Academic literature on the topic 'Zeta de Dedekind'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Zeta de Dedekind.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Zeta de Dedekind"

1

Lu, Hongwen, Rongzheng Jiao, and Chungang Ji. "Dedekind zeta-functions and Dedekind sums." Science in China Series A: Mathematics 45, no. 8 (August 2002): 1059–65. http://dx.doi.org/10.1007/bf02879989.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

陆, 洪文, 春岗 纪, and 荣政 焦. "Dedekind zeta函数与Dedekind和." Science in China Series A-Mathematics (in Chinese) 31, no. 12 (December 1, 2001): 1057–64. http://dx.doi.org/10.1360/za2001-31-12-1057.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Fomenko, O. M. "On the Dedekind Zeta Function." Journal of Mathematical Sciences 200, no. 5 (July 1, 2014): 624–31. http://dx.doi.org/10.1007/s10958-014-1952-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

KIM, TAEKYUN. "NOTE ON q-DEDEKIND-TYPE SUMS RELATED TO q-EULER POLYNOMIALS." Glasgow Mathematical Journal 54, no. 1 (December 9, 2011): 121–25. http://dx.doi.org/10.1017/s0017089511000450.

Full text
Abstract:
AbstractRecently, q-Dedekind-type sums related to q-zeta function and basic L-series are studied by Simsek in [13] (Y. Simsek, q-Dedekind type sums related to q-zeta function and basic L-series, J. Math. Anal. Appl. 318 (2006), 333–351) and Dedekind-type sums related to Euler numbers and polynomials are introduced in the previous paper [11] (T. Kim, Note on Dedekind type DC sums, Adv. Stud. Contem. Math. 18 (2009), 249–260). It is the purpose of this paper to construct a p-adic continuous function for an odd prime to contain a p-adic q-analogue of the higher order Dedekind the type sums related to q-Euler polynomials and numbers by using an invariant p-adic q-integrals.
APA, Harvard, Vancouver, ISO, and other styles
5

Jiao, Rongzheng, and Hongwen Lu. "Dedekind zeta functions of certain real quadratic fields." Tamkang Journal of Mathematics 37, no. 4 (December 31, 2006): 367–75. http://dx.doi.org/10.5556/j.tkjm.37.2006.150.

Full text
Abstract:
Using analytic and modular transformation methods, we represent the value of the product of two Dedekind zeta functions of certain real quadratic number fields at $-3$ by Dedekind sums of high rank in this paper.
APA, Harvard, Vancouver, ISO, and other styles
6

CHO, PETER J., and HENRY H. KIM. "Extreme residues of Dedekind zeta functions." Mathematical Proceedings of the Cambridge Philosophical Society 163, no. 2 (February 15, 2017): 369–80. http://dx.doi.org/10.1017/s0305004117000019.

Full text
Abstract:
AbstractIn a family ofSd+1-fields (d= 2, 3, 4), we obtain the conjectured upper and lower bounds of the residues of Dedekind zeta functions except for a density zero set. ForS5-fields, we need to assume the strong Artin conjecture. We also show that there exists an infinite family of number fields with the upper and lower bounds, resp.
APA, Harvard, Vancouver, ISO, and other styles
7

Louboutin, Stéphane R. "Simple zeros of Dedekind zeta functions." Functiones et Approximatio Commentarii Mathematici 56, no. 1 (March 2017): 109–16. http://dx.doi.org/10.7169/facm/1598.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Browkin, Jerzy. "Multiple zeros of Dedekind zeta functions." Functiones et Approximatio Commentarii Mathematici 49, no. 2 (December 2013): 383–90. http://dx.doi.org/10.7169/facm/2013.49.2.15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Louboutin, Stéphane R. "Real zeros of Dedekind zeta functions." International Journal of Number Theory 11, no. 03 (March 31, 2015): 843–48. http://dx.doi.org/10.1142/s1793042115500463.

Full text
Abstract:
Building on Stechkin and Kadiri's ideas we derive an explicit zero-free region of the real axis for Dedekind zeta functions of number fields. We then explain how this new region enables us to improve upon the previously known explicit lower bounds for class numbers of number fields and relative class numbers of CM-fields.
APA, Harvard, Vancouver, ISO, and other styles
10

Fomenko, O. M. "On the Dedekind Zeta Function. II." Journal of Mathematical Sciences 207, no. 6 (May 19, 2015): 923–33. http://dx.doi.org/10.1007/s10958-015-2415-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Zeta de Dedekind"

1

Heap, Winston. "Moments of the Dedekind zeta function." Thesis, University of York, 2013. http://etheses.whiterose.ac.uk/4669/.

Full text
Abstract:
We study analytic aspects of the Dedekind zeta function of a Galois extension. Specifically, we are interested in its mean values. In the first part of this thesis we give a formula for the second moment of the Dedekind zeta function of a quadratic field times an arbitrary Dirichlet polynomial of length $T^{1/11-\epsilon}$. In the second part, we derive a hybrid Euler-Hadamard product for the Dedekind zeta function of an arbitrary number field. We rigorously calculate the $2k$th moment of the Euler product part as well as conjecture the $2k$th moment of the Hadamard product using random matrix theory. In both instances we are restricted to Galois extensions. We then conjecture that the $2k$th moment of the Dedekind zeta function of a Galois extension is given by the product of the two. By using our results from the first part of this thesis we are able to prove both conjectures in the case $k=1$ for quadratic fields. We also re-derive our conjecture for the $2k$th moment of quadratic Dedekind zeta functions by using a modification of the moments recipe. Finally, we apply our methods to general non-primitive $L$-functions and gain a conjecture regarding their moments. Our main idea is that, to leading order, the moment of a product of distinct $L$-functions should be the product of the individual moments of the constituent $L$-functions.
APA, Harvard, Vancouver, ISO, and other styles
2

Tollis, Emmanuel. "Calculs dans les corps de nombres : étude algorithmique de la fonction zeta de Dedekind." Bordeaux 1, 1996. http://www.theses.fr/1996BOR10507.

Full text
Abstract:
Dans la premiere partie de cette these, on explique comment on a realise un ensemble de programmes permettant de manipuler les principaux objets d'un corps de nombres. On en donne quelques applications directes comme la factorisation p-adique des polynomes ou le calcul de la fonction zeta de dedekind aux entiers negatifs. La deuxieme partie de la these est consacree a l'etude de cette meme fonction zeta dans le plan complexe. On verifie la validite de grh jusqu'a une hauteur donnee pour de nombreuses extensions non abeliennes, en generalisant le critere de turing
APA, Harvard, Vancouver, ISO, and other styles
3

Matsumoto, Kohji. "On the speed of convergence to limit distributions for Dedekind zeta-functions of non-Galois number fields." Mathematical Society of Japan, 2007. http://hdl.handle.net/2237/13844.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Dupertuis, Michel-Stéphane. "Sommes de puissances des coefficients des fonctions zêta de Dedekind /." [S.l.] : [s.n.], 2005. http://library.epfl.ch/theses/?nr=3356.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

"Derivatives of the Dedekind Zeta Function Attached to a Complex Quadratic Field Extention." TopSCHOLAR, 2010. http://digitalcommons.wku.edu/stu_hon_theses/249.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Barseghian, Eduardo Andrés. "Funciones zeta y series armónicas alternantes." Bachelor's thesis, 2016. http://hdl.handle.net/11086/3272.

Full text
Abstract:
Tesis (Lic. en Matemática)--Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía, Física y Computación, 2016.
Es este trabajo nos sumergimos en el estudio de la teoría de números. Introduciremos el concepto de la función zeta de Riemann, con propiedades como el producto de Euler. Nos familiarizaramos con los cuerpos de números, y definiremos en ellos las funciones zeta de Dedekind, que son una generalización de la función zeta de Riemann. Estudiaremos la fórmula del número de clases. A lo largo del trabajo aplicaremos los conocimientos adquiridos para calcular valores de series de recíprocos, principalmente armónicas. También determinaremos el número de clases de algunos cuerpos de números.
In this script we will deepen into number theory. We introduce the Riemann zeta function, and some properties like the Euler product. We will become familiar with number fields; in which we define the Dedekind zeta functions. The former are a generalization of the Riemann zeta function. We also study the class number formula. Throughout the script we use the new knowledge to calculate values of sums of reciprocals, most of then armonic ones. We also determine the explicit class number of some number fields.
APA, Harvard, Vancouver, ISO, and other styles
7

Alderson, Matthew. "Integral Moments of Quadratic Dirichlet L-functions: A Computational Perspective." Thesis, 2010. http://hdl.handle.net/10012/5085.

Full text
Abstract:
In recent years, the moments of L-functions has been a topic of growing interest in the field of analytic number theory. New techniques, including applications of Random Matrix Theory and multiple Dirichlet series, have lead to many well-posed theorems and conjectures for the moments of various L-functions. In this thesis, we theoretically and numerically examine the integral moments of quadratic Dirichlet $L$-functions. In particular, we exhibit and discuss the conjectures for the moments which result from the applications of Random Matrix Theory, number theoretic heuristics, and the theory of multiple Dirichlet series. In the case of the cubic moment, we further numerically investigate the possible existence of additional lower order main terms.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Zeta de Dedekind"

1

Ribenboim, Paulo. "The Dedekind Zeta-Function." In Classical Theory of Algebraic Numbers, 505–21. New York, NY: Springer New York, 2001. http://dx.doi.org/10.1007/978-0-387-21690-4_23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Marcus, Daniel A. "The Dedekind Zeta Function and the Class Number Formula." In Number Fields, 129–58. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-90233-3_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zagier, Don. "Polylogarithms, Dedekind Zeta Functions, and the Algebraic K-Theory of Fields." In Arithmetic Algebraic Geometry, 391–430. Boston, MA: Birkhäuser Boston, 1991. http://dx.doi.org/10.1007/978-1-4612-0457-2_19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Matz, Jasmin. "Zeta Functions for the Adjoint Action of GL(n) and Density of Residues of Dedekind Zeta Functions." In Families of Automorphic Forms and the Trace Formula, 351–433. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41424-9_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zhang, Wenpeng. "A Hybrid Mean Value Formula of Dedekind Sums and Hurwitz Zeta-Functions." In Analytic Number Theory, 395–408. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4757-3621-2_23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mishra, Mohit. "Partial Dedekind Zeta Values and Class Numbers of R–D Type Real Quadratic Fields." In Class Groups of Number Fields and Related Topics, 163–74. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-1514-9_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Louboutin, Stéphane R. "Numerical Evaluation at Negative Integers of the Dedekind Zeta Functions of Totally Real Cubic Number Fields." In Lecture Notes in Computer Science, 318–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-24847-7_24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

"Multiple Dedekind Zeta Values are Periods of Mixed Tate Motives." In Integrable Systems and Algebraic Geometry, 485–98. Cambridge University Press, 2020. http://dx.doi.org/10.1017/9781108773355.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Motohashi, Y. "The Mean Square of Dedekind Zeta-Functions of Quadratic Number Fields." In Sieve Methods, Exponential Sums, and their Applications in Number Theory, 309–24. Cambridge University Press, 1997. http://dx.doi.org/10.1017/cbo9780511526091.021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography