Journal articles on the topic 'Zinc antimonides'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Zinc antimonides.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Bjerg, Lasse, Georg K. H. Madsen, and Bo B. Iversen. "Enhanced Thermoelectric Properties in Zinc Antimonides." Chemistry of Materials 23, no. 17 (2011): 3907–14. http://dx.doi.org/10.1021/cm201271d.
Full textSchlecht, Sabine, Christoph Erk, and Maekele Yosef. "Nanoscale Zinc Antimonides: Synthesis and Phase Stability." Inorganic Chemistry 45, no. 4 (2006): 1693–97. http://dx.doi.org/10.1021/ic051808t.
Full textGvozdetskyi, Volodymyr, Shannon J. Lee, Bryan Owens-Baird, et al. "Ternary Zinc Antimonides Unlocked Using Hydride Synthesis." Inorganic Chemistry 60, no. 14 (2021): 10686–97. http://dx.doi.org/10.1021/acs.inorgchem.1c01381.
Full textBjerg, Lasse, Georg K. H. Madsen, and Bo B. Iversen. "ChemInform Abstract: Enhanced Thermoelectric Properties in Zinc Antimonides." ChemInform 42, no. 44 (2011): no. http://dx.doi.org/10.1002/chin.201144001.
Full textWu, Yang, Sven Lidin, Thomas L. Groy, N. Newman та Ulrich Häussermann. "Zn5Sb4In2−δ— a Ternary Derivative of Thermoelectric Zinc Antimonides". Inorganic Chemistry 48, № 13 (2009): 5996–6003. http://dx.doi.org/10.1021/ic900302a.
Full textMikhaylushkin, Arkady S., Johanna Nylén, and Ulrich Häussermann. "Structure and Bonding of Zinc Antimonides: Complex Frameworks and Narrow Band Gaps." Chemistry - A European Journal 11, no. 17 (2005): 4912–20. http://dx.doi.org/10.1002/chem.200500020.
Full textBounab, Sabrina, Abdelouahb Bentabet, and Youssef Bouahadda. "Study of the Structural, Dynamic and Thermodynamic Properties of the III- Antimonides Semiconductors." Defect and Diffusion Forum 406 (January 2021): 250–55. http://dx.doi.org/10.4028/www.scientific.net/ddf.406.250.
Full textBounab, Sabrina, Abdelouahb Bentabet, and Youssef Bouahadda. "Study of the Structural, Dynamic and Thermodynamic Properties of the III- Antimonides Semiconductors." Defect and Diffusion Forum 406 (January 2021): 250–55. http://dx.doi.org/10.4028/www.scientific.net/ddf.406.250.
Full textAshcheulov, A. A., O. N. Manyk, T. O. Manyk, V. R. Bilynskyi-Slotylo, A. D. Izotov, and I. V. Fedorchenko. "Theoretical Models of Chemical Bond in Molten Binary Cadmium and Zinc Antimonides in AIIBV Semiconductors." Russian Journal of Inorganic Chemistry 65, no. 9 (2020): 1360–65. http://dx.doi.org/10.1134/s0036023620090028.
Full textBalasubramanian, Priyadarshini, Manjusha Battabyal, Arumugam Chandra Bose, and Raghavan Gopalan. "Effect of ball-milling on the phase formation and enhanced thermoelectric properties in zinc antimonides." Materials Science and Engineering: B 271 (September 2021): 115274. http://dx.doi.org/10.1016/j.mseb.2021.115274.
Full textWhite, Miles A., Katelyn J. Baumler, Yunhua Chen, et al. "Expanding the I–II–V Phase Space: Soft Synthesis of Polytypic Ternary and Binary Zinc Antimonides." Chemistry of Materials 30, no. 17 (2018): 6173–82. http://dx.doi.org/10.1021/acs.chemmater.8b02910.
Full textZaikina, Julia, Tori Cox, and Volodymyr Gvozdetskyi. "Ternary alkali metal zinc antimonides and bismuthides: hydride synthesis and in situ X-ray diffraction study." Acta Crystallographica Section A Foundations and Advances 76, a1 (2020): a204. http://dx.doi.org/10.1107/s0108767320097986.
Full textLiu, Yi, Ling Chen, Long-Hua Li, Li-Ming Wu, Oksana Ya Zelinska, and Arthur Mar. "Structures and Physical Properties of Rare-Earth Zinc Antimonides Pr6Zn1+xSb14+yandRE6Zn1+xSb14(RE= Sm, Gd−Ho)." Inorganic Chemistry 47, no. 24 (2008): 11930–41. http://dx.doi.org/10.1021/ic800524d.
Full textZelinska, Oksana Ya, and Arthur Mar. "Structure and physical properties of rare-earth zinc antimonides REZn1–xSb2 (RE=La, Ce, Pr, Nd, Sm, Gd, Tb)." Journal of Solid State Chemistry 179, no. 12 (2006): 3776–83. http://dx.doi.org/10.1016/j.jssc.2006.08.011.
Full textXiong, Ding-Bang, Yufeng Zhao, Walter Schnelle, Norihiko L. Okamoto та Haruyuki Inui. "Complex Alloys Containing Double-Mackay Clusters and (Sb1−δZnδ)24Snub Cubes Filled with Highly Disordered Zinc Aggregates: Synthesis, Structures, and Physical Properties of Ruthenium Zinc Antimonides". Inorganic Chemistry 49, № 23 (2010): 10788–97. http://dx.doi.org/10.1021/ic101804m.
Full textSong, Lirong, Martin Roelsgaard, Anders B. Blichfeld, et al. "Structural evolution in thermoelectric zinc antimonide thin films studied by in situ X-ray scattering techniques." IUCrJ 8, no. 3 (2021): 444–54. http://dx.doi.org/10.1107/s2052252521002852.
Full textBobev, Svilen, Joe D. Thompson, John L. Sarrao, Marilyn M. Olmstead, Håkon Hope, and Susan M. Kauzlarich. "Probing the Limits of the Zintl Concept: Structure and Bonding in Rare-Earth and Alkaline-Earth Zinc-Antimonides Yb9Zn4+xSb9and Ca9Zn4.5Sb9." Inorganic Chemistry 43, no. 16 (2004): 5044–52. http://dx.doi.org/10.1021/ic049836j.
Full textXiong, Ding-Bang, Yufeng Zhao, Walter Schnelle, Norihiko L. Okamoto та Haruyuki Inui. "ChemInform Abstract: Complex Alloys Containing Double-Mackay Clusters and (Sb1-δZnδ)24 Snub Cubes Filled with Highly Disordered Zinc Aggregates: Synthesis, Structures, and Physical Properties of Ruthenium Zinc Antimonides." ChemInform 42, № 6 (2011): no. http://dx.doi.org/10.1002/chin.201106022.
Full textBerche, Alexandre, and Philippe Jund. "Thermoelectric power factor of pure and doped ZnSb via DFT based defect calculations." Physical Chemistry Chemical Physics 21, no. 41 (2019): 23056–64. http://dx.doi.org/10.1039/c9cp04397g.
Full textConibeer, G. J., Arthur F. W. Willoughby, C. M. Hardingham, and V. K. M. Sharma. "Zinc Diffusion in Gallium Antimonide." Materials Science Forum 143-147 (October 1993): 1427–32. http://dx.doi.org/10.4028/www.scientific.net/msf.143-147.1427.
Full textNicols, S. P., H. Bracht, M. Benamara, Z. Liliental-Weber, and E. E. Haller. "Mechanism of zinc diffusion in gallium antimonide." Physica B: Condensed Matter 308-310 (December 2001): 854–57. http://dx.doi.org/10.1016/s0921-4526(01)00913-9.
Full textConibeer, G. J., A. F. W. Willoughby, C. M. Hardingham, and V. K. M. Sharma. "Zinc diffusion in tellurium doped gallium antimonide." Journal of Electronic Materials 25, no. 7 (1996): 1108–12. http://dx.doi.org/10.1007/bf02659911.
Full textConibeer, G. J., A. F. W. Willoughby, C. M. Hardingham, and V. K. M. Sharma. "Zinc diffusion in tellurium doped gallium antimonide." Optical Materials 6, no. 1-2 (1996): 21–25. http://dx.doi.org/10.1016/0925-3467(96)00021-3.
Full textIvanova, L. D., Yu V. Granatkina, A. G. Mal’chev, et al. "Preparation and Thermoelectric Properties of Zinc Antimonide." Inorganic Materials 57, no. 7 (2021): 674–82. http://dx.doi.org/10.1134/s0020168521070177.
Full textMortazavinatanzi, Seyedmohammad, Mojtaba Mirhosseini, Lirong Song, Bo Brummerstedt Iversen, Lasse Rosendahl, and Alireza Rezania. "Zinc antimonide thin film based flexible thermoelectric module." Materials Letters 280 (December 2020): 128582. http://dx.doi.org/10.1016/j.matlet.2020.128582.
Full textMalki, S., and L. El Farh. "Structural and electronic properties of zinc antimonide ZnSb." Materials Today: Proceedings 31 (2020): S41—S44. http://dx.doi.org/10.1016/j.matpr.2020.05.598.
Full textWang, Jian, та Kirill Kovnir. "Elusive β-Zn8Sb7: A New Zinc Antimonide Thermoelectric". Journal of the American Chemical Society 137, № 39 (2015): 12474–77. http://dx.doi.org/10.1021/jacs.5b08214.
Full textFrézard, Frédéric, Cynthia Demicheli, Kelly C. Kato, Priscila G. Reis, and Edgar H. Lizarazo-Jaimes. "Chemistry of antimony-based drugs in biological systems and studies of their mechanism of action." Reviews in Inorganic Chemistry 33, no. 1 (2013): 1–12. http://dx.doi.org/10.1515/revic-2012-0006.
Full textCaylor, J. C., M. S. Sander, A. M. Stacy, J. S. Harper, R. Gronsky, and T. Sands. "Epitaxial growth of skutterudite (CoSb3) thin films on (001) InSb by pulsed laser deposition." Journal of Materials Research 16, no. 9 (2001): 2467–70. http://dx.doi.org/10.1557/jmr.2001.0337.
Full textKamanin, Alex A., N. Shmidt, B. Ber, et al. "Zinc Diffusion into Gallium Antimonide from Polymer Spin-On Films." Defect and Diffusion Forum 194-199 (April 2001): 751–54. http://dx.doi.org/10.4028/www.scientific.net/ddf.194-199.751.
Full textZhong, Mianzeng, Xiuqing Meng, and Jingbo Li. "Surfactant-assisted solvothermal synthesis of single-crystal zinc antimonide nanorods." Applied Surface Science 332 (March 2015): 76–79. http://dx.doi.org/10.1016/j.apsusc.2015.01.125.
Full textHeinz, Christian. "Spin‐on Source for Zinc Diffusion in (100) Gallium Antimonide." Journal of The Electrochemical Society 135, no. 1 (1988): 250–52. http://dx.doi.org/10.1149/1.2095567.
Full textZavadil, J., Z. G. Ivanova, P. Kostka, M. Hamzaoui, and M. T. Soltani. "Photoluminescence study of Er-doped zinc–sodium–antimonite glasses." Journal of Alloys and Compounds 611 (October 2014): 111–16. http://dx.doi.org/10.1016/j.jallcom.2014.05.102.
Full textChurilov, Alexei V., and Aleksandar G. Ostrogorsky. "Model of Tellurium- and Zinc-Doped Indium Antimonide Solidification in Space." Journal of Thermophysics and Heat Transfer 19, no. 4 (2005): 542–47. http://dx.doi.org/10.2514/1.8463.
Full textSunder, Kirsten, and Hartmut Bracht. "Defect reactions in gallium antimonide studied by zinc and self-diffusion." Physica B: Condensed Matter 401-402 (December 2007): 262–65. http://dx.doi.org/10.1016/j.physb.2007.08.162.
Full textSun, Ye, Mogens Christensen, Simon Johnsen, et al. "Low-Cost High-Performance Zinc Antimonide Thin Films for Thermoelectric Applications." Advanced Materials 24, no. 13 (2012): 1693–96. http://dx.doi.org/10.1002/adma.201104947.
Full textHeinz, C. "Diffusion from zinc-doped spin-on sources into n-gallium antimonide." Solid-State Electronics 36, no. 12 (1993): 1685–88. http://dx.doi.org/10.1016/0038-1101(93)90214-b.
Full textMirhosseini, M., A. Rezania, L. Rosendahl, and Bo B. Iversen. "Effect of Thermal Cycling on Zinc Antimonide Thin Film Thermoelectric Characteristics." Energy Procedia 142 (December 2017): 519–24. http://dx.doi.org/10.1016/j.egypro.2017.12.081.
Full textLi, Ying Zhen, Ping Fan, Zhuang Hao Zheng, Peng Juan Liu, Qing Yun Lin, and Jing Ting Luo. "Thermoelectric Characterization of Direct Current Magnetron Co-Sputtering Zinc Antimonide Thin Films." Advanced Materials Research 734-737 (August 2013): 2559–62. http://dx.doi.org/10.4028/www.scientific.net/amr.734-737.2559.
Full textTahar Belarbi, W., Abdelkarim Rouabhia, F. Tair, Bouhalouane Amrani, and Nadir Sekkal. "Low symmetry phases of (Al, Ga)Sb under low pressure." International Journal of Modern Physics B 29, no. 09 (2015): 1550056. http://dx.doi.org/10.1142/s0217979215500563.
Full textFarias, Pedro, Christophe Espírito Santo, Rita Branco, et al. "Natural Hot Spots for Gain of Multiple Resistances: Arsenic and Antibiotic Resistances in Heterotrophic, Aerobic Bacteria from Marine Hydrothermal Vent Fields." Applied and Environmental Microbiology 81, no. 7 (2015): 2534–43. http://dx.doi.org/10.1128/aem.03240-14.
Full textFaghaninia, Alireza, та Cynthia S. Lo. "First principles study of defect formation in thermoelectric zinc antimonide, β-Zn4Sb3". Journal of Physics: Condensed Matter 27, № 12 (2015): 125502. http://dx.doi.org/10.1088/0953-8984/27/12/125502.
Full textZheng, Zhuang-hao, Ping Fan, Peng-juan Liu, et al. "Enhanced thermoelectric properties of mixed zinc antimonide thin films via phase optimization." Applied Surface Science 292 (February 2014): 823–27. http://dx.doi.org/10.1016/j.apsusc.2013.12.056.
Full textRouessac, F., and R. M. Ayral. "Combustion synthesis: A new approach for preparation of thermoelectric zinc antimonide compounds." Journal of Alloys and Compounds 530 (July 2012): 56–62. http://dx.doi.org/10.1016/j.jallcom.2012.03.089.
Full textZheng, Zhuang-hao, Fu Li, Jing-ting Luo, et al. "Enhancement of power factor in zinc antimonide thermoelectric thin film doped with titanium." Materials Letters 209 (December 2017): 455–58. http://dx.doi.org/10.1016/j.matlet.2017.08.063.
Full textSHEPELEVICH, V. G. "ChemInform Abstract: Structure and Electrical Properties of Quick-Coagulating Foils of Zinc Antimonide." ChemInform 24, no. 51 (2010): no. http://dx.doi.org/10.1002/chin.199351003.
Full textShabaldin, A. A., L. V. Prokof’eva, G. J. Snyder, P. P. Konstantinov, G. N. Isachenko, and A. V. Asach. "The Influence of Weak Tin Doping on the Thermoelectric Properties of Zinc Antimonide." Journal of Electronic Materials 45, no. 3 (2015): 1871–74. http://dx.doi.org/10.1007/s11664-015-4266-7.
Full textLiu, Peng-juan, Ai-hua Zhong, Mei-mei Yin, Zhuang-hao Zheng, and Ping Fan. "The thermoelectric properties of zinc antimonide thin films fabricated through single element composite target." Surface and Coatings Technology 361 (March 2019): 130–35. http://dx.doi.org/10.1016/j.surfcoat.2019.01.048.
Full textHjelt, Kari, and Turkka Tuomi. "Photoluminescence and electrical properties of MOVPE-grown zinc-doped gallium antimonide on gallium arsenide." Journal of Crystal Growth 170, no. 1-4 (1997): 794–98. http://dx.doi.org/10.1016/s0022-0248(96)00543-x.
Full textSu, Y. K., H. Kuan, and P. H. Chang. "Zinc doping in gallium antimonide grown by low‐pressure metal‐organic chemical vapor deposition." Journal of Applied Physics 73, no. 1 (1993): 56–59. http://dx.doi.org/10.1063/1.353829.
Full text