Dissertations / Theses on the topic 'Zero-inflated generalized Poisson model'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 22 dissertations / theses for your research on the topic 'Zero-inflated generalized Poisson model.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Guo, Yixuan. "Bayesian Model Selection for Poisson and Related Models." University of Cincinnati / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1439310177.
Full textPrasad, Jonathan P. "Zero-Inflated Censored Regression Models: An Application with Episode of Care Data." BYU ScholarsArchive, 2009. https://scholarsarchive.byu.edu/etd/2226.
Full textWang, Shin Cheng. "Analysis of Zero-Heavy Data Using a Mixture Model Approach." Diss., Virginia Tech, 1998. http://hdl.handle.net/10919/30357.
Full textPh. D.
Roemmele, Eric S. "A Flexible Zero-Inflated Poisson Regression Model." UKnowledge, 2019. https://uknowledge.uky.edu/statistics_etds/38.
Full textLlorens, Aleixandre Noelia. "Evaluación en el modelado de las respuestas de recuento." Doctoral thesis, Universitat de les Illes Balears, 2005. http://hdl.handle.net/10803/9446.
Full textThis paper presents two lines of research that have been developed in recent years on the evaluation stage in count data. The areas of study have been both count data, specifically the study of Poisson regression modelling and its extension, and the evaluation stage as a point of reflection in the statistical modelling process. The results obtained demonstrate the importance of applying appropriate models to the characteristics of data as well as evaluating their fit. On the other hand, comparisons of trials, indices, estimators and models attempt to indicate the suitability or preference for one over the others in certain circumstances and according to research objectives.
Pedersen, Kristen E. "Sample Size Determination in Auditing Accounts Receivable Using a Zero-Inflated Poisson Model." Digital WPI, 2010. https://digitalcommons.wpi.edu/etd-theses/421.
Full textKreider, Scott Edwin Douglas. "A case study in handling over-dispersion in nematode count data." Manhattan, Kan. : Kansas State University, 2010. http://hdl.handle.net/2097/4248.
Full textZeileis, Achim, Christian Kleiber, and Simon Jackman. "Regression Models for Count Data in R." Foundation for Open Access Statistics, 2008. http://epub.wu.ac.at/4986/1/Zeileis_etal_2008_JSS_Regression%2DModels%2Dfor%2DCount%2DData%2Din%2DR.pdf.
Full textGao, Siyu. "The impact of misspecification of nuisance parameters on test for homogeneity in zero-inflated Poisson model: a simulation study." Kansas State University, 2014. http://hdl.handle.net/2097/17804.
Full textDepartment of Statistics
Wei-Wen Hsu
The zero-inflated Poisson (ZIP) model consists of a Poisson model and a degenerate distribution at zero. Under this model, zero counts are generated from two sources, representing a heterogeneity in the population. In practice, it is often interested to evaluate this heterogeneity is consistent with the observed data or not. Most of the existing methodologies to examine this heterogeneity are often assuming that the Poisson mean is a function of nuisance parameters which are simply the coefficients associated with covariates. However, these nuisance parameters can be misspecified when performing these methodologies. As a result, the validity and the power of the test may be affected. Such impact of misspecification has not been discussed in the literature. This report primarily focuses on investigating the impact of misspecification on the performance of score test for homogeneity in ZIP models. Through an intensive simulation study, we find that: 1) under misspecification, the limiting distribution of the score test statistic under the null no longer follows a chi-squared distribution. A parametric bootstrap methodology is suggested to use to find the true null limiting distribution of the score test statistic; 2) the power of the test decreases as the number of covariates in the Poisson mean increases. The test with a constant Poisson mean has the highest power, even compared to the test with a well-specified mean. At last, simulation results are applied to the Wuhan Inpatient Care Insurance data which contain excess zeros.
Zeileis, Achim, Christian Kleiber, and Simon Jackman. "Regression Models for Count Data in R." Department of Statistics and Mathematics, WU Vienna University of Economics and Business, 2007. http://epub.wu.ac.at/1168/1/document.pdf.
Full textSeries: Research Report Series / Department of Statistics and Mathematics
Zavaleta, Katherine Elizabeth Coaguila. "Modelo destrutivo com variável terminal em experimentos quimiopreventivos de tumores em animais." Universidade Federal de São Carlos, 2012. https://repositorio.ufscar.br/handle/ufscar/4561.
Full textFinanciadora de Estudos e Projetos
The chemical induction of carcinogens in chemopreventive animal experiments is becoming increasingly frequent in biological research. The purpose of these biological experiments is to evaluate the effect of a particular treatment on the rate of tumors incidence in animals. In this work, the number of promoted tumors per animal will be parametrically modeled following the suggestions given by Kokoska (1987) and Freedman et al. (1993). The study of these chemopreventive experiments will be presented in the context of the destructive model proposed by Rodrigues et al. (2010) with terminal variable that allows or censures the experiment at time of the animal death. Since the data analyzed in this field are subject to excess of zeros (Freedman et al. (1993)), we propose for the number of promoted tumors a negative binomial distribution (NB), a zero-inflated Poisson distribution (ZIP), and a zero-inflated Negative Binomial distribution (ZINB). The selection of these models will be made through the likelihood ratio test and the AIC, BIC criteria. The estimation of its parameters will be obtained by using the method of maximum likelihood, and further simulation studies will also be realized. As a future proposition to finalize this project, it is suggested the Bayesian methodology as an alternative to the method of maximum likelihood via the EM algorithm.
A indução química de substâncias cancerígenas em experimentos quimiopreventivos em animais é cada vez mais frequente em pesquisas biológicas. O objetivo destes experimentos biológicos é avaliar o efeito de um determinado tratamento na taxa de incidência de tumores em animais. Neste trabalho o número de tumores promovidos por animal será modelado parametricamente seguindo as sugestões dadas por Kokoska (1987) e por Freedman et al. (1993). O estudo desses experimentos quimiopreventivos será apresentado no contexto do modelo destrutivo proposto por Rodrigues et al. (2010) com variável terminal que condiciona ou censura o experimento no instante de morte do animal. Os dados analisados possuem uma grande quantidade de zeros, portanto será proposto para o número de tumores promovidos as seguintes distribuições: binomial negativa, a distribuição de Poisson com zeros inflacionados e a distribuição binomial negativa com zeros inflacionados. A seleção destes modelos será feita através do teste da razão de verossimilhança e os critérios AIC, BIC. As estimativas dos respectivos parâmetros serão obtidas utilizando o método de máxima verossimilhança e serão feitos estudos de simulação. Para continuar este projeto, a proposta futura é utilizar a metodologia Bayesiana como alternativa ao método de máxima verossimilhança via algoritmo EM.
Low, Wan Jing. "Variants of compound models and their application to citation analysis." Thesis, University of Wolverhampton, 2017. http://hdl.handle.net/2436/620467.
Full textCheng, Lulu. "Statistical Methods for Genetic Pathway-Based Data Analysis." Diss., Virginia Tech, 2013. http://hdl.handle.net/10919/52039.
Full textPh. D.
Milani, Eder Angelo. "Modelos para séries temporais utilizando as distribuições normal generalizada e log-normal generalizada." Universidade Federal de São Carlos, 2016. https://repositorio.ufscar.br/handle/ufscar/7943.
Full textApproved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-10-20T13:51:46Z (GMT) No. of bitstreams: 1 TeseEAMms.pdf: 1490434 bytes, checksum: e7a807666b453630ffb423774d2539b9 (MD5)
Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-10-20T13:51:52Z (GMT) No. of bitstreams: 1 TeseEAMms.pdf: 1490434 bytes, checksum: e7a807666b453630ffb423774d2539b9 (MD5)
Made available in DSpace on 2016-10-20T13:52:00Z (GMT). No. of bitstreams: 1 TeseEAMms.pdf: 1490434 bytes, checksum: e7a807666b453630ffb423774d2539b9 (MD5) Previous issue date: 2016-03-23
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
From the generalized normal distribution and concepts of the generalized autoregressive moving averages models we introduce the generalized normal-ARMA model as an alternative way to model time series exhibiting symmetry and tails that may be lighter or heavier when compared the normal distribution. We present application for proposed model using three time series in the hydrology, economy and publics policy areas. The proposed model is presented as good alternative when compared to ARMA model with normal distribution. We extended this model the case of the asymmetric time series. In this case we used the Box-Cox transformation, denoted by Box-Cox generalized normal ARMA. The particular case, when we use the logarithmic transformation is called generalized log-normal ARMA. We adjusted the models with transformation to the series on monthly average affluent streamflow of the Furnas and Sobradinho hydroelectric plants. We obtain the prediction values for the model with transformation, that are better when compared with the model without transformation. To treat time series that exhibit periodic in the correlation function we defined three extensions for periodic autoregressive model, called generalized normal periodic autoregressive model, generalized log-normal periodic autoregressive model and Box-Cox generalized normal periodic autoregressive model. We can observed that the series on monthly average affluent streamflow of the Furnas and Sobradinho hydroelectric plants have periodic correlation. We present two applications of periodic models from these series. In the models, we note that is not necessary the use of generalized normal distribution in every months, just in some the generalized normal distribution presented better results than the normal distribution. Finally, we define the generalized normal zero inflated distribution and the generalized normal zero inflated ARMA model for time series. Adopting the model for series that have zero inflation and the maximum likelihood method for estimation of parameters, we analyze the serie of the amount of rainfall in the city of São Carlos.
A partir da distribuição normal generalizada e dos conceitos do modelo autorregressivo e de médias móveis generalizado, introduzimos o modelo normal generalizada- ARMA, como alternativa para modelar séries temporais, que exibem simetria e caudas mais leves ou mais pesadas quando comparadas com a distribuição normal. Apresentamos aplicações do modelo proposto, usando três séries temporais, das áreas de hidrologia, políticas públicas e economia. O modelo proposto se apresentou como uma boa alternativa ao modelo ARMA com distribuição normal. Estendemos o modelo para o caso de séries que apresentam assimetria. Neste caso, utilizamos a transformação de Box-Cox, denotado por Box-Cox normal generalizada-ARMA. O caso particular quando utilizamos a transformação logarítmica é chamado de log-normal generalizada-ARMA. Ajustamos os modelos com transformação à séries de vazões das usinas hidrelétricas de Furnas e Sobradinho. Calculamos predições, que para o modelo com transformação, foram melhores, quando comparado ao modelo sem transformação. Com o objetivo de tratar séries que apresentam periodicidade na função de correlação, definimos três extensões do modelo autorregressivo periódico, chamando-os de modelo normal generalizada autorregressivo periódico, modelo log-normal generalizada autorregressivo periódico e modelo Box-Cox normal generalizada autorregressivo periódico. Constatamos que as séries de vazões das usinas hidrelétricas de Furnas e Sobradinho apresentam correlação periódica. Apresentamos duas aplicações dos modelos periódicos propostos usando estas séries. Nos ajustes dos modelos, notamos que não há necessidade da utilização da distribuição normal generalizada em todos os meses, mas em alguns a distribuição normal generalizada se sobressaiu em relação a distribuição normal. Por último, definimos a distribuição normal generalizada zero inflacionada e o modelo para séries temporais normal generalizada zero inflacionada-ARMA. Adotando o método de máxima verossimilhança e o modelo para séries que apresentam inflação de zeros, analisamos a série da quantidade de precipitação pluviométrica da cidade de São Carlos.
Teng, Yungchu, and 鄧詠竹. "A Study On Zero-and-K-Inflated Poisson Regression Model." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/74275146426708698381.
Full text國立臺北大學
統計學系
100
In the public health, social science, engineering science, agricultural science and other disciplines, it is common to use the Poisson (POI) regression to analyze discrete count data. However, excessive zeros often occur in the data and then cause over-dispersion. Therefore, Lambert (1992) proposed the zero-inflated Poisson (ZIP) regression model to fit such data. In this research, we extend the zero-inflated Poisson regression model to the zero-and-K-inflated Poisson (ZKIP) regression model. The ZKIP model can be applied to count data, which contains extra zeros and Ks, where K is a non-zero positive integer. For example, a survey question inquiring the number of times that young adults visited a dentist in two years resulted in zero time (zero) or one time (K) for most people, this is so-called zero-and-K-inflated data. In the simulation study, it compares the goodness of fit for ZKIP, ZIP and POI models, and discusses the best timing of using these models in the data. We also explores the effect of different sample size, zero proportion, k proportion and mean in Poisson distribution on data fitting for these considered models The simulation study shows that ZKIP has better fit than POI and ZIP in all simulation configurations. In the empirical study, we use 2005 national health interview survey data to compare the performance of data fitting for the three models. The results show that the zero-and-K-inflated Poisson regression model outperforms the other two models.
Wang, Ying-Jhih, and 王英至. "Modeling Spatial Risk Variation of Aftershocks Using Zero-Inflated Poisson Model." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/zbnnvs.
Full text國立彰化師範大學
統計資訊研究所
106
Modeling spatial risk variation of the interested event is an active research topic in spatial statistics. For count data, when response variables are collected with the excessive zero values, the traditional Poisson regression model may be not suitable for analyzing this type of data. To overcome this issue, we use the zero-inflated Poisson model combined with the spatial hierarchical Bayesian model to assess the spatial risk variation of the interested event, where the spatial correlations of the data set are modeled by the conditional autoregressive model and a logistic regression is used to spatially model the probabilistic variabilities of risks. The statistical inferences of model parameters and risk assessments are conducted based on Bayesian frameworks. We use a real data set regarding aftershocks of 921 Chi-Chi earthquake in Taiwan to illustrate the effectiveness of the proposed methodology.
Yi-HengLin and 林翊亨. "Applying Zero-inflated Poisson Model for High-quality process Control Chart." Thesis, 2009. http://ndltd.ncl.edu.tw/handle/90999020600242766344.
Full text國立成功大學
工業與資訊管理學系專班
98
Attribute c control chart is a Poisson distribution based on the central limit theorem (CLT). With the emergence of high-quality process, the number of defects was substantially reduced. However, the reduction in defects created an excessive amount of zero counts on the c chart. Additionally, it caused the control limit to approach zero or negative. The c control chart was led to invalid CLT assumptions and generated many false alarms. Therefore, the c chart was inadequate. Due to very few numbers of defects on process, the zero count was inadequate in monitoring and controlling attribute data in this high-quality process. Hence, searching for a more appropriate probability distribution is important. Due to the reasons mentioned above, the use of zero-inflated Poisson (ZIP) distribution will be more appropriate than Poisson distribution. In this research, a positive approach was proposed to prove the feasibility assessment of ZIP with a case study. In this paper, the Vuong test and maximum likelihood estimation method (MLE) was presented to estimate parameters, and then the average run length (ARL) applied for performance evaluation. This approach was ensured that ZIP model was a significant improvement and could be a useful reference for high-quality process.
Lukusa, Martin Tshishimbi Wa, and 盧馬汀. "Semiparametric Estimation of a Zero-Inflated Poisson Regression Model with Missing Covariates." Thesis, 2015. http://ndltd.ncl.edu.tw/handle/73140756254761603751.
Full text逢甲大學
統計學系應用統計博士班
104
Besides the usual problem of overdispersion encountered in fitting a response count data set with excess of zeroes, some covariates involved in modeling the Poisson mean and mixing probability in a zero-inflated Poisson (ZIP) regression model are likely to have missings. In the presence of missing values in covariates, inference based only on complete cases may not provide efficient results because some available information is discarded by deletion of cases. To obtain the unbiased estimators of the parameters of a ZIP regression model with missing covariates, we propose the inverse probability weighting (IPW) methods. These methods estimate the parameters of the ZIP regression model under the missing at random (MAR) where observations are inversely weighted by the selection probability. In this IPW frame¬work, we prove that the semiparametric IPW estimator is asymptotically more efficient than the true weight IPW estimator. We also investigate the asymptotic properties of the estimators. Finally, we conduct Monte Carlo experiments to study their finite-sample performance and use a real example to illustrate the practical use of the proposed methodology. Keyword: Count data, Overdispersion, Estimating equation, Missing at random, Non-parametric selection probability, Large-sample Properties.
Santos, Jorge Helder Pereira dos. "Modelos para dados de contagem com excesso de zeros." Master's thesis, 2013. http://hdl.handle.net/1822/29402.
Full textOs modelos de regressão para dados de contagem são muito utilizados nas mais variadas áreas de estudo para a modelação de fenómenos. Estes modelos integram um quadro especial de metodologias devido ao facto de a variável resposta tomar apenas valores inteiros não negativos. A distribuição de Poisson é a mais conhecida, e a mais utilizada para modelar dados de contagem, no entanto sempre que existe sobredispersão, torna-se necessário recorrer a outras distribuições, nomeadamente à distribuição Binomial Negativa. Outro problema comum nos dados de contagem é o excesso de zeros na variável resposta. Os modelos de regressão de zeros inflacionados são amplamente usados para modelar esse tipo de dados. Estes modelos modelam as contagens como uma mistura de duas distribuições com dois processos subjacentes, um que trata do excesso de zeros modelado por uma massa pontual, e um outro que trata das contagens sendo modelado por uma distribuição de Poisson ou Binomial Negativa. Neste trabalho pretendeu-se estudar os modelos de regressão para dados de contagem e a sua aplicação a dados bancários relativos a clientes a quem foi garantido crédito de consumo por um banco. Tem como principal objetivo estudar a relação do número de não pagamento da prestação do empréstimo de um cliente em função das caracteristicas do cliente e do contrato. Em particular, foram ajustados os modelos de regressão de Poisson, modelos de regressão Binomial Negativa, modelos de regressão de Poisson de zeros inflacionados e modelos de regressão binomial negativa de zeros inflacionados utilizando o algoritmo EM para obter as estimativas de máxima verosimilhança dos parâmetros. Os resultados obtidos mostraram que os modelos de regressão de zeros inflacionados apresentam um melhor ajustamento, quando comparados com os modelos que não têm em consideração o excesso de zeros. Mostraram ainda que os modelos baseados na distribuição Binomial Negativa, são os mais adequados para modelar estes dados, em vez dos modelos baseados na distribuição de Poisson.
Regression models for count data are highly used in several areas of study for modelation of phenomena. These models feature a special methodological board that comes from the fact that the response variable just takes non-negative integer values. The Poisson distribution is the most recognized and most widely used to model count data, however when there is overdispersion, it becomes necessary the use other distributions, as so, including negative binomial distribution. Another common problem in count data, is the excess of zeros in the response variable. Zero inflated regression models are widely used to model this type of data. These models model the counts as a mixture of two distributions with two underlying processes, one that deals with excess of zeros modeled by a pontual mass, and another one that handles the counts by being modelated by a Poisson or Negative Binomial distributions. In this work we intended to study regression models for count data and its application on bank data clients to whom it was granted consumption credit by a bank. Its main objective is to study the relationship of the number of non payment of the installment of a client depending on the characteristics of client and the contract. In particular, we fit the Poisson regression models, negative binomial regression models, zero inflated Poisson regression models and negative binomial regression models for zero inflated using the EM algorithm to obtain maximum likelihood estimates of the parameters. The results showed that zero inflated regression models have a better fit compared with models that do not take into account the extra zeros. Also showed that models based on the negative binomial distribution, are more suitable for modeling this data instead of models based on Poisson distribution.
Saab, Rabih. "Nonparametric estimation of the mixing distribution in mixed models with random intercepts and slopes." Thesis, 2013. http://hdl.handle.net/1828/4548.
Full textGraduate
0463
rabihsaab@gmail.com
Koemle, Dieter. "The impact of agri-environmental policy and infrastructure on wildlife and land prices." Doctoral thesis, 2018. http://hdl.handle.net/11858/00-1735-0000-002E-E538-E.
Full textSebatjane, Phuti. "Understanding patterns of aggregation in count data." Diss., 2016. http://hdl.handle.net/10500/22067.
Full textStatistics
M.Sc. (Statistics)