Dissertations / Theses on the topic 'Zeta'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Zeta.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
TSUMURA, Hirofumi, Kohji MATSUMOTO, and Yasushi KOMORI. "Multiple zeta values and zeta-functions of root systems." 日本学士院The Japan Academy, 2011. http://hdl.handle.net/2237/20333.
Full textMijović, Vuksan. "Multifractal zeta functions." Thesis, University of St Andrews, 2017. http://hdl.handle.net/10023/10637.
Full textWhite, J. V. V. "Zeta functions of groups." Thesis, University of Oxford, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.365745.
Full textReyes, Ernesto Oscar. "The Riemann zeta function." CSUSB ScholarWorks, 2004. https://scholarworks.lib.csusb.edu/etd-project/2648.
Full textEGAMI, SHIGEKI, and KOHJI MATSUMOTO. "ASYMPTOTIC EXPANSIONS OF MULTIPLE ZETA FUNCTIONS AND POWER MEAN VALUES OF HURWITZ ZETA FUNCTIONS." Cambridge University Press, 2002. http://hdl.handle.net/2237/10284.
Full textFirouzian, Bandpey Siamak. "Zeta functions of local orders." [S.l.] : [s.n.], 2006. http://deposit.ddb.de/cgi-bin/dokserv?idn=978669827.
Full textAndersson, Johan. "Summation formulae and zeta functions." Doctoral thesis, Stockholm : Department of Mathematics, Stockholm University, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-1074.
Full textBerman, Mark Nicholas. "Proisomorphic zeta functions of groups." Thesis, University of Oxford, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.424860.
Full textTSUMURA, HIROFUMI, KOHJI MATSUMOTO, and YASUSHI KOMORI. "ZETA-FUNCTIONS OF ROOT SYSTEMS." World Scientific Publishing, 2006. http://hdl.handle.net/2237/20355.
Full textJuchmes, Franziska. "Zeta Functions and Riemann Hypothesis." Thesis, Linnéuniversitetet, Institutionen för matematik (MA), 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-32363.
Full textMatsumoto, Kohji. "Recent Developments in the Mean Square Theory of the Riemann Zeta and Other Zeta-Functions." Hindustan Book Agency & The Indian National Science Academy, 2000. http://hdl.handle.net/2237/20433.
Full textHorton, Matthew D. "Ihara zeta functions of irregular graphs." Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2006. http://wwwlib.umi.com/cr/ucsd/fullcit?p3206965.
Full textTitle from first page of PDF file (viewed May 10, 2006). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references (p. 88-89) and index.
MATSUMOTO, KOHJI. "Functional equations for double zeta-functions." Cambridge University Press, 2004. http://hdl.handle.net/2237/10257.
Full textKytmanov, Aleksandr, Simona Myslivets, and Nikolai Tarkhanov. "Zeta-function of a nonlinear system." Universität Potsdam, 2004. http://opus.kobv.de/ubp/volltexte/2008/2679/.
Full textBäcklund, Pierre. "Automorphic distributions and Selberg zeta functions /." Uppsala, 2005. http://www.math.uu.se/research/pub/Backlundlic.pdf.
Full textEvseev, Anton. "Groups : uniformity questions and zeta functions." Thesis, University of Oxford, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.442941.
Full textMcKenzie-Smith, Julian James. "Zeta-function methods in curved spacetimes." Thesis, University of Newcastle Upon Tyne, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.275594.
Full textSnaith, Nina Claire. "Random matrix theory and zeta functions." Thesis, University of Bristol, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.322610.
Full textSnocken, Robert. "Zeta functions of groups and rings." Thesis, University of Southampton, 2014. https://eprints.soton.ac.uk/372833/.
Full textOh, Jangheon. "On Zeta Functions and Iwasawa Modules /." The Ohio State University, 1995. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487930304689598.
Full textLoeser, François. "Fonctions zeta locales d'igusa et singularites." Paris 7, 1988. http://www.theses.fr/1988PA077193.
Full textHeap, Winston. "Moments of the Dedekind zeta function." Thesis, University of York, 2013. http://etheses.whiterose.ac.uk/4669/.
Full textLutterbüse, Ralf. "Die Zeta-Kette des T-Zell-Rezeptors." Diss., lmu, 2001. http://nbn-resolving.de/urn:nbn:de:bvb:19-1838.
Full text松本, 耕二, 博文 津村, Kohji Matsumoto, and Hirofumi Tsumura. "Functional relations for various multiple zeta-functions." 京都大学数理解析研究所, 2006. http://hdl.handle.net/2237/9657.
Full textWalker, George MacInnes. "Computing zeta functions of varieties via fibration." Thesis, University of Oxford, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.526126.
Full textMohit, Satyagraha. "Zeta-functions of modular diagonal quotient surfaces." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2002. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/NQ65684.pdf.
Full textSkerstonaitė, Santa. "Joint universality for periodic Hurwitz zeta-functions." Master's thesis, Lithuanian Academic Libraries Network (LABT), 2009. http://vddb.library.lt/obj/LT-eLABa-0001:E.02~2009~D_20090827_124913-17749.
Full textMagistro darbe yra nagrinėjamas Hurvico dzeta funkcijų rinkinio jungtinis universalumas. Yra įrodytos dvi jungtinės universalumo teoremos. Pirmoji teorema tvirtina, kad jei aibė L yra tiesiškai nepriklausoma virš racionaliųjų skaičių kūno, tai periodinės Hurvico dzeta funkcijos yra universalios. Ši teorema žymiai susilpnina sąlygas, kurioms esant, buvo gautas analogiškas rezultatas A. Javtoko ir A. Laurinčiko 2008 m. darbe. Antroje teoremoje yra nagrinėjamas atvejis, kai kiekvieną skaičių alpha atitinka periodinių sekų rinkinys. Kai sistema L yra tiesiškai nepriklausoma virš racionaliųjų skaičių kūno ir galioja vieno rango tipo sąlyga, silpnesnė negu A. Laurinčiko darbe (2008), tai periodinių Hurvico dzeta funkcijų rinkinys yra taip pat universalus.
Marshall, Kevin P. "The lower chromospheres of #zeta# aurigae stars." Thesis, University of Cambridge, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.360849.
Full textPaajanen, Pirita Maria. "Zeta functions of groups and arithmetic geometry." Thesis, University of Oxford, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.419325.
Full textMusser, Jason. "Higher Derivatives of the Hurwitz Zeta Function." TopSCHOLAR®, 2011. http://digitalcommons.wku.edu/theses/1093.
Full textČernigova, Sondra. "Moment problem for the periodic zeta-function." Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2014. http://vddb.library.lt/obj/LT-eLABa-0001:E.02~2014~D_20141111_114553-36360.
Full textDisertacijos tyrimo objektas yra periodinė dzeta funkcija. Mokslinė problema - šios funkcijos momentų problema. Darbo tikslas - įrodyti asimptotines formules periodinės funkcijos momentams bei kai kuriems objektams, susijusiems su šios funkcijos momentais. Darbo uždaviniai yra šie: 1. Įrodyti Atkinsono tipo formulę su korektišku liekamuoju nariu kritinėje juostoje periodinei dzeta funkcijai su racionaliuoju parametru. 2. Įrodyti Atkinsono tipo formulės periodinei dzeta funkcijai kritinėje tiesėje vidurkio formulę liekamojo nario modulio kvadratui. 3. Įrodyti Atkinsono tipo formulės periodinei dzeta funkcijai kritinėje juostoje vidurkio formulę liekamojo nario modulio kvadratui. 4. Gauti asimptotinę formulę periodinės dzeta funkcijos ketvirtajam momentui.
Mengue, Jairo Krás. "Zeta-medidas e princípio dos grandes desvios." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2010. http://hdl.handle.net/10183/26002.
Full textWe follow the works of William Parry and Mark Pollicott considering expressions of dinamical zeta functions and construct probabilities over sum on periodic orbits, that we call zeta-measures. We show that zeta-measures are useful tools to approximate the equilibrium measure of a H¨older potential and also they can be used to approximate the maximizing measure. In some cases, we show that this convergence satisfies a Large Deviation Principle (LDP) without assuming unicity of the maximizing measure. The Ruelle Operator can be used to approximate the equilibrium measure of a H¨older potential, so taking a limit on two variables, we show that they can be used to aproximate the maximizing measure. When there is a unique maximizing measure, we show that this convergence satisfies a LDP with the same functional given by Baraviera-Lopes-Thieullen, for equilibrium measures. We have shown before that this functional isn’t the same for zeta-measures. In a independent section we construct a point such that the w-limit set doesn’t have periodic points. This w-limit set can be approximate exponencialy in N by periocic orbits with period smaller than N.
Tamiozzo, Matteo. "Zeta and L-functions of elliptic curves." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2014. http://amslaurea.unibo.it/7385/.
Full textDiaz-Vargas, Javier Arturo 1952. "On zeros of characteristic p zeta functions." Diss., The University of Arizona, 1996. http://hdl.handle.net/10150/290585.
Full textGuariglia, Emanuel. "Fractional derivative of the riemann zeta function." Doctoral thesis, Universita degli studi di Salerno, 2017. http://hdl.handle.net/10556/2611.
Full textIn this work of thesis, the Riemann zeta function was studied by using an unconventional approach. The reason for choosing this approach was to explore the many applications that the Riemann zeta has not only in pure mathematics, but also in tangential fields of theoretical physics and engineering. The use of fractional calculus allowed the computation of the α-order fractional derivative ζ(α). The biggest difficulty was represented by the fractional differentiation in the complex plane. In particular, two generalizations of the fractional derivative (Caputo derivative and Grünwald-Letnikov derivative) to the complex field were used in this thesis. The first chapter includes several preliminaries on the analytics number theory and on fractional calculus. In the second chapter the computation of ζ(α) is given together with its convergence. ζ(α) is expressed as a complex series and represents a fractional generalization to the integer derivative of ζ. In fact, by replacing in the right hand side the fractional exponent α with the integer exponent k, ζ(α) becomes ζ(k). Some properties of this derivative were obtained in order to show its chaotic decay to zero and several links with the analytic number theory. The third chapter presents the computation of the functional equation together with some simplified versions, in accordance with the classical theory of the Riemann zeta function. Since the Caputo-Ortigueira fractional derivative does not satisfy the generalized Leibniz rule, the generalization of the GrünwaldLetnikov fractional derivative to complex plane must be introduced. The desired functional equation was obtained by starting from the asymmetric from of the functional equation of ζ. Further properties relating to this equation are proposed and comprehensively discussed in this chapter. Generalizations of this fractional derivative were obtained by introducing the series of Dirichlet, the Hurwitz zeta function and the Lerch zeta function. By using the generalization of the Grünwald-Letnikov fractional derivative, generalizations of the functional equations associated to ζ(α) are given. In particular, the functional equation associated to the fractional derivative of the zeta Lerch have supplied new results, and new horizons for research seem to open in the fractional calculus functional. Additionally, an integral representation of ζ(α), in terms of numbers of Bernoulli is also presented. All of the aforementioned results are in agreement with the classical theory of Riemann zeta function. In the fourth chapter, the link between ζ(α) and the distribution of prime numbers is discussed by using the Euler products. The logarithmic fractional derivative of the Riemann ζ function provides a partial result in this direction. The introduction of the zeta function Dirichlet and the computation of its fractional derivative have given a better knowledge of ζ(α) in the critical strip 0
In questo lavoro di tesi, la funzione zeta di Riemann è stata studiata attraverso un approccio non convenzionale. Le ragioni di tale scelta risiedono nelle molteplici applicazioni che tale funzione ha non sono nella matematica pura ma anche in fisica teorica ed ingegneria. L'uso del fractional calculus ha permesso il calcolo della derivata frazionaria ζ(α). La maggiore difficoltà è stata rappresentata della differenziazione nel piano complesso. In particolare, due generalizzazioni della derivata frazionaria (derivata di Caputo e derivata di Grünwald-Letnikov) al campo complesso sono state utilizzate in questa tesi. Il primo capitolo include diverse nozioni preliminari sulla teoria analitica dei numeri e sul fractional calculus. Nel secondo capitolo, il calcolo di ζ(α) è stato effettuato e il suo semipiano di convergenza studiato. ζ(α) è espresso come una serie complessa e rappresenta la generalizzazione frazionaria della derivata intera di ζ. Alcune proprietà di questa derivata frazionaria sono state ottenute al fine di mostrare sia il suo decadimento caotico a zero che i diversi collegamenti con la teoria analitica dei numeri. Il terzo capitolo è dedicato all'equazione funzionale insieme con alcune sue versioni semplificate, in accordo con la teoria classica della funzione zeta di Riemann. Siccome la derivata di Caputo-Ortigueira non soddisfa la regola generalizzata di Leibniz, la generalizzazione della derivata di Grünwald-Letnikov al piano complesso è stata introdotta. L'equazione funzionale cercata è così dedotta semplicemente dalla forma asimmetrica dell'equazione funzionale della ζ. Ulteriori proprietà di questa equazione sono fornite e discusse in questo capitolo. Alcune generalizzazioni di questa derivata frazionaria sono state ottenute introducendo la funzione zeta di Hurwitz, la serie di Dirichlet e la funzione zeta di Lerch. In questo modo, l'equazione funzionale di ζ(α) è generalizzata ai tre casi sopra esposti. In particolare, l'equazione funzionale della zeta di Lerch ha fornito sorprendenti risultati e nuovi orizzonti di ricerca sembrano aprirsi nelle applicazioni del fractional calculus in analisi funzionale. Inoltre, una rappresentazione integrale di ζ(α) in termini di numeri di Bernoulli è presentata. Tutti I risultati sopra descritti sono in accordo con la teoria classica della funzione zeta di Riemann. Nel quarto capitolo, il legame tra ζ(α) e la distribuzione dei numeri primi è discussa introducendo i prodotti euleriani. La derivata frazionaria logaritmica della ζ di Riemann fornisce un risultato parziale in questa direzione. L'introduzione della funzione eta di Dirichlet ed il calcolo della sua derivata frazionaria hanno fornito una migliore comprensione di ζ(α) nella striscia critica 0
XV n.s.
Satou, Nobuo. "AN ENHANCEMENT OF THE ZAGIER CONJECTURE." 京都大学 (Kyoto University), 2017. http://hdl.handle.net/2433/225380.
Full textThomas, Christian [Verfasser], and Hermann [Akademischer Betreuer] Pavenstädt. "Charakterisierung der Interaktion des KIBRA-Proteins mit der Protein-Kinase M Zeta (PKM Zeta) / Christian Thomas ; Betreuer: Hermann Pavenstädt." Münster : Universitäts- und Landesbibliothek Münster, 2015. http://d-nb.info/1138279900/34.
Full textMerrill, Katherine J. "Ramanujan's Formula for the Riemann Zeta Function Extended to L-Functions." Fogler Library, University of Maine, 2005. http://www.library.umaine.edu/theses/pdf/MerrillKJ2005.pdf.
Full textSteuding, Jörn. "On simple zeros of the Riemann zeta-function." [S.l. : s.n.], 1999. http://deposit.ddb.de/cgi-bin/dokserv?idn=95589820X.
Full textHussner, Thomas. "The p-adic zeta functions of Chevalley groups." [S.l. : s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=971952256.
Full textGauthier, Paul M., and Nikolai Tarkhanov. "A covering property of the Riemann zeta-function." Universität Potsdam, 2004. http://opus.kobv.de/ubp/volltexte/2008/2668/.
Full textKaraliūnaitė, Julija. "Value distribution theorems for the periodic zeta-function." Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2010. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2010~D_20100915_162405-31358.
Full textDarbe nagrinėjama periodinės dzeta funkcijos antrojo momento liekamojo nario išreikštinis pavidalas ir šios funkcijos asimptotinio elgesio charakterizacija ribinių teoremų silpnojo tikimybinių matų konvergavimo prasmė įvairiose erdvėse pagalba. Darbo uždaviniai yra šie: 1. Įrodyti Atkinsono formulę periodinai dzeta funkcijai kritinėje tiesėje. 2. Įrodyti Atkinsono formulę periodinai dzeta funkcijai kritinėje juostoje. 3. Įrodyti ribinę teoremą su ribinio mato išreikštiniu pavidalu kompleksinėje plokštumoje periodinei dzeta funkcijai. 4. Įrodyti ribinę teoremą su ribinio mato išreikštiniu pavidalu analizinių funkcijų erdvėje periodinei dzeta funkcijai. Atkinsono formulė duoda momentų asimptotinės formulės liekamojų narių išreikštinį pavidalą. Tai ne tik įdomus, bet ir turintis rimtų pritaikymų, pavyzdžiui, tiriant aukštesniuosius momentus, rezultatas. Tikimybinės ribinės teoremos charakterizuoja dzeta funkcijų asimptotinio elgesio reguliarumą. Be to, buvo pastebėta, kad tokios teoremos yra svarbiausia dzeta funkcijų universalumo įrodymo grandis. Periodinė dzeta funkcija nėra klasikinė, ji yra Rymano (Riemann) dzeta funkcijos apibendrinimas, tačiau ji pasirodo įvairiuose analizinės skaičių teorijos uždaviniuose. Pavyzdžiui, ji įeina į Hurvico (Hurvitz) ir Lercho (Lerch) dzeta funkcijų antrojo momento parametro atžvilgiu asimptotinę formulę. Iš kitos pusės, darbų, skirtų periodinei dzeta funkcijai, yra nedaug, aukščiau minėti autoriai daugiausia dėmesio skyrė... [toliau žr. visą tekstą]
Grigutis, Andrius. "Value distribution of Lerch and Selberg zeta-functions." Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2012. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2012~D_20121227_085912-23915.
Full textDisertaciją sudaro mokslinių tyrimų medžiaga, kurie atlikti 2008 -2012 metais Vilniaus universitete Matematikos ir informatikos fakultete. Disertacijoje įrodomos naujos teoremos apie Lercho ir Selbergo dzeta funkcijų reikšmių pasiskirstymą, atliekami kompiuteriniai skaičiavimai matematine programa MATHEMATICA. Disertaciją sudaro įvadas, 3 skyriai, išvados ir literatūros sąrašas. Disertacijos rezultatai atspausdinti trijuose moksliniuose straipsniuose, Lietuvos ir užsienio žurnaluose, pristatyti Lietuvoje ir užsienyje vykusiose mokslinėse konferencijose bei katedros seminarų metu. Pirmajame skyriuje įrodinėjamos ribinės teoremos Lercho dzeta funkcijai. Praėjusio šimtmečio ketvirtame dešimtmetyje Selbergas įrodė, kad tinkamai normuotas Rymano dzeta funkcijos logaritmas ant kritinės tiesės turi standartinį normalųjį pasiskirstymą. Selbergo įrodymas rėmėsi Oilerio sandauga, kuria turi Rymano dzeta funkcija, bet bendru atveju jos neturi Lercho dzeta funkcija. Antrajame skyriuje įrodoma teorema apie Lercho transcendentinės funkcijos nulių įvertį vertikaliose kompleksinės plokštumos juostose bei atliekami kompiuteriniai nulių skaičiavimai srityje Re(s)>1 programa MATHEMATICA. Trečiajame skyriuje nagrinėjamos dviejų Selbergo dzeta funkcijų monotoniškumo savybės, kurios yra tiesiogiai susijusios su šių funkcijų nulių išsidėstymu kritinėje juostoje. Monotoniškumo savybės lyginamos su Rymano dzeta funkcijos monotoniškumo savybėmis ir nulių išsidėstymu, kuris yra viena didžiausių... [toliau žr. visą tekstą]
Račkauskienė, Santa. "Joint universality of zeta-functions with periodic coefficients." Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2012. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2012~D_20121214_110729-14777.
Full textDarbe yra įrodomas jungtinis universalumas periodinėms Hurvico dzeta funkcijoms, taip pat bendras universalumas su Rymano dzeta funkcija ir normuotų parabolinių formų dzeta funkcija.
Clare, B. "Nonstandard Mathematics and New Zeta and L-Functions." Thesis, University of Nottingham, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.519430.
Full textTsumura, H., K. Matsumoto, and Y. Komori. "Functional relations for zeta-functions of root systems." World Scientific Publishing, 2009. http://hdl.handle.net/2237/20353.
Full textSteuding, Rasa, Jörn Steuding, Kohji Matsumoto, Antanas Laurinčikas, and Ramūnas Garunkštis. "Effective uniform approximation by the Riemann zeta-function." Department of Mathematics of the Universitat Autònoma de Barcelona, 2010. http://hdl.handle.net/2237/20429.
Full textTurner, S. M. "Hasse-Weil zeta functions for linear algebraic groups." Thesis, University of Glasgow, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.318888.
Full textCang, Shuang. "New asymptotic formulas for the Reimann zeta function." Thesis, University of Abertay Dundee, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.339242.
Full textLivingstone, Boomla Alice Jane. "Selmer groups, zeta elements and refined Stark conjectures." Thesis, King's College London (University of London), 2018. https://kclpure.kcl.ac.uk/portal/en/theses/selmer-groups-zeta-elements-and-refined-stark-conjectures(0ecef088-5829-4e5b-a35d-974c505136d9).html.
Full text