Academic literature on the topic 'Zebrafish embryos'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Zebrafish embryos.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Zebrafish embryos"
Zhu, Zhen, Yangye Geng, Zhangyi Yuan, Siqi Ren, Meijing Liu, Zhaozheng Meng, and Dejing Pan. "A Bubble-Free Microfluidic Device for Easy-to-Operate Immobilization, Culturing and Monitoring of Zebrafish Embryos." Micromachines 10, no. 3 (February 28, 2019): 168. http://dx.doi.org/10.3390/mi10030168.
Full textBreitwieser, Helmut, Thomas Dickmeis, Marcel Vogt, Marco Ferg, and Christian Pylatiuk. "Fully Automated Pipetting Sorting System for Different Morphological Phenotypes of Zebrafish Embryos." SLAS TECHNOLOGY: Translating Life Sciences Innovation 23, no. 2 (December 8, 2017): 128–33. http://dx.doi.org/10.1177/2472630317745780.
Full textLiu, Lili, Hua Zhu, Yanchun Yan, Peng Lv, and Wei Wu. "Toxicity Evaluation and Biomarker Selection with Validated Reference Gene in Embryonic Zebrafish Exposed to Mitoxantrone." International Journal of Molecular Sciences 19, no. 11 (November 8, 2018): 3516. http://dx.doi.org/10.3390/ijms19113516.
Full textZhao, Yuliang, Hui Sun, Xiaopeng Sha, Lijia Gu, Zhikun Zhan, and Wen Li. "A Review of Automated Microinjection of Zebrafish Embryos." Micromachines 10, no. 1 (December 24, 2018): 7. http://dx.doi.org/10.3390/mi10010007.
Full textGianoncelli, Alessandra, Michela Guarienti, Martina Fragni, Michela Bertuzzi, Elisa Rossini, Andrea Abate, Ram Manohar Basnet, et al. "Adrenocortical Carcinoma Xenograft in Zebrafish Embryos as a Model To Study the In Vivo Cytotoxicity of Abiraterone Acetate." Endocrinology 160, no. 11 (August 9, 2019): 2620–29. http://dx.doi.org/10.1210/en.2019-00152.
Full textHassan, Sherif M., Eid A. Moussa, and Louise C. Abbott. "Effects of Quillaja Saponin (Quillaja saponaria) on Early Embryonic Zebrafish (Danio rerio) Development." International Journal of Toxicology 27, no. 3 (May 2008): 273–78. http://dx.doi.org/10.1080/10915810802152129.
Full textPosner, Mason, Kelly L. Murray, Matthew S. McDonald, Hayden Eighinger, Brandon Andrew, Amy Drossman, Zachary Haley, Justin Nussbaum, Larry L. David, and Kirsten J. Lampi. "The zebrafish as a model system for analyzing mammalian and native α-crystallin promoter function." PeerJ 5 (November 27, 2017): e4093. http://dx.doi.org/10.7717/peerj.4093.
Full textWijaya, Romel Ciptoadi. "LETHAL CONCENTRATION 50% OF PATCHOULI OIL (Pogostemon cablin) TOWARDS ZEBRAFISH EMBRYO (Danio rerio)." Herb-Medicine Journal 3, no. 2 (August 31, 2020): 1. http://dx.doi.org/10.30595/hmj.v3i2.6360.
Full textMendis, Janthri C., Thejani K. Tennakoon, and Chanika D. Jayasinghe. "Zebrafish Embryo Toxicity of a Binary Mixture of Pyrethroid Insecticides: d-Tetramethrin and Cyphenothrin." Journal of Toxicology 2018 (December 26, 2018): 1–8. http://dx.doi.org/10.1155/2018/4182694.
Full textKane, D. A., M. Hammerschmidt, M. C. Mullins, H. M. Maischein, M. Brand, F. J. van Eeden, M. Furutani-Seiki, et al. "The zebrafish epiboly mutants." Development 123, no. 1 (December 1, 1996): 47–55. http://dx.doi.org/10.1242/dev.123.1.47.
Full textDissertations / Theses on the topic "Zebrafish embryos"
Ferreira, Rita Joana Rodrigues da Silva Rua. "Cilia motility studies in zebrafish embryos." Master's thesis, Faculdade de Ciências e Tecnologia, 2012. http://hdl.handle.net/10362/7984.
Full textMotile ciliary dysfunctions cause specific Ciliopathies that affect mainly the respiratory tract, fertilization and left-right body establishment. The embryonic organ where left-right decisions are first taken is called the organizer, a ciliated organ where a leftward cilia driven fluid-flow is generated. The organizer is named node in the mouse and Kupffer’s vesicle (KV) in zebrafish. The correct left-right axis formation is highly dependent on signaling pathways downstream of such directional fluid-flow. Motile cilia need to be coordinated and Ciliary Beat Frequency (CBF) is characteristic of different types of cilia depending on their function. Using zebrafish as a model, our group has been studying cilia length regulation and motility in wild-type and deltaD-/- mutant embryos. Recently, we showed that Notch signalling was directly involved in the control of cilia length in the KV cells given that the deltaD-/- mutant present shorter KV cilia. The goal of this project was to characterize the CBF of deltaD-/- KV cilia vs. wild-type cilia and reveal how potential differences in CBF impact on KV fluid flow, using spectral analysis associated with highspeed videomicroscopy. By decomposing and comparing the obtained CBF with Fast Fourier Transform, we identified two major populations of motile cilia in wild-type as well as in deltaD-/- mutant embryos. However, we found the CBF populations had differential relative contributions and different distributions between wild-type and mutant embryos. Furthermore, by measuring the velocity of native particles we studied the KV fluid-flow and concluded that the dispersion of the flow velocity was much wider in the deltaD-/- mutants. On the other hand, based on a gene expression study of motility genes downstream of DeltaD, we concluded that motility related genes (dnah7, rsph3 and foxj1a) were deregulated in the mutants. During this project we generated data that led to new hypotheses that will allow us to test the causality between the described correlations.
Fierro, Jr Javier. "Glutamatergic Synapse Formation in Developing Zebrafish Embryos." Thesis, University of Oregon, 2015. http://hdl.handle.net/1794/18752.
Full textPatterson, Lucy Jane. "Specification of blood and endothelium in zebrafish embryos." Thesis, University of Nottingham, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.417180.
Full textClay, Hilary. "Early host-pathogen interactions during mycobacterial infection of zebrafish embryos /." Thesis, Connect to this title online; UW restricted, 2007. http://hdl.handle.net/1773/5033.
Full textAli, Nadeem. "Teratology in zebrafish embryos : a tool for risk assessment /." Uppsala : Dept. of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, 2007. http://epsilon.slu.se/10665293.pdf.
Full textEllingson, Elizabeth A. (Elizabeth Ann) 1979. "Simultaneous visual and electro-cardiogram measurements of zebrafish embryos." Thesis, Massachusetts Institute of Technology, 2001. http://hdl.handle.net/1721.1/36105.
Full textIncludes bibliographical references (p. 37).
An experimental study was performed to determine a simultaneous visual and electrocardiogram measurement of zebrafish embryos. One zebrafish embryo was placed between two electrodes and the electrical signal was amplified 100 times, then a computer recorded the data. The visual reading of the zebrafish heart rate was obtained by viewing the embryo under a microscope. A variety of approaches were investigated to determine the heart rate including amplification, noise filtering and data manipulation. Noise was a significant obstacle in determining the zebrafish embryo's heart rate. Therefore, the signal was smoothed, digitally filtered, and a system transfer function was determined to extract the heart rate from the noisy signal. After the data manipulation, the electrical signal appeared to correspond to the visual reading of the heart rate. Providing a simultaneous visual and electrical measurement of the heart rate can lead to a better understanding of cardiological genetic mutations. This method of measuring the heart rate can supply information on the strength and pattern of the heartbeat, and also detect irregularities in the beat, which could lead to further understanding of cardiological genetic mutations and other related health problems in the future.
by Elizabeth A. Ellingson.
S.B.
Zhang, Tiantian. "Investigations into the cryopreservation of zebrafish (Brachydanio rerio) embryos." Thesis, University of Bedfordshire, 1994. http://hdl.handle.net/10547/622045.
Full textGündel, Ulrike. "Proteomics approach for toxicity assessment in Zebrafish (Danio rerio) embryos /." Leipzig : UFZ - Umweltforschungszentrum Leipzig-Halle GmbH in der Helmholtz-Gemeinschaft / Helmholtz Centre for Environmental Research, 2009. http://opac.nebis.ch/cgi-bin/showAbstract.pl?sys=000278302.
Full textBurkhardt, Markus. "Electron multiplying CCD – based detection in Fluorescence Correlation Spectroscopy and measurements in living zebrafish embryos." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-61021.
Full textFluoreszenz-Korrelations-Spektroskopie (FCS) ist eine hochempfindliche optische Methode, um die dynamischen Eigenschaften eines Ensembles von einzelnen, fluoreszierenden Molekülen in Lösung zu erforschen. Sie ist insbesondere geeignet für Messungen in biologischen Proben. Die hohe Empfindlichkeit wird erreicht durch Verwendung konfokaler Mikroskop-Aufbauten mit beugungsbegrenztem Detektionsvolumen, und durch Messung der Fluoreszenz mit Einzelphotonen-empfindlichen Detektoren, zum Beispiel Avalanche-Photodioden (APD). Dadurch wird das Fluoreszenzsignal allerdings nur von einer einzelnen Fokusposition in der Probe eingesammelt, und mehrfache Messungen an verschiedenen Positionen in der Probe müssen nacheinander durchgeführt werden. Um die zeitaufwendigen, aufeinanderfolgenden FCS-Einzelmessungen zu überwinden, entwickeln wir in dieser Arbeit Elektronenvervielfachungs-CCD (EMCCD) Kamera-basierte räumlich aufgelöste Detektion für FCS. Mit dieser neuartigen Detektionsmethode werden Multiplex-FCS Messungen möglich. Darauf abzielend führen wir FCS Messungen mit zwei Detektionsvolumina durch. Als Anwendung nutzen wir die räumliche Kreuzkorrelation zwischen dem Signal beider Fokalvolumina. Sie ermöglicht die kalibrationsfreie Bestimmung von Diffusionskoeffizienten und die Messung von gerichteter Bewegung, wie zum Beispiel laminarem Fluss in mikrostrukturierten Kanälen. FCS wird darüber hinaus angewendet auf Messungen in lebenden Zebrafischembryonen, um den Konzentrationsgradienten des Morphogens Fibroblasten-Wachstumsfaktor 8 (Fgf8) zu untersuchen. Mit Hilfe von APD-basierter ein-Fokus FCS und EMCCD-basierter zwei-Fokus FCS zeigen wir, dass Fgf8 hauptsächlich frei diffffundiert im extrazellulären Raum des sich entwickelnden Embryos. Der stabile Konzentrationsgradient entsteht durch ein Gleichgewicht von lokaler Morphogenproduktion und globalem Morphogenabbau durch Rezeptor vermittelte Entfernung aus dem extrazellulären Raum. Die Studie zeigt die Anwendbarkeit von FCS in ganzen Modell-Organismen. Gerade in diesen sich dynamisch ändernden Systemen in vivo ist die Perspektive schneller, paralleler FCS-Messungen von großer Bedeutung. In dieser Arbeit wird räumlich aufgelöste FCS am Beispiel einer EMCCD Kamera durchgeführt. Die Herangehensweise ist jedoch einfach übertragbar auf jede andere Art von zwei-dimensionalem Flächendetektor. Neuartige Flächendetektoren könnten in naher Zukunft verfügbar sein. Dann könnte räumlich aufgelöste Multiplex-FCS eine standardisierte Erweiterung zur klassischen ein-Fokus FCS werden
Witzel, Sabine. "Local Wnt11 Signalling and its role in coordinating cell behaviour in zebrafish embryos." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2006. http://nbn-resolving.de/urn:nbn:de:swb:14-1162424627109-87779.
Full textBooks on the topic "Zebrafish embryos"
Handley, Heather Martin. Zebrafish cardiovascular cDNA microarrays: Expression profiling and gene discovery in embryos exposed to 2,3,7,8-Tetrachlorodibenzo-P-dioxin. Cambridge, Mass: Massachusetts Institute of Technology, 2003.
Find full textMatthew, Guille, ed. Molecular methods in developmental biology: Xenopus and zebrafish. Totowa, N.J: Humana Press, 1999.
Find full textGuille, Matt. Molecular Methods in Developmental Biology: Xenopus & Zebrafish (Methods in Molecular Biology). Humana Press, 1999.
Find full textTest No. 250: EASZY assay - Detection of Endocrine Active Substances, acting through estrogen receptors, using transgenic tg(cyp19a1b:GFP) Zebrafish embrYos. OECD, 2021. http://dx.doi.org/10.1787/0a39b48b-en.
Full textBook chapters on the topic "Zebrafish embryos"
Picker, Alexander, Daniela Roellig, Olivier Pourquié, Andrew C. Oates, and Michael Brand. "Tissue Micromanipulation in Zebrafish Embryos." In Methods in Molecular Biology, 153–72. Totowa, NJ: Humana Press, 2009. http://dx.doi.org/10.1007/978-1-60327-977-2_11.
Full textZhong, Hanbing, and Shuo Lin. "Chemical Screening with Zebrafish Embryos." In Methods in Molecular Biology, 193–205. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-012-6_12.
Full textPerelsman, Ory, Shoh Asano, and Limor Freifeld. "Expansion Microscopy of Larval Zebrafish Brains and Zebrafish Embryos." In Methods in Molecular Biology, 211–22. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2051-9_13.
Full textLaird, Angela S., and Wim Robberecht. "Modeling Neurodegenerative Diseases in Zebrafish Embryos." In Methods in Molecular Biology, 167–84. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-328-8_11.
Full textKamei, Hiroyasu, and Cunming Duan. "Hypoxic Treatment of Zebrafish Embryos and Larvae." In Methods in Molecular Biology, 195–203. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7665-2_17.
Full textYamashita, Michiaki, Kanako Uchino, Yoshimitsu Taguchi, Shintaro Imamura, Daisuke Uchida, Takeshi Yabu, Misako Hojo, and Nobuhiko Ojima. "Stress response and apoptosis in zebrafish embryos." In Aquatic Genomics, 195–206. Tokyo: Springer Japan, 2003. http://dx.doi.org/10.1007/978-4-431-65938-9_17.
Full textXu, Qiling, Derek Stemple, and Katherine Joubin. "Microinjection and Cell Transplantation in Zebrafish Embryos." In METHODS IN MOLECULAR BIOLOGY™, 513–20. Totowa, NJ: Humana Press, 2008. http://dx.doi.org/10.1007/978-1-60327-483-8_35.
Full textTawk, Marcel, Isaac H. Bianco, and Jonathan D. W. Clarke. "Focal Electroporation in Zebrafish Embryos and Larvae." In Methods in Molecular Biology, 145–51. Totowa, NJ: Humana Press, 2009. http://dx.doi.org/10.1007/978-1-60327-977-2_10.
Full textLiu, Xingfeng, Qiang Wang, and Anming Meng. "Detection of Smad Signaling in Zebrafish Embryos." In Methods in Molecular Biology, 275–86. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-2966-5_17.
Full textGravato, Carlos, Flávia Renata Abe, Danielle Palma de Oliveira, Amadeu M. V. M. Soares, and Inês Domingues. "Acetylcholinesterase (AChE) Activity in Embryos of Zebrafish." In Toxicity Assessment, 119–24. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1091-6_10.
Full textConference papers on the topic "Zebrafish embryos"
Alkawari, Fatima, Wigdan Ali, Fatiha Benslimane, and Huseyin Yalcin. "Investigating the Cardiac effects of New Generation Anti-Diabetic Drug Empagliflozin using Zebrafish Embryo Model." In Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2020. http://dx.doi.org/10.29117/quarfe.2020.0211.
Full textAl-Jighefee, Hadeel, Roba Abdin, Gheyath Khalid Nasrallah, and Ola Aljamal. "Toxicity Evaluation of Stearamidopropyl Dimethylamine Surfactant on Embryonic development of Zebrafish." In Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2020. http://dx.doi.org/10.29117/quarfe.2020.0194.
Full textBommer, Kathleen M., Angela DiBenedetto, and Jens O. M. Karlsson. "High-Speed Imaging of Intra-Embryonic Phase Transformation Events During Rapid Freezing of Zebrafish Embryos." In ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-53953.
Full textAires, Ana, Diana Gomes Moreira, Maria de Lourdes Pereira, and Miguel Oliveira. "Effect of cytostatic substances in zebrafish embryos." In 6th International Electronic Conference on Medicinal Chemistry. Basel, Switzerland: MDPI, 2020. http://dx.doi.org/10.3390/ecmc2020-07500.
Full textZhao, Lurui, and Eun Sok Kim. "Acoustic Tweezers for Trapping Late-Stage Zebrafish Embryos." In 2019 IEEE 32nd International Conference on Micro Electro Mechanical Systems (MEMS). IEEE, 2019. http://dx.doi.org/10.1109/memsys.2019.8870615.
Full textAl-Saaidah, Bayan, Waleed Al-Nuaimy, Majid Al-Taee, Iain Young, and Qussay Al-Jubouri. "Identification of tail curvature malformation in zebrafish embryos." In 2017 8th International Conference on Information Technology (ICIT). IEEE, 2017. http://dx.doi.org/10.1109/icitech.2017.8080063.
Full textMena, Pamela, Miguel Allende, José Roberto Morales, Ricardo Alarcon, Phil Cole, Andres J. Kreiner, and Hugo F. Arellano. "Survival Study of Zebrafish Embryos Under Gamma Irradiation." In VIII LATIN AMERICAN SYMPOSIUM ON NUCLEAR PHYSICS AND APPLICATIONS. AIP, 2010. http://dx.doi.org/10.1063/1.3480235.
Full textXu, Qiaoshu, Tao Di, Xin Zhou, and Ning Gu. "Toxicity Assessment of Silver Nanoparticles using Zebrafish Embryos." In 2017 6th International Conference on Energy and Environmental Protection (ICEEP 2017). Paris, France: Atlantis Press, 2017. http://dx.doi.org/10.2991/iceep-17.2017.85.
Full textEssa, Asma, Noura Aldous, Fatiha Benslimane, and Huseyin Yalcin. "In Vivo Investigation of Cardiac benefits of Sodium Glucose Cotransporter Inhibition using the Zebrafish Model." In Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2020. http://dx.doi.org/10.29117/quarfe.2020.0199.
Full textLan, Yutao, Baoguo Wang, Xicheng Wang, Tao Wang, Chengxi Wang, Hao Zhang, Jiaojiao Chen, and Wenjie Mei. "Evaluation of tanshinone IIA developmental toxicity in zebrafish embryos." In The 20th International Electronic Conference on Synthetic Organic Chemistry. Basel, Switzerland: MDPI, 2016. http://dx.doi.org/10.3390/ecsoc-20-b019.
Full textReports on the topic "Zebrafish embryos"
Funkenstein, Bruria, and Shaojun (Jim) Du. Interactions Between the GH-IGF axis and Myostatin in Regulating Muscle Growth in Sparus aurata. United States Department of Agriculture, March 2009. http://dx.doi.org/10.32747/2009.7696530.bard.
Full textFunkenstein, Bruria, and Cunming Duan. GH-IGF Axis in Sparus aurata: Possible Applications to Genetic Selection. United States Department of Agriculture, November 2000. http://dx.doi.org/10.32747/2000.7580665.bard.
Full text