Academic literature on the topic 'Zeeman effect'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Zeeman effect.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Zeeman effect"
Calderón Chamochumbi, Carlos. "Efecto Zeeman Normal." Campus 20, no. 20 (December 30, 2015): 39–43. http://dx.doi.org/10.24265/campus.2016.v20n20.03.
Full textKhvingia, N. L., and A. V. Turbiner. "The Zeeman effect revisited." Journal of Physics B: Atomic, Molecular and Optical Physics 25, no. 2 (January 28, 1992): 343–53. http://dx.doi.org/10.1088/0953-4075/25/2/004.
Full textZhang, Rui, Teng Wu, Jingbiao Chen, Xiang Peng, and Hong Guo. "Frequency Response of Optically Pumped Magnetometer with Nonlinear Zeeman Effect." Applied Sciences 10, no. 20 (October 10, 2020): 7031. http://dx.doi.org/10.3390/app10207031.
Full textKozhevnikov, Sergey, Frédéric Ott, and Florin Radu. "Data representations of Zeeman spatial beam splitting in polarized neutron reflectometry." Journal of Applied Crystallography 45, no. 4 (July 14, 2012): 814–25. http://dx.doi.org/10.1107/s0021889812018043.
Full textTakagi, Kojiro, Shozo Tsunekawa, Kaori Kobayashi, Tomoya Hirota, and Fusakazu Matsushima. "Microwave Zeeman effect of methanol." Journal of Molecular Spectroscopy 377 (March 2021): 111420. http://dx.doi.org/10.1016/j.jms.2021.111420.
Full textEzawa, Motohiko. "Intrinsic Zeeman Effect in Graphene." Journal of the Physical Society of Japan 76, no. 9 (September 15, 2007): 094701. http://dx.doi.org/10.1143/jpsj.76.094701.
Full textKauffmann, Christiaan. "On the acoustic Zeeman effect." Journal of the Acoustical Society of America 105, no. 2 (February 1999): 1087. http://dx.doi.org/10.1121/1.425092.
Full textTan, C. Z. "Zeeman effect in α-quartz." Physica B: Condensed Matter 404, no. 16 (August 2009): 2229–33. http://dx.doi.org/10.1016/j.physb.2009.04.014.
Full textBleaney, B. "Centenary of the Zeeman effect." Notes and Records of the Royal Society of London 52, no. 1 (January 22, 1998): 131–36. http://dx.doi.org/10.1098/rsnr.1998.0040.
Full textCazzoli, Gabriele, Valerio Lattanzi, Sonia Coriani, Jürgen Gauss, Claudio Codella, Andrés Asensio Ramos, José Cernicharo, and Cristina Puzzarini. "Zeeman effect in sulfur monoxide." Astronomy & Astrophysics 605 (September 2017): A20. http://dx.doi.org/10.1051/0004-6361/201730858.
Full textDissertations / Theses on the topic "Zeeman effect"
Grant, Robert Wallace. "A UV Zeeman-effect polarizer." Thesis, University of British Columbia, 1985. http://hdl.handle.net/2429/24674.
Full textScience, Faculty of
Physics and Astronomy, Department of
Graduate
Omar, Abdelaziz. "Détection ultrasensible de molécules d'intérêts atmosphériques dans l'infrarouge lointain." Thesis, Littoral, 2016. http://www.theses.fr/2016DUNK0430/document.
Full textQThe detection of trace pollutants is an important issue for monitoring air quality. Terahertz spectroscopy, used to probe spectral regions rich in molecular absorption, is an appropriate technique for measuring atmospheric pollution. This work of thesis consisted in developing and characterizing an ultrasensitive spectrometer to measure molecules of atmospheric interest. A terahertz spectrometer was mounted using a frequency multiplication chain emitting up to 900 GHz. The detection sensitivity has been optimized and characterized. In collaboration with the IEMN, a terahertz spectrometer using a vector network analyzer transmitting up to 500 GHz as a source, has been set up and characterized. The potential of terahertz spectroscopy has been demonstrated to monitor in real time the evolution of concentrations of gaseous pollutants during a chemical reaction and to deduce the kinetic rates. Following the rotational transitions of H2CO and CO of a photolysis reaction of formaldehyde, kinetic reaction rates were determined. Detection of radicals is a challenge because of their high reactivity. The configuration of our spectrometer was adapted to optimize sensitivity and to study the photolysis reaction of acetaldehyde using "Photosensitization" by mercury. Frequency modulation and Zeeman effect modulation were used to study HCO. The sensitivity was optimized, quantified HCO and measured over 200 absorption lines. A spectroscopy study of HCO is initiated in order to optimize the parameters of the international data bases
Zhang, Wenxian. "Spin-1 atomic condensates in magnetic fields." Diss., Available online, Georgia Institute of Technology, 2005, 2005. http://etd.gatech.edu/theses/available/etd-04292005-151243/.
Full textZ. John Zhang, Committee Member ; Mei-Yin Chou, Committee Member ; Chandra Raman, Committee Member ; Michael S. Chapman, Committee Member ; Li You, Committee Chair. Vita. Includes bibliographical references.
Thompson, Kristen Lynn. "ZEEMAN EFFECT STUDIES OF MAGNETIC FIELDS IN THE MILKY WAY." UKnowledge, 2012. http://uknowledge.uky.edu/physastron_etds/12.
Full textAmiryan, Arevik. "Formation of narrow optical resonances in thin atomic vapor layers of Cs, Rb, K and applications." Thesis, Bourgogne Franche-Comté, 2019. http://www.theses.fr/2019UBFCK028/document.
Full textThis thesis presents the study of coherent light interaction with a sub-wavelength atomic alkali vapor layer confined in a nano-cell and applications for the formation of narrow optical resonances.We develop a theoretical model describing the resonant interaction of the laser light with the thin alkali vapor layer in the presence of an external static magnetic field. We show that due to a transient regime of interaction, only slow atoms contribute to the signal and their transmission spectrum is essentially Doppler-free. The nature of the obtained spectra makes the transmission spectroscopy from a nano-cell a convenient technique to perform studies of closely-spaced atomic transitions and investigate their behavior in magnetic fields. Experimental realizations for magnetic field up to 7000~G show an excellent agreement between theory and experiment.We also explore the Faraday rotation of the plane polarization of light with the propagation through the thin atomic slab. We see that despite a small angle of rotation, Faraday rotation spectra exhibit resonances narrower than that for transmission. At last, we investigate new possibilities to form narrow optical resonances in nano-cells and show that second derivation processing of transmission spectra yields the strongest line narrowing among all methods studied in this thesis
Al-Laithy, Maher. "A classical treatment of the quadratic Zeeman effect in atomic hydrogen." Thesis, Royal Holloway, University of London, 1988. http://repository.royalholloway.ac.uk/items/a4f5a99c-8957-4916-a7dc-cd01ff4d2c8d/1/.
Full textRichard, Cyril. "Spectroscopie électronique et effet zeeman dans le radical NiH." Phd thesis, Université Claude Bernard - Lyon I, 2010. http://tel.archives-ouvertes.fr/tel-00595685.
Full textDobrev, Georgi. "Laser spectroscopy for coherent manipulation and state-specific probing of atoms and molecules." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSE1083/document.
Full textThis thesis describes experimental work on different techniques aiming to achieve control of the quantum state of atoms and molecules, envisaging applications in quantum computing, metrology and astrophysics.Successful coherent control requires careful design of operating conditions for a system where decoherence is minimized. The construction of a calcium atomic beam is presented as a necessary element in experiments with laser excitation schemes chosen to provide high-fidelity preparation of a quantum satate by means of composite pulses. The second section describes my contribution to the improvement of the relative frequency stability of the Cs fountain clock CSF2 at the German institute of metrology. A modified magneto-optical trap is employed to form a beam of slow cesium atoms. They are prepared in a specific dark state and subsequently are efficiently transferred to the optical molasses of the fountain. Increasing number of atoms participating in the clock cycle in this way improves the stability of the clock by a factor of 6.The third section is concerned with spectra of metal hydride molecules NiH and FeH. Several sources for production of these molecules in laboratories were developed and tested. A differential laser absorption experiment and a cavity-enhanced spectroscopy technique are applied on the w??kly absorbing NiH molecules, to obtain absorption coefficients for the red bands of NiH. The Zeeman response of the FeH molecule (a probe for magnetic fields in cool stars) in the near-IR is investigated by precision laser spectroscopy establishing Landé factors for 33 rovibrational levels of the F 4? electronic state
He, Xing-Hong. "Non-hydrogenic systems in a magnetic field." Thesis, Queen's University Belfast, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.337037.
Full textBao, Yunjuan. "Resonant spin Hall effect in two-dimensional electron systems." Click to view the E-thesis via HKUTO, 2005. http://sunzi.lib.hku.hk/hkuto/record/B34627819.
Full textBooks on the topic "Zeeman effect"
Evans, Myron W. A theoretical development of the optical Zeeman effect. Ithaca, N.Y: Cornell Theory Center, Cornell University, 1990.
Find full textAllen, Gary G., West Elizabeth A, and United States. National Aeronautics and Space Administration. Scientific and Technical Information Division., eds. The SAMEX vector magnetograph: A design study for a space-based solar vector magnetograph. [Washington, D.C.]: National Aeronautics and Space Administration, Scientific and Technical Information Division, 1988.
Find full textSaillard, Michel. Histoire de la spectroscopie: De la théorie de la lumière et des couleurs de I. Newton (1672) à la découverte de l'effet Zeeman (1897). Paris: Société française d'histoire des sciences et des techniques, 1988.
Find full textTelahun, Tesfaye. The Cu²⁺ center in the II-VI semiconductors ZnS and CdS calculation of the fine structure and Zeeman behavior. Berlin: Verlag Köster, 1994.
Find full textArteca, G. A. Large order perturbation theory and summation methods in quantum mechanics. Berlin: Springer-Verlag, 1990.
Find full textCharles, Sheppard, ed. Seas at the millennium: An environmental evaluation. Amsterdam: Pergamon, 2000.
Find full textKent, Norton Adams. Notes on the Zeeman Effect. Creative Media Partners, LLC, 2018.
Find full textKent, Norton Adams. Notes on the Zeeman Effect. Franklin Classics Trade Press, 2018.
Find full textBook chapters on the topic "Zeeman effect"
Hentschel, Klaus. "Zeeman Effect." In Compendium of Quantum Physics, 862–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-70626-7_241.
Full textWeik, Martin H. "Zeeman effect." In Computer Science and Communications Dictionary, 1941. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_21313.
Full textKastberg, Anders. "The Zeeman Effect." In Structure of Multielectron Atoms, 229–55. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-36420-5_11.
Full textRobinson, Keith. "Spectral Magnetism—The Zeeman Effect." In Spectroscopy: The Key to the Stars, 127–40. New York, NY: Springer New York, 2007. http://dx.doi.org/10.1007/978-0-387-68288-4_11.
Full textSchwabl, Franz. "The Zeeman Effect and the Stark Effect." In Quantum Mechanics, 251–61. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-662-02703-5_14.
Full textSchwabl, Franz. "The Zeeman Effect and the Stark Effect." In Quantum Mechanics, 257–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04840-5_14.
Full textSchwabl, Franz. "The Zeeman Effect and the Stark Effect." In Quantum Mechanics, 257–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-662-03170-4_14.
Full textAdams, Barry G. "Tables of Zeeman Effect Energy Corrections." In Algebraic Approach to Simple Quantum Systems, 295–312. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-57933-2_16.
Full textAdams, Barry G. "Symbolic Calculation of the Zeeman Effect." In Algebraic Approach to Simple Quantum Systems, 179–209. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-57933-2_9.
Full textSchubert, J., M. Dahl, and E. Bangert. "Zeeman Effect of the Carbon Acceptor in GaAs." In High Magnetic Fields in Semiconductor Physics II, 567–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-83810-1_88.
Full textConference papers on the topic "Zeeman effect"
VAN LINDEN VAN DEN HEUVELL, H. B., J. T. M. WALRAVEN, and M. W. REYNOLDS. "ATOMIC PHYSICS 15." In Fifteenth International Conference on Atomic Physics, Zeeman-Effect Centenary. WORLD SCIENTIFIC, 1997. http://dx.doi.org/10.1142/9789814529549.
Full textBabin, S. A., S. I. Kablukov, M. I. Kondratenko, and D. A. Shapiro. "Nonlinear interference effect in ionic Zeeman laser." In The 13th international conference on spectral line shapes. AIP, 1997. http://dx.doi.org/10.1063/1.51783.
Full textNenashev, A. V., A. Dvurechenskii, and A. F. Zinovieva. "Hole Zeeman effect in Ge/Si quantum dots." In SPIE Proceedings, edited by Yuri I. Ozhigov. SPIE, 2003. http://dx.doi.org/10.1117/12.517895.
Full textBizdadea, Constantin, Eugen-Mihaita Cioroianu, and Solange-Odile Saliu. "Zeeman-like effect in a spontaneous symmetry-breaking scheme." In TIM 18 PHYSICS CONFERENCE. Author(s), 2019. http://dx.doi.org/10.1063/1.5090053.
Full textBarbarat, J., J. Gillot, H. Alvarez-Martinez, R. Le Targat, P.-E. Pottie, J. Hrabina, M.-T. Pham, P. Tuckey, and O. Acef. "Linear Zeeman Effect on Iodine-Based Frequency Stabilized Laser." In 2019 Joint Conference of the IEEE International Frequency Control Symposium anEuropean Frequency and Time Forum (EFTF/IFC). IEEE, 2019. http://dx.doi.org/10.1109/fcs.2019.8856044.
Full textClark, Susan, Megan Ivory, Craig Hogle, Joshua Wilson, Christopher Nordquist, and Melissa Revelle. "Characterizing the AC Zeeman Effect in Microfabricated Surface Traps ." In Proposed for presentation at the NACTI 2022 in ,. US DOE, 2022. http://dx.doi.org/10.2172/2004121.
Full textBaba, Masaaki, and Naofumi Nakayama. "HIGH-RESOLUTION LASER SPECTROSCOPY AND THE ZEEMAN EFFECT: DIBENZOTHIOPHENE." In 2022 International Symposium on Molecular Spectroscopy. Urbana, Illinois: University of Illinois at Urbana-Champaign, 2022. http://dx.doi.org/10.15278/isms.2022.rl12.
Full textJohnston, Roger G. "Zeeman Laser Interferometry for Detection and Chemical Analysis." In Laser Applications to Chemical Analysis. Washington, D.C.: Optica Publishing Group, 1994. http://dx.doi.org/10.1364/laca.1994.thb.5.
Full textSmith, T. B., B. B. Ngom, and A. D. Gallimore. "Optogalvanic spectroscopy of the zeeman effect in singly-ionized xenon." In The 33rd IEEE International Conference on Plasma Science, 2006. ICOPS 2006. IEEE Conference Record - Abstracts. IEEE, 2006. http://dx.doi.org/10.1109/plasma.2006.1706887.
Full textNomura, Toshihiro, Yasuhiro H. Matsuda, Shojiro Takeyama, Akira Matsuo, Koichi Kindo, and Tatsuo C. Kobayashi. "Orbital Zeeman Effect of Liquid Oxygen in High Magnetic Fields." In Proceedings of the International Conference on Strongly Correlated Electron Systems (SCES2013). Journal of the Physical Society of Japan, 2014. http://dx.doi.org/10.7566/jpscp.3.017004.
Full textReports on the topic "Zeeman effect"
van Hal, Ralf, Joey Volwater, Geert Aarts, Sophie Brasseur, and Sander Glorius. Ecologische effecten van een pilotsuppletie in het Amelander Zeegat : Synthese van onderzoeksresultaten en literatuur. IJmuiden: Wageningen Marine Research, 2021. http://dx.doi.org/10.18174/540194.
Full textEscaravage, Vincent. Effecten van de zandsuppletie in het Amelander Zeegat op de bodemdieren-gemeenschappen 1 en 3 jaar na aanleg. Yerseke: Wageningen Marine Research, 2022. http://dx.doi.org/10.18174/583169.
Full textFuchs, Lennart, Folkert van der Meer, Maureen Schoutsen, and Elsbeth Smit. Verkenning naar de potentie van agroforestry als oplossingsrichting voor de stikstofproblematiek in de provincie Zeeland : Inventarisatie vanuit bestaande literatuur van de (mogelijke) effecten van silvo-arable agroforestry op stikstofstromen en een interpretatie van hoe de stikstofdynamiek in agroforestry systemen verschilt ten opzichte van die van de monocultuur akkerbouw. Wageningen: Stichting Wageningen Research, Wageningen Plant Research, Business unit Open Teelten, 2021. http://dx.doi.org/10.18174/568426.
Full text