondgebruike.
Grennstam, Nancy. "On Predicting Milk Yield and Detection of Ill Cows." Thesis, KTH, Reglerteknik, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-107531.
Full textBooks on the topic "Yield predictions"
J, Zarnoch Stanley, and Southern Forest Experiment Station (New Orleans, La.), eds. Growth and yield predictions for thinned and unthinned slash pine plantations on cutover sites in the west Gulf Region. New Orleans, La: U.S. Dept. of Agriculture, Forest Service, Southern Forest Experiment Station, 1992.
Find full textInternational, Symposium on Stocks Assessment and Yield Prediction (1985 Quetico Centre Ontario). International Symposium on Stocks Assessment and Yield Prediction. Ottawa: Department of Fisheries and Oceans, 1987.
Find full textB, Yang, Outcalt Kenneth W, and United States. Forest Service. Southern Research Station, eds. Stand-yield prediction for managed Ocala sand pine. [Asheville, NC]: U.S. Dept. of Agriculture, Forest Service, Southern Research Station, 1997.
Find full textDennington, Roger W. New loblolly pine growth and yield prediction system. Atlanta, Ga: U.S. Dept. of Agriculture, Forest Service, Cooperative Forestry, 1988.
Find full textB, Yang, Outcalt Kenneth W, and United States. Forest Service. Southern Research Station, eds. Stand-yield prediction for managed Ocala sand pine. [Asheville, NC]: U.S. Dept. of Agriculture, Forest Service, Southern Research Station, 1997.
Find full textB, Yang, Outcalt Kenneth W, and United States. Forest Service. Southern Research Station., eds. Stand-yield prediction for managed Ocala sand pine. [Asheville, NC]: U.S. Dept. of Agriculture, Forest Service, Southern Research Station, 1997.
Find full textRockwood, D. L. Stand-yield prediction for managed Ocala sand pine. Ashville, NC: U.S. Dept. of Agriculture, Forest Service, Southern Research Station, 1997.
Find full textRockwood, D. L. Stand-yield prediction for managed Ocala sand pine. Ashville, NC: U.S. Dept. of Agriculture, Forest Service, Southern Research Station, 1997.
Find full textInternational Symposium on Stocks Assessment and Yield Prediction (1985 Quetico Centre, Ont.). International Symposium on Stocks Assessment and Yield Prediction [proceedings]. Ottawa: Fisheries and Oceans, Information and Publications Branch, 1987.
Find full textJosé de Jesús Pineda de Gyvez. IC defect-sensitivity: Theory and computational models for yield prediction. [s.l.]: [s.n.], 1991.
Find full textBook chapters on the topic "Yield predictions"
Lipping, Tarmo, and Petteri Ranta. "Digital Yield Predictions." In Digital Agriculture, 369–87. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-43548-5_12.
Full textArunya, K. G., and M. Krishnaveni. "Crop Yield Predictions Based on Machine Learning." In Lecture Notes in Mechanical Engineering, 355–66. Singapore: Springer Nature Singapore, 2024. https://doi.org/10.1007/978-981-97-6009-1_33.
Full textGupta, Anshika, Mohit Soni, and Kalpana Katiyar. "A Perusal of Machine-Learning Algorithms in Crop-Yield Predictions." In Data-Driven Farming, 101–25. Boca Raton: Auerbach Publications, 2024. http://dx.doi.org/10.1201/9781003485179-6.
Full textRambal, Serge. "Fire and Water Yield: A Survey and Predictions for Global Change." In Ecological Studies, 96–116. New York, NY: Springer New York, 1994. http://dx.doi.org/10.1007/978-1-4613-8395-6_6.
Full textMarapelli, Bhaskar, Lokeshwari Anamalamudi, Chandra Srinivas Potluri, Anil Carie, and Satish Anamalamudi. "Enhancing Agricultural Decision-Making Through Machine Learning-Based Crop Yield Predictions." In Data Science and Network Engineering, 209–24. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-6755-1_16.
Full textHabyarimana, Ephrem, and Sofia Michailidou. "Genomic Prediction and Selection in Support of Sorghum Value Chains." In Big Data in Bioeconomy, 207–18. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-71069-9_16.
Full textPlevris, Vagelis, Alejandro Jiménez Rios, and Usama A. Ebead. "Exploring the Predictive Performance of Simple Regression Models and ANN in 2D Truss Analysis." In Lecture Notes in Civil Engineering, 1473–85. Cham: Springer Nature Switzerland, 2025. https://doi.org/10.1007/978-3-031-69626-8_123.
Full textTakeyama, Tomohide, Thirapong Pipatpongsa, Atsushi Iizuka, and Hideki Ohta. "Stress–Strain Relationship for the Singular Point on the Yield Surface of the Elasto-Plastic Constitutive Model and Quantification of Metastability." In Geotechnical Predictions and Practice in Dealing with Geohazards, 229–39. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-5675-5_15.
Full textJayashree, T. R., N. V. Subba Reddy, and U. Dinesh Acharya. "Application of Ensemble Machine Learning Techniques in Yield Predictions of Major and Commercial Crops." In Communication and Intelligent Systems, 451–61. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-2100-3_35.
Full textStenner, A. Jackson, William P. Fisher, Mark H. Stone, and Donald Burdick. "Causal Rasch Models." In Explanatory Models, Unit Standards, and Personalized Learning in Educational Measurement, 223–50. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-3747-7_18.
Full textConference papers on the topic "Yield predictions"
Awad, Abdalaziz, Cyrus Behroozi, and Andreas Erdmann. "Integrated mask process modeling for better yield predictions." In Photomask Technology 2024, edited by Lawrence S. Melvin and Seong-Sue Kim, 63. SPIE, 2024. http://dx.doi.org/10.1117/12.3035191.
Full textRamachandran, A. Ganesh, S. K. Saravanan, M. Bhanumathi, M. Sangeetha, and F. Mary Harin Fernandez. "Computer Vision for Agricultural Automation - Algorithmic Solutions for Crop Yield Predictions." In 2024 International Conference on Recent Advances in Science and Engineering Technology (ICRASET), 1–5. IEEE, 2024. https://doi.org/10.1109/icraset63057.2024.10895915.
Full textLewis, Mandy R., Victoria Jancowski, Christopher E. Valdivia, and Karin Hinzer. "Importance of Spectral Effects in Energy Yield Predictions for High Latitude Locations." In 2024 IEEE 52nd Photovoltaic Specialist Conference (PVSC), 0842. IEEE, 2024. http://dx.doi.org/10.1109/pvsc57443.2024.10749076.
Full textN, Chandiraprakash, A. Chinnasamy, and M. Ashok. "Enhancing Agricultural Yield Predictions with Real-Time IoT Sensor Data and Machine Learning Integration." In 2024 International Conference on IoT Based Control Networks and Intelligent Systems (ICICNIS), 335–41. IEEE, 2024. https://doi.org/10.1109/icicnis64247.2024.10823110.
Full textGowsic, K., A. Ashwini, M. Arul Sankar, and R. Balamurugan. "Enhanced Crop Yield Predictions Amid Climate Change to Improve Agriculture With SwinTrans-Att Based Model." In 2025 International Conference on Visual Analytics and Data Visualization (ICVADV), 830–35. IEEE, 2025. https://doi.org/10.1109/icvadv63329.2025.10960928.
Full textSikarwar, Shailendra Singh, Sudha Pandey, S. Arun Kumar, Pramod Kumar, Praveen Kumar Sahu, and Beerpal Singh. "Optimizing Crop Yield Predictions Using K-Nearest Neighbors Regression: An Analysis of Temperature, Rainfall and Soil pH Influences." In 2024 1st International Conference on Advances in Computing, Communication and Networking (ICAC2N), 1336–41. IEEE, 2024. https://doi.org/10.1109/icac2n63387.2024.10894947.
Full textDuijvestijn, M. C. "Fission Yield Predictions with TALYS." In INTERNATIONAL CONFERENCE ON NUCLEAR DATA FOR SCIENCE AND TECHNOLOGY. AIP, 2005. http://dx.doi.org/10.1063/1.1945228.
Full textPeters, Ian Marius, Haohui Liu, and Tonio Buonassisi. "Photovoltaic energy yield predictions using satellite data." In Photonics for Solar Energy Systems VIII, edited by Jan Christoph Goldschmidt, Alexander N. Sprafke, and Gregory Pandraud. SPIE, 2020. http://dx.doi.org/10.1117/12.2557375.
Full textZach, Franz X., Srividya Cancheepuram, Kaushik Sah, Roel Gronheid, and Fatima Anis. "Multi-metrology: towards parametric yield predictions beyond EPE." In Metrology, Inspection, and Process Control XXXVII, edited by John C. Robinson and Matthew J. Sendelbach. SPIE, 2023. http://dx.doi.org/10.1117/12.2658042.
Full textXu, Siguang, and K. J. Weinmann. "Comparison of Hill's Yield Criteria in Forming Limit Predictions." In International Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1999. http://dx.doi.org/10.4271/1999-01-0999.
Full textReports on the topic "Yield predictions"
Dahl, Travis A., Anthony D. Kendall, and David W. Hyndman. Climate and Hydrologic Ensembling Lead to Differing Streamflow and and Sediment Yield Predictions. Engineer Research and Development Center (U.S.), February 2021. http://dx.doi.org/10.21079/11681/39760.
Full textZarnoch, Stanley J., Donald P. Feduccia, V. Clark Baldwin, and Tommy R. Dell. Growth and Yield Predictions for Thinned and Unthinned Slash Pine Plantations on Cutover Sites in the West Gulf Region. New Orleans, LA: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station, 1991. http://dx.doi.org/10.2737/so-rp-264.
Full textARCHIVE, Ryan Milligan. PR328-223813-R02 In Ditch Material Verification for Fittings and Seamless Pipe. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), June 2024. http://dx.doi.org/10.55274/r0000070.
Full textARCHIVE, Ryan Milligan, and Ravi Krishnamurthy. PR328-223813-R01 In-Ditch Material Verification for Seamless Pipe and Fittings. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), April 2024. http://dx.doi.org/10.55274/r0000064.
Full textTenney, Craig M., Kevin Nicholas Long, and Jamie Michael Kropka. Predictions of Yield Strength Evolution Due to Physical Aging of 828 DGEBA/DEA using the Simplified Potential Energy Clock Model. Office of Scientific and Technical Information (OSTI), February 2019. http://dx.doi.org/10.2172/1498246.
Full textChauhan, Vinod. L52294 Corrosion Assessment Guidance for High Strength Steels. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), August 2009. http://dx.doi.org/10.55274/r0010319.
Full textLevy Yeyati, Eduardo, and Martín González Rozada. Global Factors and Emerging Market Spreads. Inter-American Development Bank, May 2006. http://dx.doi.org/10.18235/0010852.
Full textZhu, Xian-Kui, Brian Leis, and Tom McGaughy. PR-185-173600-R01 Reference Stress for Metal-loss Assessment of Pipelines. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), August 2018. http://dx.doi.org/10.55274/r0011516.
Full textCho, Seonghwan, Tandra Bagchi, Jongmyung Jeon, and John E. Haddock. Material Characterization and Determination of MEPDG Input Parameters for Indiana Superpave 5 Asphalt Mixtures. Purdue University, 2024. http://dx.doi.org/10.5703/1288284317725.
Full textRobinson, W., Jeremiah Stache, Jeb Tingle, Carlos Gonzalez, Anastasios Ioannides, and James Rushing. Naval expeditionary runway construction criteria : P-8 Poseidon pavement requirements. Engineer Research and Development Center (U.S.), April 2023. http://dx.doi.org/10.21079/11681/46857.
Full text