Academic literature on the topic 'Zeros of polynomials. eng'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Zeros of polynomials. eng.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Zeros of polynomials. eng"

1

Liu, Rong. "Orthogonal polynomials for exponential weights x2α(1 – x2)2ρe–2Q(x) on [0, 1)". Open Mathematics 18, № 1 (2020): 138–49. http://dx.doi.org/10.1515/math-2020-0011.

Full text
Abstract:
Abstract Let Wα,ρ = xα(1 – x2)ρe–Q(x), where α > – $\begin{array}{} \displaystyle \frac12 \end{array}$ and Q is continuous and increasing on [0, 1), with limit ∞ at 1. This paper deals with orthogonal polynomials for the weights $\begin{array}{} \displaystyle W^2_{\alpha, \rho} \end{array}$ and gives bounds on orthogonal polynomials, zeros, Christoffel functions and Markov inequalities. In addition, estimates of fundamental polynomials of Lagrange interpolation at the zeros of the orthogonal polynomial and restricted range inequalities are obtained.
APA, Harvard, Vancouver, ISO, and other styles
2

GEIL, O., and U. MARTÍNEZ-PEÑAS. "Bounding the Number of Common Zeros of Multivariate Polynomials and Their Consecutive Derivatives." Combinatorics, Probability and Computing 28, no. 2 (2018): 253–79. http://dx.doi.org/10.1017/s0963548318000342.

Full text
Abstract:
We upper-bound the number of common zeros over a finite grid of multivariate polynomials and an arbitrary finite collection of their consecutive Hasse derivatives (in a coordinate-wise sense). To that end, we make use of the tool from Gröbner basis theory known as footprint. Then we establish and prove extensions in this context of a family of well-known results in algebra and combinatorics. These include Alon's combinatorial Nullstellensatz [1], existence and uniqueness of Hermite interpolating polynomials over a grid, estimations of the parameters of evaluation codes with consecutive derivat
APA, Harvard, Vancouver, ISO, and other styles
3

MOLANO MOLANO, LUIS ALEJANDRO. "ON LAGUERRE–SOBOLEV TYPE ORTHOGONAL POLYNOMIALS: ZEROS AND ELECTROSTATIC INTERPRETATION." ANZIAM Journal 55, no. 1 (2013): 39–54. http://dx.doi.org/10.1017/s1446181113000308.

Full text
Abstract:
AbstractWe study the sequence of monic polynomials orthogonal with respect to inner product $$\begin{eqnarray*}\langle p, q\rangle = \int \nolimits \nolimits_{0}^{\infty } p(x)q(x){e}^{- x} {x}^{\alpha } \hspace{0.167em} dx+ Mp(\zeta )q(\zeta )+ N{p}^{\prime } (\zeta ){q}^{\prime } (\zeta ),\end{eqnarray*}$$ where $\alpha \gt - 1$, $M\geq 0$, $N\geq 0$, $\zeta \lt 0$, and $p$ and $q$ are polynomials with real coefficients. We deduce some interlacing properties of their zeros and, by using standard methods, we find a second-order linear differential equation satisfied by the polynomials and dis
APA, Harvard, Vancouver, ISO, and other styles
4

BISHNOI, ANURAG, PETE L. CLARK, ADITYA POTUKUCHI, and JOHN R. SCHMITT. "On Zeros of a Polynomial in a Finite Grid." Combinatorics, Probability and Computing 27, no. 3 (2018): 310–33. http://dx.doi.org/10.1017/s0963548317000566.

Full text
Abstract:
A 1993 result of Alon and Füredi gives a sharp upper bound on the number of zeros of a multivariate polynomial over an integral domain in a finite grid, in terms of the degree of the polynomial. This result was recently generalized to polynomials over an arbitrary commutative ring, assuming a certain ‘Condition (D)’ on the grid which holds vacuously when the ring is a domain. In the first half of this paper we give a further generalized Alon–Füredi theorem which provides a sharp upper bound when the degrees of the polynomial in each variable are also taken into account. This yields in particul
APA, Harvard, Vancouver, ISO, and other styles
5

Smith, Simon J. "The Lebesgue function for Hermite-Fejér interpolation on the extended Chebyshev nodes." Bulletin of the Australian Mathematical Society 66, no. 1 (2002): 151–62. http://dx.doi.org/10.1017/s0004972700020773.

Full text
Abstract:
Given f ∈ C[−1, 1] and n point (nodes) in [−1, 1], the Hermite-Fejér interpolation polynomial is the polynomial of minimum degree which agrees with f and has zero derivative at each of the nodes. In 1916, L. Fejér showed that if the nodes are chosen to be zeros of Tn (x), the nth Chebyshev polynomial of the first kind, then the interpolation polynomials converge to f uniformly as n → ∞. Later, D.L. Berman demonstrated the rather surprising result that this convergence property no longer holds true if the Chebyshev nodes are extended by the inclusion of the end points −1 and 1 in the interpolat
APA, Harvard, Vancouver, ISO, and other styles
6

Wu, Jinglai, Zhen Luo, Nong Zhang, and Wei Gao. "A new sequential sampling method for constructing the high-order polynomial surrogate models." Engineering Computations 35, no. 2 (2018): 529–64. http://dx.doi.org/10.1108/ec-05-2016-0160.

Full text
Abstract:
Purpose This paper aims to study the sampling methods (or design of experiments) which have a large influence on the performance of the surrogate model. To improve the adaptability of modelling, a new sequential sampling method termed as sequential Chebyshev sampling method (SCSM) is proposed in this study. Design/methodology/approach The high-order polynomials are used to construct the global surrogated model, which retains the advantages of the traditional low-order polynomial models while overcoming their disadvantage in accuracy. First, the zeros of Chebyshev polynomials with the highest a
APA, Harvard, Vancouver, ISO, and other styles
7

Al-Dolat, Mohammed, Khaldoun Al-Zoubi, Mohammed Ali, and Feras Bani-Ahmad. "General numerical radius inequalities for matrices of operators." Open Mathematics 14, no. 1 (2016): 109–17. http://dx.doi.org/10.1515/math-2016-0011.

Full text
Abstract:
AbstractLet Ai ∈ B(H), (i = 1, 2, ..., n), and $ T = \left[ {\matrix{ 0 & \cdots & 0 & {A_1 } \cr \vdots & {\mathinner{\mkern2mu\raise1pt\hbox{.}\mkern2mu \raise4pt\hbox{.}\mkern2mu\raise7pt\hbox{.}\mkern1mu}} & {A_2 } & 0 \cr 0 & {\mathinner{\mkern2mu\raise1pt\hbox{.}\mkern2mu \raise4pt\hbox{.}\mkern2mu\raise7pt\hbox{.}\mkern1mu}} & {\mathinner{\mkern2mu\raise1pt\hbox{.}\mkern2mu \raise4pt\hbox{.}\mkern2mu\raise7pt\hbox{.}\mkern1mu}} & \vdots \cr {A_n } & 0 & \cdots & 0 \cr } } \right] $ . In this paper, we present some upper bounds and lower bo
APA, Harvard, Vancouver, ISO, and other styles
8

Kendall, Wilfrid S., and Catherine J. Price. "Zeros of Brownian polynomials." Stochastics and Stochastic Reports 70, no. 3-4 (2000): 217–308. http://dx.doi.org/10.1080/17442500008834255.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kobal, Damjan. "Matrix zeros of polynomials." Mathematical Gazette 104, no. 559 (2020): 27–35. http://dx.doi.org/10.1017/mag.2020.4.

Full text
Abstract:
The concepts of polynomials and matrices essentially expand and enhance the elementary arithmetic of numbers. Once introduced, polynomials and matrices open up new interesting mathematical challenges which extend to new fields of mathematical explorations within university mathematics. We present an aspect of a rather elementary exploration of polynomials and matrices, which offers a new perspective and an interesting matrix analogue to the concept of a zero of a polynomial. The discussion offers an opportunity for better comprehension of the fundamental concepts of polynomials and matrices. A
APA, Harvard, Vancouver, ISO, and other styles
10

Gilewicz, Jacek. "Zeros of Froissart polynomials." Journal of Computational and Applied Mathematics 133, no. 1-2 (2001): 687. http://dx.doi.org/10.1016/s0377-0427(00)00720-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Zeros of polynomials. eng"

1

Nunes, Josiani Batista. "Limitantes para os zeros de polinômios gerados por uma relação de recorrência de três termos /." São José do Rio Preto : [s.n.], 2009. http://hdl.handle.net/11449/94251.

Full text
Abstract:
Orientador: Eliana Xavier Linhares de Andrade<br>Banca: Alagacone Sri Ranga<br>Banca: Andre Piranhe da Silva<br>Resumo: Este trabalho trata do estudo da localização dos zeros dos polinômios gerados por uma determinada relação de recorrência de três termos. O objetivo principal é estudar limitantes, em termos dos coeficientes da relação de recorrência, para as regiões onde os zeros estão localizados. Os zeros são explorados atravé do problema de autovalor associado a uma matriz de Hessenberg. As aplicações são consideradas para polinômios de Szeg"o fSng, alguns polinômios para- ortogonais ½Sn(z
APA, Harvard, Vancouver, ISO, and other styles
2

Martins, Alessandro Santana. "Interpretação eletrostática e zeros de polinômios /." São José do Rio Preto : [s.n.], 2005. http://hdl.handle.net/11449/94283.

Full text
Abstract:
Orientador: Eliana Xavier Linhares de Andrade<br>Banca: Sérgio Antonio Tozoni<br>Banca: Dimitar Kolev Dimitrov<br>Resumo: O principal objetivo deste trabalho é estudar um problema de eletrostática geral que envolve ambos, um campo externo e restrições sobre cargas livres. Foram fornecidas condições necessárias e suficientes para o mínimo da energia em termos de soluções polinomiais de uma equação diferencial de Lamé modificada. Além disso, foram dadas novas demonstrações, mais simples, de resultados clássicos de Stieltjes e Szego. Finalmente, foi obtida uma interpretação eletrostática para os
APA, Harvard, Vancouver, ISO, and other styles
3

Rafaeli, Fernando Rodrigo. "Teorema de Sturm e zeros de polinômios ortogonais /." São José do Rio Preto : [s.n.], 2007. http://hdl.handle.net/11449/94295.

Full text
Abstract:
Orientador: Dimitar Kolev Dimitrov<br>Banca: Valdir Antonio Menegatto<br>Banca: Alagocone Sri Ranga<br>Resumo: Neste trabalho estudamos o Teorema de Sturm para zeros de soluções de equações diferenciais lineares de segunda ordem e suas extensões. Estes resultados clássicos são aplicados para análise de monotonicidade e convexidade de zeros de polinômios ortogonais clássicos.<br>Abstract: We study Sturm's theorem on zeros of solution of linear second-order differential equations as well as its extension. These classical results are applied to analyze monotonicity and convexity of zeros of class
APA, Harvard, Vancouver, ISO, and other styles
4

Mello, Mirela Vanina de. "Zeros de combinações lineares de polinômios /." São José do Rio Preto : [s.n.], 2012. http://hdl.handle.net/11449/100068.

Full text
Abstract:
Orientador: Dimitar Kolev Dimitrov<br>Coorientador: Cleonice Fátima Braccialli<br>Banca: Roberto Andreani<br>Banca: Luis Gustavo Nonato<br>Banca: Eliana Xavier Linhares de Andrade<br>Banca: German Jesus Lozada Cruz<br>Resumo: Neste trabalho, estudamos propriedades dos zeros de polinômi os ortogonais do tipo Sobolev . Provam os resultados sobre entrelaçamento, monotonicidade e assintótica. Fornecemos, também , condições s necessárias e/ou suficientes para os zeros dos polinômios {Sn}n≥0, gerados pela fórmula Sn(x) = Pn(x) + an−1Pn−1(x), ou Sn(x) −bn−1Sn−1(x) = Pn(x), on d e {Pn}n≥0 é um a sequên
APA, Harvard, Vancouver, ISO, and other styles
5

Botta, Vanessa Avansini. "Polinômios algébricos e trigonométricos com zeros reais /." São José do Rio Preto : [s.n.], 2003. http://hdl.handle.net/11449/94297.

Full text
Abstract:
Orientador: Eliana Xavier Linhares de Andrade<br>Banca: José Roberto Nogueira<br>Banca: Heloísa Helena Marino Silva<br>Resumo: O principal objetivo deste trabalho é realizar um estudo sobre polinômios algébricos e trigonométricos que possuem somente zeros reais. O Teorema de Hermite nos dá condições necessárias e su cientes para que isto aconteça. São discutidas questões relacionadas à localização dos zeros, onde a Regra de Sinais de Descartes teve grande importância. Além disso, alguns teoremas clássicos sobre zeros de polinômios algébricos e trigonométricos são apresentados.<br>Abstract: The
APA, Harvard, Vancouver, ISO, and other styles
6

Cimwanga, Norbert Mbuyi. "On zeros of hypergeometric polynomials." Pretoria : [s.n.], 2006. http://upetd.up.ac.za/thesis/available/etd-10022007-130238.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rezakhah, Varnousfaderani Saaid. "Real zeros of random polynomials." Thesis, Queen Mary, University of London, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.362582.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Jooste, Alta. "Zeros of Jacobi, Meixner and Krawtchouk Polynomials." Thesis, University of Pretoria, 2012. http://hdl.handle.net/2263/30787.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

DeFazio, Mark Vincent. "On the zeros of some quasidefinite orthogonal polynomials." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp05/NQ66344.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Rafaeli, Fernando Rodrigo. "Zeros de polinomios ortogonais na reta real." [s.n.], 2010. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306958.

Full text
Abstract:
Orientadores: Dimitar Kolev Dimitrov, Roberto Andreani<br>Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica<br>Made available in DSpace on 2018-08-15T04:39:55Z (GMT). No. of bitstreams: 1 Rafaeli_FernandoRodrigo_D.pdf: 1231425 bytes, checksum: 33a23775a69f9b2b36c516f7cfcb0d0f (MD5) Previous issue date: 2010<br>Resumo: Neste trabalho são obtidos resultados sobre o comportamento de zeros de polinômios ortogonais. Sabe-se que todos eles são reais e distintos e fazem papel importante de nós das mais utilizadas fórmulas de integraçã
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Zeros of polynomials. eng"

1

Flood, Patrick. Real zeros of random algebraic polynomials. The Author), 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dilcher, Karl. Zeros of Bernoulli, generalized Bernoulli, and Euler polynomials. American Mathematical Society, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

S, Mitrinović Dragoslav, and Rassias Themistocles M. 1951-, eds. Topics in polynomials: Extremal problems, inequalities, zeros. World Scientific, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Papamichael, Nicholas. Asymptotic behaviour of zeros of Bieberbach polynomials. Brunel University, Department of Mathematics and Statistics, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Price, Catherine Jane. Zeros of Brownian polynomials and coupling of Brownian areas. typescript, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Petković, Miodrag. Iterative methods for simultaneous inclusion of polynomial zeros. Springer-Verlag, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hough, J. Ben. Zeros of Gaussian analytic functions and determinantal point processes. American Mathematical Society, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Xu, Yuan. Common zeros of polynomials in several variables and higher dimensional quadrature. Longman Scientific & Technical, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Xu, Yuan. Common zeros of polynomials in several variables and higher dimensional quadrature. Longman Scientific and Technical, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Real solutions to equations from geometry. American Mathematical Society, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Zeros of polynomials. eng"

1

Jordaan, Kerstin. "Zeros of Orthogonal Polynomials." In Orthogonal Polynomials. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-36744-2_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kulisch, Ulrich, Rolf Hammer, Dietmar Ratz, and Matthias Hocks. "Zeros of Complex Polynomials." In Springer Series in Computational Mathematics. Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-78423-1_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Levin, Eli, and Doron S. Lubinsky. "Zeros of Orthogonal Polynomials." In CMS Books in Mathematics. Springer New York, 2001. http://dx.doi.org/10.1007/978-1-4613-0201-8_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kulisch, Ulrich, Rolf Hammer, Matthias Hocks, and Dietmar Ratz. "Zeros of Complex Polynomials." In C++ Toolbox for Verified Computing I. Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-79651-7_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lubinsky, Doron S., та Edward B. Saff. "Weighted polynomials and zeros of extremal polynomials". У Strong Asymptotics for Extremal Polynomials Associated with Weights on ℝ. Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/bfb0082417.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hendriksen, E., and H. van Rossum. "Electrostatic interpretation of zeros." In Orthogonal Polynomials and their Applications. Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/bfb0083363.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Alvarez, M., and G. Sansigre. "On polynomials with interlacing zeros." In Lecture Notes in Mathematics. Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/bfb0076551.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Runckel, Hans-J. "Zeros of complex orthogonal polynomials." In Lecture Notes in Mathematics. Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/bfb0076554.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Jooste, A. S. "Properties and Applications of the Zeros of Classical Continuous Orthogonal Polynomials." In Orthogonal Polynomials. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-36744-2_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ciunie, J. G. "Convergence of polynomials with restricted zeros." In Functional Analysis and Operator Theory. Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/bfb0093802.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Zeros of polynomials. eng"

1

Schmeisser, Gerhard. "Real zeros of Bernstein polynomials." In Third CMFT Conference. WORLD SCIENTIFIC, 1999. http://dx.doi.org/10.1142/9789812833044_0038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Karam, Jalal, and Samer Mansour. "Wavelets polynomials and associated zeros locations." In 2012 International Conference on Communications and Information Technology (ICCIT). IEEE, 2012. http://dx.doi.org/10.1109/iccitechnol.2012.6285792.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Fournier, Jean-Daniel. "Complex zeros of random Szegő polynomials." In Third CMFT Conference. WORLD SCIENTIFIC, 1999. http://dx.doi.org/10.1142/9789812833044_0015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hasan, Jawad. "New bounds for the zeros of polynomials." In Proceedings of ICASSP '02. IEEE, 2002. http://dx.doi.org/10.1109/icassp.2002.5745612.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hasan. "New bounds for the zeros of polynomials." In IEEE International Conference on Acoustics Speech and Signal Processing ICASSP-02. IEEE, 2002. http://dx.doi.org/10.1109/icassp.2002.1004873.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Georgiev, Georgi Nikolov, and Mariana Nikolova Georgieva-Grosse. "An application of the zeros of Laguerre polynomials." In 2010 International Conference on Electromagnetics in Advanced Applications (ICEAA). IEEE, 2010. http://dx.doi.org/10.1109/iceaa.2010.5651252.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Andrievskiǐ, Vladimir. "Locally convex curves and distribution of zeros of polynomials." In Third CMFT Conference. WORLD SCIENTIFIC, 1999. http://dx.doi.org/10.1142/9789812833044_0003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zhou, Hong-bing, and Zhe-zhao Zeng. "A Rapid & Precise Algorithm Finding Zeros of Polynomials." In 2009 5th International Conference on Wireless Communications, Networking and Mobile Computing (WiCOM). IEEE, 2009. http://dx.doi.org/10.1109/wicom.2009.5303470.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gumussoy, Suat. "On the zeros of quasi-polynomials with single delay." In 2008 American Control Conference (ACC '08). IEEE, 2008. http://dx.doi.org/10.1109/acc.2008.4587334.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

MARTíNEZ-FINKELSHTEIN, A., P. MARTíNEZ-GONZÁLEZ, and R. ORIVE. "ZEROS OF JACOBI POLYNOMIALS WITH VARYING NON-CLASSICAL PARAMETERS." In Proceedings of the International Workshop. WORLD SCIENTIFIC, 2000. http://dx.doi.org/10.1142/9789812792303_0008.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Zeros of polynomials. eng"

1

Rajkovic, Predrag M., and Miomir S. Stankovic. The Zeros of Polynomials Orthogonal with respect to q-Integral on Several Intervals in the Complex Plane. GIQ, 2012. http://dx.doi.org/10.7546/giq-5-2004-178-188.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!