To see the other types of publications on this topic, follow the link: Zinc antimonides.

Journal articles on the topic 'Zinc antimonides'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Zinc antimonides.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Bjerg, Lasse, Georg K. H. Madsen, and Bo B. Iversen. "Enhanced Thermoelectric Properties in Zinc Antimonides." Chemistry of Materials 23, no. 17 (2011): 3907–14. http://dx.doi.org/10.1021/cm201271d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Schlecht, Sabine, Christoph Erk, and Maekele Yosef. "Nanoscale Zinc Antimonides: Synthesis and Phase Stability." Inorganic Chemistry 45, no. 4 (2006): 1693–97. http://dx.doi.org/10.1021/ic051808t.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gvozdetskyi, Volodymyr, Shannon J. Lee, Bryan Owens-Baird, et al. "Ternary Zinc Antimonides Unlocked Using Hydride Synthesis." Inorganic Chemistry 60, no. 14 (2021): 10686–97. http://dx.doi.org/10.1021/acs.inorgchem.1c01381.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bjerg, Lasse, Georg K. H. Madsen, and Bo B. Iversen. "ChemInform Abstract: Enhanced Thermoelectric Properties in Zinc Antimonides." ChemInform 42, no. 44 (2011): no. http://dx.doi.org/10.1002/chin.201144001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wu, Yang, Sven Lidin, Thomas L. Groy, N. Newman та Ulrich Häussermann. "Zn5Sb4In2−δ— a Ternary Derivative of Thermoelectric Zinc Antimonides". Inorganic Chemistry 48, № 13 (2009): 5996–6003. http://dx.doi.org/10.1021/ic900302a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mikhaylushkin, Arkady S., Johanna Nylén, and Ulrich Häussermann. "Structure and Bonding of Zinc Antimonides: Complex Frameworks and Narrow Band Gaps." Chemistry - A European Journal 11, no. 17 (2005): 4912–20. http://dx.doi.org/10.1002/chem.200500020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bounab, Sabrina, Abdelouahb Bentabet, and Youssef Bouahadda. "Study of the Structural, Dynamic and Thermodynamic Properties of the III- Antimonides Semiconductors." Defect and Diffusion Forum 406 (January 2021): 250–55. http://dx.doi.org/10.4028/www.scientific.net/ddf.406.250.

Full text
Abstract:
In the present contribution, structural, dynamic, and some thermodynamic properties of the III-Antimonides are studied using the density-functional perturbation theory (DFPT) within the local density approximation (LDA) in combination with the harmonic approximation Our results for the structural properties such as the lattice constant and the bulk modulus were found to agree well with the previous theoretical and experimental works. We have also calculated the phonon dispersion relation, and we found that our phonon calculations show that these compounds are dynamically stable in the zinc ble
APA, Harvard, Vancouver, ISO, and other styles
8

Bounab, Sabrina, Abdelouahb Bentabet, and Youssef Bouahadda. "Study of the Structural, Dynamic and Thermodynamic Properties of the III- Antimonides Semiconductors." Defect and Diffusion Forum 406 (January 2021): 250–55. http://dx.doi.org/10.4028/www.scientific.net/ddf.406.250.

Full text
Abstract:
In the present contribution, structural, dynamic, and some thermodynamic properties of the III-Antimonides are studied using the density-functional perturbation theory (DFPT) within the local density approximation (LDA) in combination with the harmonic approximation Our results for the structural properties such as the lattice constant and the bulk modulus were found to agree well with the previous theoretical and experimental works. We have also calculated the phonon dispersion relation, and we found that our phonon calculations show that these compounds are dynamically stable in the zinc ble
APA, Harvard, Vancouver, ISO, and other styles
9

Ashcheulov, A. A., O. N. Manyk, T. O. Manyk, V. R. Bilynskyi-Slotylo, A. D. Izotov, and I. V. Fedorchenko. "Theoretical Models of Chemical Bond in Molten Binary Cadmium and Zinc Antimonides in AIIBV Semiconductors." Russian Journal of Inorganic Chemistry 65, no. 9 (2020): 1360–65. http://dx.doi.org/10.1134/s0036023620090028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Balasubramanian, Priyadarshini, Manjusha Battabyal, Arumugam Chandra Bose, and Raghavan Gopalan. "Effect of ball-milling on the phase formation and enhanced thermoelectric properties in zinc antimonides." Materials Science and Engineering: B 271 (September 2021): 115274. http://dx.doi.org/10.1016/j.mseb.2021.115274.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

White, Miles A., Katelyn J. Baumler, Yunhua Chen, et al. "Expanding the I–II–V Phase Space: Soft Synthesis of Polytypic Ternary and Binary Zinc Antimonides." Chemistry of Materials 30, no. 17 (2018): 6173–82. http://dx.doi.org/10.1021/acs.chemmater.8b02910.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Zaikina, Julia, Tori Cox, and Volodymyr Gvozdetskyi. "Ternary alkali metal zinc antimonides and bismuthides: hydride synthesis and in situ X-ray diffraction study." Acta Crystallographica Section A Foundations and Advances 76, a1 (2020): a204. http://dx.doi.org/10.1107/s0108767320097986.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Liu, Yi, Ling Chen, Long-Hua Li, Li-Ming Wu, Oksana Ya Zelinska, and Arthur Mar. "Structures and Physical Properties of Rare-Earth Zinc Antimonides Pr6Zn1+xSb14+yandRE6Zn1+xSb14(RE= Sm, Gd−Ho)." Inorganic Chemistry 47, no. 24 (2008): 11930–41. http://dx.doi.org/10.1021/ic800524d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Zelinska, Oksana Ya, and Arthur Mar. "Structure and physical properties of rare-earth zinc antimonides REZn1–xSb2 (RE=La, Ce, Pr, Nd, Sm, Gd, Tb)." Journal of Solid State Chemistry 179, no. 12 (2006): 3776–83. http://dx.doi.org/10.1016/j.jssc.2006.08.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Xiong, Ding-Bang, Yufeng Zhao, Walter Schnelle, Norihiko L. Okamoto та Haruyuki Inui. "Complex Alloys Containing Double-Mackay Clusters and (Sb1−δZnδ)24Snub Cubes Filled with Highly Disordered Zinc Aggregates: Synthesis, Structures, and Physical Properties of Ruthenium Zinc Antimonides". Inorganic Chemistry 49, № 23 (2010): 10788–97. http://dx.doi.org/10.1021/ic101804m.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Song, Lirong, Martin Roelsgaard, Anders B. Blichfeld, et al. "Structural evolution in thermoelectric zinc antimonide thin films studied by in situ X-ray scattering techniques." IUCrJ 8, no. 3 (2021): 444–54. http://dx.doi.org/10.1107/s2052252521002852.

Full text
Abstract:
Zinc antimonides have been widely studied owing to their outstanding thermoelectric properties. Unlike in the bulk state, where various structurally unknown phases have been identified through their specific physical properties, a number of intermediate phases in the thin-film state remain largely unexplored. Here, in situ X-ray diffraction and X-ray total scattering are combined with in situ measurement of electrical resistivity to monitor the crystallization process of as-deposited amorphous Zn-Sb films during post-deposition annealing. The as-deposited Zn-Sb films undergo a structural evolu
APA, Harvard, Vancouver, ISO, and other styles
17

Bobev, Svilen, Joe D. Thompson, John L. Sarrao, Marilyn M. Olmstead, Håkon Hope, and Susan M. Kauzlarich. "Probing the Limits of the Zintl Concept: Structure and Bonding in Rare-Earth and Alkaline-Earth Zinc-Antimonides Yb9Zn4+xSb9and Ca9Zn4.5Sb9." Inorganic Chemistry 43, no. 16 (2004): 5044–52. http://dx.doi.org/10.1021/ic049836j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Xiong, Ding-Bang, Yufeng Zhao, Walter Schnelle, Norihiko L. Okamoto та Haruyuki Inui. "ChemInform Abstract: Complex Alloys Containing Double-Mackay Clusters and (Sb1-δZnδ)24 Snub Cubes Filled with Highly Disordered Zinc Aggregates: Synthesis, Structures, and Physical Properties of Ruthenium Zinc Antimonides." ChemInform 42, № 6 (2011): no. http://dx.doi.org/10.1002/chin.201106022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Berche, Alexandre, and Philippe Jund. "Thermoelectric power factor of pure and doped ZnSb via DFT based defect calculations." Physical Chemistry Chemical Physics 21, no. 41 (2019): 23056–64. http://dx.doi.org/10.1039/c9cp04397g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Conibeer, G. J., Arthur F. W. Willoughby, C. M. Hardingham, and V. K. M. Sharma. "Zinc Diffusion in Gallium Antimonide." Materials Science Forum 143-147 (October 1993): 1427–32. http://dx.doi.org/10.4028/www.scientific.net/msf.143-147.1427.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Nicols, S. P., H. Bracht, M. Benamara, Z. Liliental-Weber, and E. E. Haller. "Mechanism of zinc diffusion in gallium antimonide." Physica B: Condensed Matter 308-310 (December 2001): 854–57. http://dx.doi.org/10.1016/s0921-4526(01)00913-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Conibeer, G. J., A. F. W. Willoughby, C. M. Hardingham, and V. K. M. Sharma. "Zinc diffusion in tellurium doped gallium antimonide." Journal of Electronic Materials 25, no. 7 (1996): 1108–12. http://dx.doi.org/10.1007/bf02659911.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Conibeer, G. J., A. F. W. Willoughby, C. M. Hardingham, and V. K. M. Sharma. "Zinc diffusion in tellurium doped gallium antimonide." Optical Materials 6, no. 1-2 (1996): 21–25. http://dx.doi.org/10.1016/0925-3467(96)00021-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Ivanova, L. D., Yu V. Granatkina, A. G. Mal’chev, et al. "Preparation and Thermoelectric Properties of Zinc Antimonide." Inorganic Materials 57, no. 7 (2021): 674–82. http://dx.doi.org/10.1134/s0020168521070177.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Mortazavinatanzi, Seyedmohammad, Mojtaba Mirhosseini, Lirong Song, Bo Brummerstedt Iversen, Lasse Rosendahl, and Alireza Rezania. "Zinc antimonide thin film based flexible thermoelectric module." Materials Letters 280 (December 2020): 128582. http://dx.doi.org/10.1016/j.matlet.2020.128582.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Malki, S., and L. El Farh. "Structural and electronic properties of zinc antimonide ZnSb." Materials Today: Proceedings 31 (2020): S41—S44. http://dx.doi.org/10.1016/j.matpr.2020.05.598.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Wang, Jian, та Kirill Kovnir. "Elusive β-Zn8Sb7: A New Zinc Antimonide Thermoelectric". Journal of the American Chemical Society 137, № 39 (2015): 12474–77. http://dx.doi.org/10.1021/jacs.5b08214.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Frézard, Frédéric, Cynthia Demicheli, Kelly C. Kato, Priscila G. Reis, and Edgar H. Lizarazo-Jaimes. "Chemistry of antimony-based drugs in biological systems and studies of their mechanism of action." Reviews in Inorganic Chemistry 33, no. 1 (2013): 1–12. http://dx.doi.org/10.1515/revic-2012-0006.

Full text
Abstract:
AbstractAntimonial drugs have been used for a century in the therapy of the parasitic disease leishmaniasis. Even though pentavalent antimonials are still first-line drugs, they exhibit several limitations, including severe side effects, the need for daily parenteral administration and drug resistance. The molecular structure of pentavalent antimonials, their metabolism and mechanism of action, are still being investigated. Previous studies suggest that pentavalent antimony acts as a prodrug which is converted to the active and more toxic trivalent antimony. Other works support the direct invo
APA, Harvard, Vancouver, ISO, and other styles
29

Caylor, J. C., M. S. Sander, A. M. Stacy, J. S. Harper, R. Gronsky, and T. Sands. "Epitaxial growth of skutterudite (CoSb3) thin films on (001) InSb by pulsed laser deposition." Journal of Materials Research 16, no. 9 (2001): 2467–70. http://dx.doi.org/10.1557/jmr.2001.0337.

Full text
Abstract:
Heteroepitaxial growth of the cubic skutterudite phase CoSb3 on (001) InSb substrates was achieved by pulsed laser deposition using a substrate temperature of 270 °C and a bulk CoSb3 target with 0.75 at.% excess Sb. An InSb (a0 = 4 0.6478 nm) substrate was chosen for its lattice registry with the antimonide skutterudites (e.g., CoSb3 with a = 0 4 0.9034 nm) on the basis of a presumed 45° rotated relationship with the InSb zinc blende structure. X-ray diffraction and transmission electron microscopy confirmed both the structure of the films and their epitaxial relationship: (001)CoSb3 ∥ (001)In
APA, Harvard, Vancouver, ISO, and other styles
30

Kamanin, Alex A., N. Shmidt, B. Ber, et al. "Zinc Diffusion into Gallium Antimonide from Polymer Spin-On Films." Defect and Diffusion Forum 194-199 (April 2001): 751–54. http://dx.doi.org/10.4028/www.scientific.net/ddf.194-199.751.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Zhong, Mianzeng, Xiuqing Meng, and Jingbo Li. "Surfactant-assisted solvothermal synthesis of single-crystal zinc antimonide nanorods." Applied Surface Science 332 (March 2015): 76–79. http://dx.doi.org/10.1016/j.apsusc.2015.01.125.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Heinz, Christian. "Spin‐on Source for Zinc Diffusion in (100) Gallium Antimonide." Journal of The Electrochemical Society 135, no. 1 (1988): 250–52. http://dx.doi.org/10.1149/1.2095567.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Zavadil, J., Z. G. Ivanova, P. Kostka, M. Hamzaoui, and M. T. Soltani. "Photoluminescence study of Er-doped zinc–sodium–antimonite glasses." Journal of Alloys and Compounds 611 (October 2014): 111–16. http://dx.doi.org/10.1016/j.jallcom.2014.05.102.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Churilov, Alexei V., and Aleksandar G. Ostrogorsky. "Model of Tellurium- and Zinc-Doped Indium Antimonide Solidification in Space." Journal of Thermophysics and Heat Transfer 19, no. 4 (2005): 542–47. http://dx.doi.org/10.2514/1.8463.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Sunder, Kirsten, and Hartmut Bracht. "Defect reactions in gallium antimonide studied by zinc and self-diffusion." Physica B: Condensed Matter 401-402 (December 2007): 262–65. http://dx.doi.org/10.1016/j.physb.2007.08.162.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Sun, Ye, Mogens Christensen, Simon Johnsen, et al. "Low-Cost High-Performance Zinc Antimonide Thin Films for Thermoelectric Applications." Advanced Materials 24, no. 13 (2012): 1693–96. http://dx.doi.org/10.1002/adma.201104947.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Heinz, C. "Diffusion from zinc-doped spin-on sources into n-gallium antimonide." Solid-State Electronics 36, no. 12 (1993): 1685–88. http://dx.doi.org/10.1016/0038-1101(93)90214-b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Mirhosseini, M., A. Rezania, L. Rosendahl, and Bo B. Iversen. "Effect of Thermal Cycling on Zinc Antimonide Thin Film Thermoelectric Characteristics." Energy Procedia 142 (December 2017): 519–24. http://dx.doi.org/10.1016/j.egypro.2017.12.081.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Li, Ying Zhen, Ping Fan, Zhuang Hao Zheng, Peng Juan Liu, Qing Yun Lin, and Jing Ting Luo. "Thermoelectric Characterization of Direct Current Magnetron Co-Sputtering Zinc Antimonide Thin Films." Advanced Materials Research 734-737 (August 2013): 2559–62. http://dx.doi.org/10.4028/www.scientific.net/amr.734-737.2559.

Full text
Abstract:
Direct current magnetron co-sputtering was used to deposit zinc antimonide thin films on BK7 glass substrates at room-temperature. Then the films were annealed at 573 K to 673 K for 1 hour in Ar atmosphere. The results indicate that the Seebeck coefficient of the thin films increase from 30.5 μVK-1to 132.5 μVK-1 when the annealing temperature changed. The electrical conductivity of the thin films increases from 3.45×103 to 6.86×103 Sm-1 and the Power Factor is enhanced greatly from 0.03×10-4 to 0.99×10-4 Wm-1K-2 when the annealing temperature reached 598 K. X-ray diffraction result shows that
APA, Harvard, Vancouver, ISO, and other styles
40

Tahar Belarbi, W., Abdelkarim Rouabhia, F. Tair, Bouhalouane Amrani, and Nadir Sekkal. "Low symmetry phases of (Al, Ga)Sb under low pressure." International Journal of Modern Physics B 29, no. 09 (2015): 1550056. http://dx.doi.org/10.1142/s0217979215500563.

Full text
Abstract:
The interesting problem of the first phase transition which is induced by pressure in AlSb and GaSb antimonide binaries is revisited. Then, the case of the AlGaSb ternary has been investigated too. The choice of ternary AlGaSb is due to the particular attention which is given actually to it and to the quasi-absence of investigations of the phase transitions in it. We found that low pressures applied to GaSb and AlSb induce transitions from zinc-blende to Imm2 and from zinc-blende to Cmcm, respectively. Our result for AlSb is in agreement with literature, and in the case of GaSb which poses the
APA, Harvard, Vancouver, ISO, and other styles
41

Farias, Pedro, Christophe Espírito Santo, Rita Branco, et al. "Natural Hot Spots for Gain of Multiple Resistances: Arsenic and Antibiotic Resistances in Heterotrophic, Aerobic Bacteria from Marine Hydrothermal Vent Fields." Applied and Environmental Microbiology 81, no. 7 (2015): 2534–43. http://dx.doi.org/10.1128/aem.03240-14.

Full text
Abstract:
ABSTRACTMicroorganisms are responsible for multiple antibiotic resistances that have been associated with resistance/tolerance to heavy metals, with consequences to public health. Many genes conferring these resistances are located on mobile genetic elements, easily exchanged among phylogenetically distant bacteria. The objective of the present work was to isolate arsenic-, antimonite-, and antibiotic-resistant strains and to determine the existence of plasmids harboring antibiotic/arsenic/antimonite resistance traits in phenotypically resistant strains, in a nonanthropogenically impacted envi
APA, Harvard, Vancouver, ISO, and other styles
42

Faghaninia, Alireza, та Cynthia S. Lo. "First principles study of defect formation in thermoelectric zinc antimonide, β-Zn4Sb3". Journal of Physics: Condensed Matter 27, № 12 (2015): 125502. http://dx.doi.org/10.1088/0953-8984/27/12/125502.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Zheng, Zhuang-hao, Ping Fan, Peng-juan Liu, et al. "Enhanced thermoelectric properties of mixed zinc antimonide thin films via phase optimization." Applied Surface Science 292 (February 2014): 823–27. http://dx.doi.org/10.1016/j.apsusc.2013.12.056.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Rouessac, F., and R. M. Ayral. "Combustion synthesis: A new approach for preparation of thermoelectric zinc antimonide compounds." Journal of Alloys and Compounds 530 (July 2012): 56–62. http://dx.doi.org/10.1016/j.jallcom.2012.03.089.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Zheng, Zhuang-hao, Fu Li, Jing-ting Luo, et al. "Enhancement of power factor in zinc antimonide thermoelectric thin film doped with titanium." Materials Letters 209 (December 2017): 455–58. http://dx.doi.org/10.1016/j.matlet.2017.08.063.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

SHEPELEVICH, V. G. "ChemInform Abstract: Structure and Electrical Properties of Quick-Coagulating Foils of Zinc Antimonide." ChemInform 24, no. 51 (2010): no. http://dx.doi.org/10.1002/chin.199351003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Shabaldin, A. A., L. V. Prokof’eva, G. J. Snyder, P. P. Konstantinov, G. N. Isachenko, and A. V. Asach. "The Influence of Weak Tin Doping on the Thermoelectric Properties of Zinc Antimonide." Journal of Electronic Materials 45, no. 3 (2015): 1871–74. http://dx.doi.org/10.1007/s11664-015-4266-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Liu, Peng-juan, Ai-hua Zhong, Mei-mei Yin, Zhuang-hao Zheng, and Ping Fan. "The thermoelectric properties of zinc antimonide thin films fabricated through single element composite target." Surface and Coatings Technology 361 (March 2019): 130–35. http://dx.doi.org/10.1016/j.surfcoat.2019.01.048.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Hjelt, Kari, and Turkka Tuomi. "Photoluminescence and electrical properties of MOVPE-grown zinc-doped gallium antimonide on gallium arsenide." Journal of Crystal Growth 170, no. 1-4 (1997): 794–98. http://dx.doi.org/10.1016/s0022-0248(96)00543-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Su, Y. K., H. Kuan, and P. H. Chang. "Zinc doping in gallium antimonide grown by low‐pressure metal‐organic chemical vapor deposition." Journal of Applied Physics 73, no. 1 (1993): 56–59. http://dx.doi.org/10.1063/1.353829.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!