Journal articles on the topic 'Zeolit BEA'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Zeolit BEA.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Jendrlin, Martin, Julien Grand, Louwanda Lakiss, et al. "Environmental Applications of Zeolites: Hydrophobic Sn-BEA as a Selective Gas Sensor for Exhaust Fumes." Chemistry 5, no. 1 (2023): 334–47. http://dx.doi.org/10.3390/chemistry5010025.
Full textSobuś, Natalia, and Izabela Czekaj. "Comparison of Synthetic and Natural Zeolite Catalysts’ Behavior in the Production of Lactic Acid and Ethyl Lactate from Biomass-Derived Dihydroxyacetone." Catalysts 11, no. 8 (2021): 1006. http://dx.doi.org/10.3390/catal11081006.
Full textSoldatkin, О. О., V. M. Arkhypova, І. S. Kucherenko, D. Y. Kucherenko, and S. V. Dzyadevych. "ADAPTATION OF THE PROCEDURE OF CO-IMMOBILIZATION OF ENZYMES WITH DIFFERENT MODIFICATIONS OF ZEOLITES ON THE SURFACE OF CONDUCTOMETRIC TRANSDUCERS." Sensor Electronics and Microsystem Technologies 18, no. 4 (2021): 11–26. http://dx.doi.org/10.18524/1815-7459.2021.4.248177.
Full textPutluru, Siva Sankar Reddy, Leonhard Schill, Anker Degn Jensen, and Rasmus S. N. Fehrmann. "Selective Catalytic Reduction of NOx with NH3 on Cu-, Fe-, and Mn-Zeolites Prepared by Impregnation: Comparison of Activity and Hydrothermal Stability." Journal of Chemistry 2018 (December 10, 2018): 1–11. http://dx.doi.org/10.1155/2018/8614747.
Full textZhu, Longfeng, Jian Zhang, Liang Wang, et al. "Solvent-free synthesis of titanosilicate zeolites." Journal of Materials Chemistry A 3, no. 27 (2015): 14093–95. http://dx.doi.org/10.1039/c5ta02680f.
Full textAwala, Hussein, Elsa Leite, Loïc Saint-Marcel, et al. "Properties of methylene blue in the presence of zeolite nanoparticles." New Journal of Chemistry 40, no. 5 (2016): 4277–84. http://dx.doi.org/10.1039/c5nj02643a.
Full textZhang, Jin, Talat Zakeri, Quidi Yue, et al. "Lewis acid zeolite catalysts via chemical modification of extra-large pore germanosilicates." Catalysis Today 440 (June 18, 2024): 114825. https://doi.org/10.5281/zenodo.12078452.
Full textZhang, Jin, Talat Zakeri, Quidi Yue, et al. "Lewis acid zeolite catalysts via chemical modification of extra-large pore germanosilicates." Catalysis Today 440 (May 16, 2024): 114825. https://doi.org/10.5281/zenodo.13880101.
Full textZhang, Jin, Talat Zakeri, Qiudi Yue, et al. "Lewis acid zeolite catalysts via chemical modification of extra-large pore germanosilicates." Catalysis Today 440 (May 16, 2024): 114825. https://doi.org/10.1016/j.cattod.2024.114825.
Full textJendrlin, Martin, Julien Grand, Louwanda Lakiss, Philippe Bazin, Svetlana Mintova, and Vladimir Zholobenko. "Environmental Applications of Zeolites: Preparation and Screening of Cu-Modified Zeolites as Potential CO Sensors." Chemistry 5, no. 1 (2023): 314–33. http://dx.doi.org/10.3390/chemistry5010024.
Full textTomlinson, Sean R., Tyler McGown, John R. Schlup, and Jennifer L. Anthony. "Infrared Spectroscopic Characterization of CIT-6 and a Family of *BEA Zeolites." International Journal of Spectroscopy 2013 (October 24, 2013): 1–7. http://dx.doi.org/10.1155/2013/961404.
Full textAl-Ani, Aqeel, Catia Freitas, and Vladimir Zholobenko. "Hierarchy in zeolite catalysis: The influence of enhanced mesoporosity on the synthesis of renewable fuels and bio-based platform chemicals." Journal of Petroleum Research and Studies 10, no. 4 (2020): 217–32. http://dx.doi.org/10.52716/jprs.v10i4.379.
Full textJeong, Sangmin, Ki-Joon Jeon, Young-Kwon Park, Byung-Joo Kim, Kyong-Hwan Chung, and Sang-Chul Jung. "Catalytic Properties of Microporous Zeolite Catalysts in Synthesis of Isosorbide from Sorbitol by Dehydration." Catalysts 10, no. 2 (2020): 148. http://dx.doi.org/10.3390/catal10020148.
Full textМараева, Евгения Владимировна, Саида Токмеилова, Диана Ралитовна Сагитова, Ирина Евгеньевна Кононова, Вячеслав Алексеевич Мошников, and Светлана Афанасьевна Скорникова. "STUDY ON THE MICROPOROUS STRUCTURE PARAMETERS OF BEA TYPE ZEOLITES." Physical and Chemical Aspects of the Study of Clusters, Nanostructures and Nanomaterials, no. 14 (December 15, 2022): 203–10. http://dx.doi.org/10.26456/pcascnn/2022.14.203.
Full textPranee, Watcharakorn, Pornsawan Assawasaengrat, Arthit Neramittagapong, Sasitorn Intarachit, and Sutasinee Neramittagapong. "Dimethyl Ether Synthesis via Methanol Dehydration over BEA Zeolite from Bagasse Fly Ash with Zircronium- and Nickel-Ion Exchange." Advanced Materials Research 931-932 (May 2014): 3–6. http://dx.doi.org/10.4028/www.scientific.net/amr.931-932.3.
Full textKrysiak, Yaşar, Bastian Barton, Bernd Marler, Reinhard B. Neder, and Ute Kolb. "Ab initiostructure determination and quantitative disorder analysis on nanoparticles by electron diffraction tomography." Acta Crystallographica Section A Foundations and Advances 74, no. 2 (2018): 93–101. http://dx.doi.org/10.1107/s2053273317018277.
Full textGil-Muñoz, Gema, Juan Alcañiz-Monge, and María José Illán-Gómez. "Analyzing the Effect of Zr, W, and V Isomorph Framework Substitution on ZSM-5 and Beta Zeolites for Their Use as Hydrocarbon Trap." Molecules 28, no. 12 (2023): 4729. http://dx.doi.org/10.3390/molecules28124729.
Full textBedenko, Stanislav P., Konstantin I. Dement’ev, and Valentin F. Tret’yakov. "Deactivation of Zeolite Catalysts in the Prins Reaction between Propene and Formaldehyde in the Liquid Phase." Catalysts 11, no. 10 (2021): 1181. http://dx.doi.org/10.3390/catal11101181.
Full textHuseynova, Galina, Gulbeniz Мuхtаrоvа, Nushaba Aliyeva, Gular Gаsimоvа, and Sanubar Rаshidоvа. "Zeolite-Containing Catalysts in Alkylation Processes." Catalysis Research 2, no. 3 (2022): 1. http://dx.doi.org/10.21926/cr.2203019.
Full textHuseynova, G. A., G. S. Mukhtarova, S. Y. Rashidova, and G. A. Gasimova. "Zeolite-containing catalysts in alkylation processes." Azerbaijan Oil Industry, no. 10 (October 15, 2022): 41–46. http://dx.doi.org/10.37474/0365-8554/2022-10-41-46.
Full textSobuś, Natalia, and Izabela Czekaj. "Catalytic Transformation of Biomass-Derived Glucose by One-Pot Method into Levulinic Acid over Na-BEA Zeolite." Processes 10, no. 2 (2022): 223. http://dx.doi.org/10.3390/pr10020223.
Full textBokarev, D. A., I. V. Paramoshin, A. V. Rassolov, S. A. Kanaev, G. O. Bragina, and A. Yu Stakheev. "Support Effect on the Characteristics of Mn Supported Catalysts in the O<sub>3</sub> Catalytic Oxidation of VOCs." Кинетика и катализ 64, no. 6 (2023): 811–21. http://dx.doi.org/10.31857/s0453881123060035.
Full textChedryk, V. I., T. M. Boichuk, M. M. Kurmach, P. S. Yaremov, A. Yu Kapran та S. M. Orlyk. "Oxidative dehydrogenation of propane with the participation of mild oxidants (N2O and СО2) on metal(oxide)-zeolite catalysts". Catalysis and Petrochemistry, № 35 (2024): 1–10. https://doi.org/10.15407/kataliz2024.35.001.
Full textChesnokov, Vladimir V., Pavel P. Dik, and Aleksandra S. Chichkan. "Formic Acid as a Hydrogen Donor for Catalytic Transformations of Tar." Energies 13, no. 17 (2020): 4515. http://dx.doi.org/10.3390/en13174515.
Full textMaeno, Zen, Xiaopeng Wu, Shunsaku Yasumura, Takashi Toyao, Yasuharu Kanda, and Ken-ichi Shimizu. "In-Exchanged CHA Zeolites for Selective Dehydrogenation of Ethane: Characterization and Effect of Zeolite Framework Type." Catalysts 10, no. 7 (2020): 807. http://dx.doi.org/10.3390/catal10070807.
Full textJonsson, Rasmus, Phuoc Hoang Ho, Aiyong Wang, Magnus Skoglundh, and Louise Olsson. "The Impact of Lanthanum and Zeolite Structure on Hydrocarbon Storage." Catalysts 11, no. 5 (2021): 635. http://dx.doi.org/10.3390/catal11050635.
Full textLi, Yixiao, Quanhua Wang, Ding Wang, and Xiaoliang Yan. "NO-CH4-SCR Over Core-Shell MnH-Zeolite Composites." Applied Sciences 9, no. 9 (2019): 1773. http://dx.doi.org/10.3390/app9091773.
Full textSharma, Shrinjay, Richard Baur, Marcello Rigutto, et al. "Computing Entropy for Long-Chain Alkanes Using Linear Regression: Application to Hydroisomerization." Entropy 26, no. 12 (2024): 1120. https://doi.org/10.3390/e26121120.
Full textJulio, Colmenares-Zerpa, Márquez Génesis, Delgado Miguel, et al. "Evaluación del tiempo de cristalización en la preparación de la zeolita BEA por síntesis hidrotermal." Catálisis 9, no. 1 (2020): 36–41. https://doi.org/10.5281/zenodo.4087355.
Full textCody, D., M. Moothanchery, E. Mihaylova, V. Toal, S. Mintova, and I. Naydenova. "Compositional Changes for Reduction of Polymerisation-Induced Shrinkage in Holographic Photopolymers." Advances in Materials Science and Engineering 2016 (2016): 1–11. http://dx.doi.org/10.1155/2016/8020754.
Full textWu, Ruiqi, Ning Liu, Chengna Dai, et al. "Collaborative Purification of Tert-Butanol and N2O over Fe/Co-Zeolite Catalysts." International Journal of Environmental Research and Public Health 20, no. 6 (2023): 4902. http://dx.doi.org/10.3390/ijerph20064902.
Full textHodala, Janardhan L., Anand B. Halgeri, and Ganapati V. Shanbhag. "Enhancement in activity and shape selectivity of zeolite BEA by phosphate treatment for 2-methoxynaphthalene acylation." RSC Advances 6, no. 93 (2016): 90579–86. http://dx.doi.org/10.1039/c6ra16093j.
Full textVillamaina, R., I. Nova, E. Tronconi, T. Maunula, and M. Keenan. "Effect of the NH4NO3 Addition on the Low-T NH3-SCR Performances of Individual and Combined Fe- and Cu-Zeolite Catalysts." Emission Control Science and Technology 5, no. 4 (2019): 290–96. http://dx.doi.org/10.1007/s40825-019-00140-3.
Full textJonsson, Rasmus, Jungwon Woo, Magnus Skoglundh, and Louise Olsson. "Zeolite Beta Doped with La, Fe, and Pd as a Hydrocarbon Trap." Catalysts 10, no. 2 (2020): 173. http://dx.doi.org/10.3390/catal10020173.
Full textGabla, Jenifer J., Sunil R. Mistry, and Kalpana C. Maheria. "An efficient green protocol for the synthesis of tetra-substituted imidazoles catalyzed by zeolite BEA: effect of surface acidity and polarity of zeolite." Catal. Sci. Technol. 7, no. 21 (2017): 5154–67. http://dx.doi.org/10.1039/c7cy01398a.
Full textHlatywayo, Tapiwa, Leslie Petrik, and Benoit Louis. "Coal Fly Ash and Acid Mine Drainage-Based Fe-BEA Catalysts for the Friedel–Crafts Alkylation of Benzene." Catalysts 15, no. 2 (2025): 155. https://doi.org/10.3390/catal15020155.
Full textBacariza, Carmen, Leila Karam, Nissrine El Hassan, José M. Lopes, and Carlos Henriques. "Carbon Dioxide Reforming of Methane over Nickel-Supported Zeolites: A Screening Study." Processes 10, no. 7 (2022): 1331. http://dx.doi.org/10.3390/pr10071331.
Full textNunes, Nelson, Ana P. Carvalho, Ruben Elvas-Leitão, et al. "Exploring the Effect of Hierarchical Porosity in BEA Zeolite in Friedel-Crafts Acylation of Furan and Benzofuran." Catalysts 12, no. 9 (2022): 1064. http://dx.doi.org/10.3390/catal12091064.
Full textSzkudlarek, Lukasz, Karolina A. Chalupka-Spiewak, Aleksandra Zimon, et al. "The Impact of Support and Reduction Temperature on the Catalytic Activity of Bimetallic Nickel-Zirconium Catalysts in the Hydrocracking Reaction of Algal Oil from Spirulina Platensis." Molecules 29, no. 22 (2024): 5380. http://dx.doi.org/10.3390/molecules29225380.
Full textChang, Chun-Chih, Hong Je Cho, Zhuopeng Wang, Xuanting Wang, and Wei Fan. "Fluoride-free synthesis of a Sn-BEA catalyst by dry gel conversion." Green Chemistry 17, no. 5 (2015): 2943–51. http://dx.doi.org/10.1039/c4gc02457e.
Full textSu, Hui, and Edward S. Yeung. "Combinatorial Study of Zeolites in Catalyzing the Acylation of Benzene via Laser-Induced Fluorescence Imaging." Applied Spectroscopy 56, no. 8 (2002): 1044–47. http://dx.doi.org/10.1366/000370202321274944.
Full textLuo, Yuying, Yadong Zhu, Jianguo Pan, and Xiaohui Chen. "Fast synthesis of hierarchical Al-free Ti-BEA plate-like nanocrystals from low-templated dry gel via a steam-assisted conversion method." Green Chemistry 22, no. 5 (2020): 1681–97. http://dx.doi.org/10.1039/c9gc03869h.
Full textOrlyk, Svitlana, Pavlo Kyriienko, Andriy Kapran, et al. "CO2-Assisted Dehydrogenation of Propane to Propene over Zn-BEA Zeolites: Impact of Acid–Base Characteristics on Catalytic Performance." Catalysts 13, no. 4 (2023): 681. http://dx.doi.org/10.3390/catal13040681.
Full textRadhakrishnan, Sambhu, Sam Smet, C. Vinod Chandran, et al. "Prediction of Cu Zeolite NH3-SCR Activity from Variable Temperature 1H NMR Spectroscopy." Molecules 28, no. 18 (2023): 6456. http://dx.doi.org/10.3390/molecules28186456.
Full textSzkudlarek, Łukasz, Karolina Chałupka-Śpiewak, Waldemar Maniukiewicz, Magdalena Nowosielska, Małgorzata Iwona Szynkowska-Jóźwik, and Paweł Mierczyński. "Biodiesel Production by Methanolysis of Rapeseed Oil—Influence of SiO2/Al2O3 Ratio in BEA Zeolite Structure on Physicochemical and Catalytic Properties of Zeolite Systems with Alkaline Earth Oxides (MgO, CaO, SrO)." International Journal of Molecular Sciences 25, no. 7 (2024): 3570. http://dx.doi.org/10.3390/ijms25073570.
Full textWilliams, C. Luke, Katherine P. Vinter, Chun-Chih Chang, et al. "Kinetic regimes in the tandem reactions of H-BEA catalyzed formation of p-xylene from dimethylfuran." Catalysis Science & Technology 6, no. 1 (2016): 178–87. http://dx.doi.org/10.1039/c5cy01320h.
Full textRyzhikov, A., I. Khay, H. Nouali, T. J. Daou, and J. Patarin. "Drastic change of the intrusion–extrusion behavior of electrolyte solutions in pure silica *BEA-type zeolite." Phys. Chem. Chem. Phys. 16, no. 33 (2014): 17893–99. http://dx.doi.org/10.1039/c4cp01862a.
Full textYakimov, Alexander V., Yury G. Kolyagin, Søren Tolborg, Peter N. R. Vennestrøm, and Irina I. Ivanova. "Accelerated synthesis of Sn-BEA in fluoride media: effect of H2O content in the gel." New Journal of Chemistry 40, no. 5 (2016): 4367–74. http://dx.doi.org/10.1039/c6nj00394j.
Full textYang, Gang, Xiong Li, and Lijun Zhou. "Adsorption of fructose in Sn-BEA zeolite from periodic density functional calculations." RSC Advances 6, no. 11 (2016): 8838–47. http://dx.doi.org/10.1039/c5ra25554f.
Full textAndrade, Marta, Leonardo Ansari, Armando Pombeiro, Ana Carvalho, Angela Martins, and Luísa Martins. "Fe@Hierarchical BEA Zeolite Catalyst for MW-Assisted Alcohol Oxidation Reaction: A Greener Approach." Catalysts 10, no. 9 (2020): 1029. http://dx.doi.org/10.3390/catal10091029.
Full text