Academic literature on the topic 'ZEB-REVO'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'ZEB-REVO.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "ZEB-REVO"

1

Chudá, J., M. Hunčaga, J. Tuček, and M. Mokroš. "THE HANDHELD MOBILE LASER SCANNERS AS A TOOL FOR ACCURATE POSITIONING UNDER FOREST CANOPY." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLIII-B1-2020 (August 6, 2020): 211–18. http://dx.doi.org/10.5194/isprs-archives-xliii-b1-2020-211-2020.

Full text
Abstract:
Abstract. Nowadays it is important to shift positional accuracy of object measurements under the forest canopy closer to the accuracy standards for land surveys due to the requirements in the field of ecosystem protection, sustainable forest management, property relations, and land register. Simultaneously, it is desirable to use the technology of environmental data acquisition which is not time consuming and cost demanding. Global Navigation Satellite Systems (GNSS) are the most used for positioning today. However, the usefulness and also the accuracy of the measurements with this technology depend on various factors (the strength of the GNSS signal, the geometric position of satellites, the multipath effect etc.). Based on the above mentioned facts, the usability of technology independent of GNSS indicates an ideal solution for positioning under the forest canopy. Several studies have studied the usability of Handheld Mobile Laser Scanners (HMLS) in complex environment. The goal of this paper was to verify a new data collection approach (HMLS with Simultaneous Localization and Mapping (SLAM) technology) for the forest environment practice. The main objective of our study was to reach a precision which complies with the accuracy standards for land surveys. The RMSE of derived positions from point cloud, produced by SLAM devices were 25.3 cm and 28.4 cm, for ZEB REVO and ZEB HORIZON, the handheld mobile laser SLAM scanners used in this study. ZEB HORIZON achieved twice as big accuracy of diameter of breast height (DBH) estimation as ZEB REVO.
APA, Harvard, Vancouver, ISO, and other styles
2

Dewez, Thomas J. B., Silvain Yart, Ysoline Thuon, Pierre Pannet, and Emmanuelle Plat. "Towards cavity-collapse hazard maps with Zeb-Revo handheld laser scanner point clouds." Photogrammetric Record 32, no. 160 (December 2017): 354–76. http://dx.doi.org/10.1111/phor.12223.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Salgues, H., H. Macher, and T. Landes. "EVALUATION OF MOBILE MAPPING SYSTEMS FOR INDOOR SURVEYS." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLIV-4/W1-2020 (September 3, 2020): 119–25. http://dx.doi.org/10.5194/isprs-archives-xliv-4-w1-2020-119-2020.

Full text
Abstract:
Abstract. With their high recording rate of hundreds of thousands of points acquired per second, speed of execution and a remote acquisition mode, SLAM based mobile mapping systems (MMS) are a very powerful solution for capturing 3D point clouds in real time, simply by walking in the area of interest. Regarding indoor surveys, these MMS have been integrated in handheld or backpack solutions and become fast scanning sensors. Despite their advantages, the geometric accuracy of 3D point clouds guaranteed with these sensors is lower than the one reachable with static TLS. In this paper the effectiveness of two recent mobile mapping systems namely the GeoSLAM ZEB-REVO RT and the more recent GreenValley LiBackPack C50 is investigated for indoor surveys. In order to perform a reliable assessment study, several datasets produced with each sensor are compared to the high-cost georeferenced point cloud obtained with static laser scanning target-based technique.
APA, Harvard, Vancouver, ISO, and other styles
4

Patrucco, G., F. Rinaudo, and A. Spreafico. "MULTI-SOURCE APPROACHES FOR COMPLEX ARCHITECTURE DOCUMENTATION: THE “PALAZZO DUCALE” IN GUBBIO (PERUGIA, ITALY)." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-2/W11 (May 5, 2019): 953–60. http://dx.doi.org/10.5194/isprs-archives-xlii-2-w11-953-2019.

Full text
Abstract:
<p><strong>Abstract.</strong> Nowadays, the employment of rapid mapping solutions for architectural survey is more and more considered, not only for the strong reduction of the primary data acquisition times, but also thanks to their adaptability to various contexts, especially in the framework of Cultural Heritage documentation where tailored solutions are required. The combined use of Mobile Mapping Systems (MMS), Unmanned Aerial Vehicles (UAV) for close range aerial image acquisition, and Terrestrial Laser Scanning (TLS) seems to be an effective solution for the architectonic scale compliant to the level of detail and accuracy of 1&amp;thinsp;:&amp;thinsp;200, and 1&amp;thinsp;:&amp;thinsp;100 scales. The present research tries to evaluate the use of a handheld MMS, the ZEB-Revo RT by Geoslam, an UAV, the DJI Mavic Pro, and a LiDAR system, the Faro Focus<sup>3D</sup> S 120 by CAM2. The complex case of the documentation metric survey of Palazzo Ducale in Gubbio, the Montefeltro’s Palace, now hosting the museum of itself, allows the comparison of the effectiveness of the used technologies.</p>
APA, Harvard, Vancouver, ISO, and other styles
5

Keitaanniemi, Aino, Antero Kukko, Juho-Pekka Virtanen, and Matti T. Vaaja. "Measurement Strategies for Street-Level SLAM Laser Scanning of Urban Environments." Photogrammetric Journal of Finland 27, no. 1 (2020): 1–19. http://dx.doi.org/10.17690/020271.1.

Full text
Abstract:
Data collection for street-level mapping is currently executed with terrestrial (TLS) or mobile laser scanners (MLS). However, these methods have disadvantages such as TLS requiring a lot of time and MLS being dependent on the global navigation satellite system (GNSS) and an inertial measurement unit (IMU). These are not problems if we use simultaneous localization and mapping (SLAM) based laser scanners. We studied the utility of a SLAM ZEB-REVO scanner for mapping street-level objects in an urban environment by analyzing the geometric and visual differences with a TLS reference. In addition to this, we examined the influence of traffic on the measurement strategy. The results of the study showed that SLAM-based laser scanners can be used for street-level mapping. However, the measurement strategy affects the point clouds. The strategy of walking trajectory in loops produced a 2 cm RMS and 4-6 mm mode of error even in not optimal situations of the sensor in the urban environment. However, it was possible to get an RMS under 2.2 cm and a 32 cm mode of error with other measurement strategies.
APA, Harvard, Vancouver, ISO, and other styles
6

Barba, S., A. di Filippo, M. Limongiello, and B. Messina. "INTEGRATION OF ACTIVE SENSORS FOR GEOMETRIC ANALYSIS OF THE CHAPEL OF THE HOLY SHROUD." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-2/W15 (August 20, 2019): 149–56. http://dx.doi.org/10.5194/isprs-archives-xlii-2-w15-149-2019.

Full text
Abstract:
<p><strong>Abstract.</strong> The digital acquisition of Cultural Heritage is a complex process, highly depending on the nature of the object as well as the purpose of its detection. Even if there are different survey techniques and sensors that allow the generation of realistic 3D models, defined by a good metric quality and a detail consistent with the geometric characteristics of the object, an interesting goal could be to develop a unified treatment of the methodologies. The Chapel of the Holy Shroud, with its intricate articulation, becomes the benchmark to test an integrated protocol between a terrestrial laser scanner (TLS) and a wearable mobile laser system (WMLS) based on a SLAM approach. In order to quantify the accuracy and precision of the latter solution, several forms of comparison are proposed. For the case study the ZEB-REVO, produced and marketed by GeoSLAM, is tested. Computations of cloud-to-cloud (C2C) absolute distances, comparisons of slices and extractions of planar features are performed, using stationary laser scanner (Faro Focus<sup>S</sup> S350) as a reference. Finally, the obtained results are reported, allowing us to assert that the quality of the WMLS measurements is compatible with the data provided by the manufacturer, thus making the instrumentation suitable for certain specific applications.</p>
APA, Harvard, Vancouver, ISO, and other styles
7

Chiabrando, F., C. Della Coletta, G. Sammartano, A. Spanò, and A. Spreafico. "“TORINO 1911” PROJECT: A CONTRIBUTION OF A SLAM-BASED SURVEY TO EXTENSIVE 3D HERITAGE MODELING." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-2 (May 30, 2018): 225–34. http://dx.doi.org/10.5194/isprs-archives-xlii-2-225-2018.

Full text
Abstract:
In the framework of the digital documentation of complex environments the advanced Geomatics researches offers integrated solution and multi-sensor strategies for the 3D accurate reconstruction of stratified structures and articulated volumes in the heritage domain. The use of handheld devices for rapid mapping, both image- and range-based, can help the production of suitable easy-to use and easy-navigable 3D model for documentation projects. These types of reality-based modelling could support, with their tailored integrated geometric and radiometric aspects, valorisation and communication projects including virtual reconstructions, interactive navigation settings, immersive reality for dissemination purposes and evoking past places and atmospheres. The aim of this research is localized within the “Torino 1911” project, led by the University of San Diego (California) in cooperation with the PoliTo. The entire project is conceived for multi-scale reconstruction of the real and no longer existing structures in the whole park space of more than 400,000&amp;thinsp;m<sup>2</sup>, for a virtual and immersive visualization of the Turin 1911 International “Fabulous Exposition” event, settled in the Valentino Park. Particularly, in the presented research, a 3D metric documentation workflow is proposed and validated in order to integrate the potentialities of LiDAR mapping by handheld SLAM-based device, the ZEB REVO Real Time instrument by GeoSLAM (2017 release), instead of TLS consolidated systems. Starting from these kind of models, the crucial aspects of the trajectories performances in the 3D reconstruction and the radiometric content from imaging approaches are considered, specifically by means of compared use of common DSLR cameras and portable sensors.
APA, Harvard, Vancouver, ISO, and other styles
8

Russhakim, N. A. S., M. F. M. Ariff, N. Darwin, Z. Majid, K. M. Idris, M. A. Abbas, N. K. Zainuddin, and A. R. Yusoff. "THE SUITABILITY OF TERRESTRIAL LASER SCANNING FOR STRATA BUILDING." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-4/W9 (October 26, 2018): 67–76. http://dx.doi.org/10.5194/isprs-archives-xlii-4-w9-67-2018.

Full text
Abstract:
<p><strong>Abstract.</strong> During the recent years, the used of terrestrial laser scanning (TLS) is becoming rapidly popular because of its ability in several applications, especially the ability to observe complex documentation of complex building and observe millions of point cloud in three-dimensional in a short period. Users of strata plan usually find it difficult to translate the traditional two-dimensional (2D) data on maps they see on a flat piece of paper to three-dimensional (3D). The TLS is able to record thousands of point clouds which contains very rich of geometry details and made the processing usually takes longer time. In addition, the demand of strata survey work has made the surveyors need to obtain the data with full of accuracy and time saves. Therefore, the aim of this study is to study the limitation uses of TLS and its suitability for strata building survey. In this study, the efficiency of TLS Leica C10 for strata building survey was determined in term of its accuracy and comparing with Zeb-Revo Handheld Mobile Laser Scanning (MLS) and the distometer. The accuracy for scanned data from both, TLS and MLS were compared with the Distometer by using root mean square error (RMSE) formula. Then, the 3D model of the building for both data, TLS and MLS were produced to analyze the visualization for different type of scanners. The software used; Autodesk Recap, Autodesk Revit, Leica Cyclone Software, Autocad Software and Geo Slam Software. The RMSE for TLS technique is 0.001m meanwhile, RMSE for MLS technique is 0.007<span class="thinspace"></span>m. The difference between these two techniques is 0.006<span class="thinspace"></span>m. The 3D model of building for both models did not have too much different but the scanned data from TLS is much easier to process and generate the 3D model compared to scanned data from MLS. It is because the scanned data from TLS comes with an image, while none from MLS scanned data. There are limitations of TLS for strata building survey such as water and glass window but this study proved that acquiring data by TLS is better than using MLS.</p>
APA, Harvard, Vancouver, ISO, and other styles
9

Russhakim, N. A. S., M. F. M. Ariff, Z. Majid, K. M. Idris, N. Darwin, M. A. Abbas, K. Zainuddin, and A. R. Yusoff. "THE SUITABILITY OF TERRESTRIAL LASER SCANNING FOR BUILDING SURVEY AND MAPPING APPLICATIONS." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-2/W9 (January 31, 2019): 663–70. http://dx.doi.org/10.5194/isprs-archives-xlii-2-w9-663-2019.

Full text
Abstract:
<p><strong>Abstract.</strong> The popularity of Terrestrial Laser Scanner (TLS) has been introduced into a field of surveying and has increased dramatically especially in producing the 3D model of the building. The used of terrestrial laser scanning (TLS) is becoming rapidly popular because of its ability in several applications, especially the ability to observe complex documentation of complex building and observe millions of point cloud in three-dimensional in a short period. Users of building plan usually find it difficult to translate the traditional two-dimensional (2D) data on maps they see on a flat piece of paper to three-dimensional (3D). The TLS is able to record thousands of point clouds which contains very rich of geometry details and made the processing usually takes longer time. In addition, the demand of building survey work has made the surveyors need to obtain the data with full of accuracy and time saves. Therefore, the aim of this study is to study the limitation uses of TLS and its suitability for building survey and mapping. In this study, the efficiency of TLS Leica C10 for building survey was determined in term of its accuracy and comparing with Zeb-Revo Handheld Mobile Laser Scanning (MLS) and the distometer. The accuracy for scanned data from both, TLS and MLS were compared with the Distometer by using root mean square error (RMSE) formula. Then, the 3D model of the building for both data, TLS and MLS were produced to analyze the visualization for different type of scanners. The software used; Autodesk Recap, Autodesk Revit, Leica Cyclone Software, Autocad Software and Geo Slam Software. The RMSE for TLS technique is 0.001<span class="thinspace"></span>m meanwhile, RMSE for MLS technique is 0.007<span class="thinspace"></span>m. The difference between these two techniques is 0.006<span class="thinspace"></span>m. The 3D model of building for both models did not have too much different but the scanned data from TLS is much easier to process and generate the 3D model compared to scanned data from MLS. It is because the scanned data from TLS comes with an image, while none from MLS scanned data. There are limitations of TLS for building survey such as water and glass window but this study proved that acquiring data by TLS is better than using MLS.</p>
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "ZEB-REVO"

1

Gustafsson, Amanda, and Olov Wängborg. "Mätosäkerhet vid digital terrängmodellering med handhållen laserskanner : Undersökning av den handhållna laserskannern ZEB-REVO." Thesis, Högskolan i Gävle, Samhällsbyggnad, GIS, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-26841.

Full text
Abstract:
En digital terrängmodell (DTM) är en representation av enbart själva markytan. Det finns flera metoder för att framställa DTM:er, där laserskanning har blivit en alltmer vanlig metod. Inom laserskanning är flygburen laserskanning (FLS) en flitigt använd metod, då metoden har fördelen av att kunna täcka stora områden på kort tid. Det finns dock nackdelar med FLS då datainsamlingen kan bli bristfällig i t.ex. skogsområden, där laserstrålar inte kan tränga igenom tät vegetation. Här kan handhållen laserskanning (HLS) vara ett bra alternativ då HLS går snabbt och inte behöver samma omfattande planering. Tidigare studier visar att HLS har många fördelar, men som dock inte kan hålla samma låga osäkerhet som terrester laserskanning (TLS). Det saknas däremot studier om hur HLS ställer sig mot mätningar med FLS. Syftet med studien är därför att utvärdera möjligheten att använda och tillämpa mätningar med HLS för framställning av DTM i skogsterräng gentemot FLS. Detta görs genom att jämföra respektive DTM:s lägesosäkerhet. I studien användes instrumentet ZEB-REVO för insamlingen av data för metoden HLS. Medan för FLS användes laserdata från Lantmäteriet. Från insamlad laserdata skapades därefter DTM:er. Dessa jämfördes mot ett antal kontrollprofiler som mättes in med totalstation. För respektive metod, HLS och FLS, beräknades medelvärde för höjdavvikelserna mot kontrollprofilerna där även standardavvikelse beräknades. Resultatet visar att DTM:en skapad av data från FLS beräknades ha en höjdavvikelse för hela området på 0,055 m som medelvärde gentemot inmätta kontrollprofiler. Standardavvikelsen för denna höjdavvikelse beräknades till 0,046 m för FLS. För DTM:en med data från HLS beräknades en höjdavvikelse på 0,043 m i medelvärde som bäst, där standardavvikelse beräknades till 0,034 m. Studien visar att metoderna HLS och FLS gav likvärdiga resultat gentemot de inmätta kontrollprofilerna, dock gav HLS generellt mindre standardavvikelse i jämförelse mot FLS. Vidare ansågs ZEB-REVO och dess tillhörande databearbetningsprogram GeoSLAM vara väldigt användarvänligt, där själva skanningen med instrumentet tog endast 10 minuter för studiens område på ca 2000 m2. Utifrån studiens resultat drogs slutsatsen att mätningar med HLS kan ge en likvärdig DTM, sett till osäkerheten, som FLS-mätningar. HLS kan därmed vara en kompletterande metod men att FLS är en fortsatt effektiv metod.
A digital terrain model (DTM) represent exclusively the earth surface. There are several methods which can be utilized to create DTMs, where laser scanning have become a common used method. Airborne laser scanning (ALS) is often used since the method can cover a large area in a relatively short time. However a disadvantage with ALS is that the data collection, for a wooded area, can be inadequate due to penetration difficulties for some laser beams. For that reason a handheld laser scanner (HLS) can be an alternative since measurements can be done fast and does not need the same extensive planning. Earlier studies mention HLS to have several advantages but can still not yet be compared with terrestrial laser scanning (TLS) concerning the measurements uncertainty. There are, however, no studies that investigates how measurements with HLS stands against FLS. The purpose with the study is to evaluate the ability to use measurements from HLS to create a DTM for a wooded area in comparison with ALS. This is done by comparing the different uncertainties for each DTM. In the study the acquisition of HLS laser data was collected with the instrument ZEB-REVO and the ALS laser data was received from Lantmäteriet (cadastral mapping and surveying authority in Sweden). After the data acquisition a DTM were created from each data set (method). The DTMs were then compared to control profiles, which have been measured with total station. From the comparison with the control profiles average height deviation and standard deviation were calculated for each DTM. The result shows that the DTM created from ALS data received an average height deviation of 0,055 m for the whole area with a standard deviation of 0,046 m. Corresponding result for the DTM created from HLS data were calculated, at best, to 0,043 m in average height deviation and 0,034 m in standard deviation. The study shows that the methods HLS and ALS gave equivalent result regarding the comparison with the control profiles, however HLS gave a generally lower value for standard deviation. Furthermore ZEB-REVO with its processing program GeoSLAM was considered to be very easy and user friendly. The area (approx. 2000 m2) for the study was scanned within only 10 min. The conclusion which were drawn from the obtained result was that measurements with HLS can generate an equivalent DTM, concerning the uncertainty, as measurements with FLS. Thereby HLS can be a complementing method but still FLS is seen as an effective method.
APA, Harvard, Vancouver, ISO, and other styles
2

Gottfridsson, Tom, and Jonatan Hedström. "Kvalitetsundersökning av digital terrängmodellering med handhållen laserskanner i tätbevuxen skog : Granskning av instrumentet ZEB-REVO." Thesis, Högskolan i Gävle, Samhällsbyggnad, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-33304.

Full text
Abstract:
Digitala terrängmodeller (DTM:er) används i samhället för många viktigafunktioner och behöver därför hållas uppdaterade när förändringar sker.Sverige har en nationell höjdmodell (NH) som innehåller höjddata över helalandet. Uppdateringen av NH förlitar sig mestadels på flygburen laserskanning(FLS). Den flygburna laserskanningsmetoden har generellt en högremätosäkerhet i tätbevuxen skog. Vid exploateringar eller framtida planeradeförändringar i skogsområden kan en mer exakt modell behövas. En utvärdering har genomförts av den handhållna laserskannern ZEB-REVO med syfte att bestämma vilken mätosäkerhet som kan uppnås i tätbevuxenskog, undersöka hur mätosäkerheten förändras med punktavståndet i denproducerade DTM:en samt vilken mätosäkerhet ZEB-REVO har i jämförelsemed NH i samma område. I studien har två skogstyper inkluderats bestående av granskog och tallskog.Mätosäkerheten har bestämts genom att mäta in terrestra kontrollprofiler medtotalstation. För att kunna genomföra en inmätning av kontrollprofiler har ettbruksnät etablerats genom ett fullständigt anslutet polygontåg viahelsatsmätning. De kända punkterna som polygontåget anslutits mot har mättsin med fri stationsetablering via SmartWorx. Resultatet visar att mätosäkerheten förbättras när punktavståndet reduceras.Mätningarna med ZEB-REVO har potential att uppnå en lägre mätosäkerhetän NH i båda skogstyperna. Resultatet för tallskogen visar att ZEB-REVO kanuppnå en lägesosäkerhet på 4-centimetersnivå och en medelavvikelse i höjd på0,018 m mot inmätta kontrollprofiler. Jämförelsen mot kontrollprofiler förområdet i granskogen visar att en medelavvikelse i höjd på 0,058 m gick attuppnå där. ZEB-REVO har potential att förbättra data i NH och data insamlad med ZEBREVOkan ligga till grund för terrängmodellering för projektering.Instrumentet kan även uppnå den bästa noggrannhetsklassningen, klass 1 i SISTS21144:2016 där en maximal medelavvikelse i höjd inte får överstiga 0,02m.
Digital terrain models (DTMs) are used in society for many importantfunctions and therefore need to be kept up to date when changes occur.Sweden has a national height model (NH) that provides height data across thewhole country. The update of NH mostly relies on airborne laser scanning(ALS). The airborne laser scanning method generally has a highermeasurement uncertainty in dense forests. When exploitation or futureplanned changes in forest areas occur, a more accurate model may need to beproduced. An evaluation has been carried out of the handheld laser scanner ZEB-REVO with the aim of determining the instrument's measurement uncertainty indense forests, evaluating how the measurement uncertainty changes with thepoint distance in the produced DTM and the measurement uncertainty ZEBREVOmay achieve in comparison with NH in the same area. The study included two different types of forest consisting of spruce and pineforest trees, respectively. Measurement uncertainty has been determined bymeasuring terrestrial control profiles with a total station. In order to be ableto carry out the measurement of control profiles, a working control networkhas been established through a fully connected traverse using full rounds ofmeasurement. The known points to which the traverse is connected have beenmeasured as free stations using SmartWorx. The results show that the measurement uncertainty improves when the pointdistance is reduced. The measurements with ZEB-REVO have the potential toachieve a lower measurement uncertainty than NH in both forest types. Theresults for the pine forest show that ZEB-REVO can achieve a 4 centimetrelevel uncertainty and an average deviation of height of 0,018 m against themeasured control profiles. The comparison with control profiles for the areain the spruce forest shows that an average deviation in height of 0,058 m wasachievable. ZEB-REVO has the potential to improve data in NH and data collected withZEB-REVO can form the basis for terrain modelling for projectionwork. Theinstrument can also achieve the best accuracy rating 1, for which themaximum mean deviation in height must not exceed 0.02 m.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "ZEB-REVO"

1

Sammartano, Giulia, Mattia Previtali, and Fabrizio Banfi. "PARAMETRIC GENERATION IN HBIM WORKFLOWS FOR SLAM-BASED DATA: DISCUSSING EXPECTATIONS ON SUITABILITY AND ACCURACY." In ARQUEOLÓGICA 2.0 - 9th International Congress & 3rd GEORES - GEOmatics and pREServation. Editorial Universitat Politécnica de Valéncia: Editorial Universitat Politécnica de Valéncia, 2021. http://dx.doi.org/10.4995/arqueologica9.2021.12155.

Full text
Abstract:
In the wide framework of Scan-to-BIM 3D modelling procedures, the complexity of the architectural heritage and its components is evidencing a gap of best practices and specification in the HBIM-modeling and thus it is requiring important considerations about the modelling strategies and protocols between the requested level of detail (LOD), the expect accuracy and above all the actual use-oriented requirements. Several works are largely focusing on developing workflows for traditional static LiDAR scanning sensors. However, the chance to benefit from on-site faster data acquisition is needful at times, and procedures are directing toward rapid mapping 3D approaches, evolving from traditional static scanning toward MMS (Mobile Mapping Systems) based on SLAM technology (Simultaneous Localization and Mapping) algorithms implemented in portable devices. The potential of these solutions can contribute to increase a massive cost-effective documentation, and also in view of BIM-HBIM modelling generation, and this needs further researches. At the same time, the descriptive capabilities of this class of portable scanners do not reach the precision of the static solutions. Many time-cost balance evaluations towards an analysis of geometry, grade of generation (GOG) and details can be thus conducted. This paper presents a first comparison between TLS (Faro Focus 3D) and hand-held scanner Zeb Revo (by GeoSLAM) of the entire workflow (from raw data acquisition up to parametric modeling) focusing on the Bramante’s Canonica Court in the Basilica di Sant’Ambrogio. First, the two raw data are compared, considering geometric features (data density, precision, possibility to detect edges, details and accurate curvature). Then, some well-established modelling procedures developed for TLS data, as triangulation mesh and NURBS generation, are applied to MMS point cloud to identify their suitability. Different elements belonging to the architectural structure hierarchy are considered in a multi-scale perspective: the vaulted system of the porch, the columns and the arches of the porch with their different architectural elements.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography