Academic literature on the topic 'Zinc ferrites'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Zinc ferrites.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Zinc ferrites"

1

Al-Rubaiey, Najem A., Mohammed G. Albrazanjy, Wafaa A. Kadhim, Hassan D. Mohammed, and Mohd Hasbi Ab Rahim. "The Potential of Using Zn0.6Ni0.4Fe2O4 Nanoparticles as Corrosion Inhibitor for Carbon Steel in Oil Environment." Materials Science Forum 1021 (February 2021): 335–43. http://dx.doi.org/10.4028/www.scientific.net/msf.1021.335.

Full text
Abstract:
Corrosion is one of the serious problems in oil and gas industry. So far, many inhibitors have been used to control or reduce corrosion. Nowadays, nano-materials have been employed as inhibitors as well due to their excellent properties such as high surface area, excellent inhibition efficiency, low cost, and minimum toxicity. In the current work, nano-ferrite materials have been used as inhibitors to reduce the corrosion of carbon steel in oil environment (crude oil obtained from Iraqi Majnoon oil field). The anti-corrosion properties of the nickel and zinc ferrite on carbon steel in Iraqi oil media have been evaluated. The nano materials of nickel Ferrities (NiFe2O4) zinc Ferrities (ZnFe2O4) and Zn-Ni doped Ferities (Zn0.6. Ni0.4Fe2O4) were selected as additive ferrites. It has been found that nano-nickel and zinc ferrites could act as an effective corrosion inhibitor for the metal carbon steel. An average reduction of about 38% in the corrosion rate has been achieved when using Zn-Ni doped Ferities (Zn0.6. Ni0.4Fe2O4) with the crude oil as a corrosive environment.
APA, Harvard, Vancouver, ISO, and other styles
2

Peelamedu, Ramesh, Craig Grimes, Dinesh Agrawal, Rustum Roy, and Purushotham Yadoji. "Ultralow dielectric constant nickel–zinc ferrites using microwave sintering." Journal of Materials Research 18, no. 10 (October 2003): 2292–95. http://dx.doi.org/10.1557/jmr.2003.0320.

Full text
Abstract:
Ultralow dielectric constant values were measured on Ni–Zn ferrites prepared using Fe2O3 as a starting material and sintered in a microwave field. Significant differences in microstructure, magnetic, and dielectric properties were observed between microwave-sintered Ni–Zn ferrites prepared using Fe3O4 (T34) and those starting with Fe2O3 (T23) ingredients. Higher magnetization values observed in T23 ferrite are attributed to large grain size, possibly containing abundant domain walls and the presence of fewer Fe2+ ions. The ultralow dielectric constant values observed on T23 ferrites show that this procedure is highly suitable to prepare Ni–Zn ferrites for high-frequency switching applications.
APA, Harvard, Vancouver, ISO, and other styles
3

Tangcharoen, Thanit, Anucha Ruangphanit, Wantana Klysubun, and Wisanu Pecharapa. "Sol-gel Combustion Synthesis and Characterizations of Nanocrystalline Zinc, Nickel and Nickel-Zinc Ferrites." Advanced Materials Research 802 (September 2013): 64–68. http://dx.doi.org/10.4028/www.scientific.net/amr.802.64.

Full text
Abstract:
In this work, X-ray diffraction (XRD), Raman spectroscopy (RAMAN) and vibrating sample magnetometer (VSM) measurements were employed to investigate the crystal structure, chemical bonding and magnetic properties of the nanocrystalline Zinc, Nickel and Nickel-Zinc ferrites (ZnFe2O4, NiFe2O4 and Ni0.5Zn0.5Fe2O4) which were synthesized by sol-gel combustion method. Moreover, the composition of elements and the electronic structure including the cation distribution for all ferrite samples were examined through synchrotron X-ray fluorescence (XRF) and X-ray absorption near-edge structure (XANES) spectra. The overall characterization results indicate that the different amount of zinc and nickel ions in ferrites has crucial effect on their physical, magnetism and the site occupancy distribution of Fe3+ ions.
APA, Harvard, Vancouver, ISO, and other styles
4

Vasambekar, Pramod N., Tukaram J. Shinde, and Ashok B. Gadkari. "Nd 3+ Substituted Nanocrystalline Zinc Ferrite Sensors for Ethanol, LPG and Chlorine." Applied Mechanics and Materials 310 (February 2013): 150–53. http://dx.doi.org/10.4028/www.scientific.net/amm.310.150.

Full text
Abstract:
Nd 3+ substituted zinc ferrites with chemical formula ZnNdxFe 2-x O4 (x = 0, 0.01, 0.02, and 0.03) were prepared by oxalate co-precipitation method and characterized by XRD, IR and SEM techniques. The gas sensing properties were studied for ethanol, LPG and chlorine. It was observed that nanocrystalline ZnFe2O4 shows maximum sensitivity to ethanol (~41%) followed by LPG (~22%) and less sensitivity to Cl2 (~10%) at an operating temperature of 327oC. The sensitivity of zinc ferrites increases with increase in Nd 3+ content. Response-recovery times of zinc ferrite decreases with increase in Nd3+ content.
APA, Harvard, Vancouver, ISO, and other styles
5

Seyyed Ebrahimi, S. A., and Z. Pishgahi Fard. "An Investigation on the Optimum Conditions for Preparation of Pure Mn-Mg-Zn Ferrite Powder." Key Engineering Materials 336-338 (April 2007): 699–702. http://dx.doi.org/10.4028/www.scientific.net/kem.336-338.699.

Full text
Abstract:
Manganese- Zinc ferrite is one of the most important spinel ferrites which is used in the electronics applications. These ferrites have an open lattice and can tolerate large amounts of the other metallic ions in their lattice. One of these divalent ions that can sit in the unit cell of Mn-Zn ferrites is Magnesium. Mn-Mg-Zn ferrites are new materials which is thought to be a good candidate for dielectric applications. In this work, a suitable relative values of raw materials for preparing pure Mn-Mg-Zn ferrite powder have been determined. It is carried out by using XRD experiments. The optimum temperature and time of calcination were also investigated by DTA/TGA, XRD and SEM techniques.
APA, Harvard, Vancouver, ISO, and other styles
6

Jovalekic, Cedomir, Aleksandar Nikolic, Maja Gruden-Pavlovic, and Miodrag Pavlovic. "Mechanochemical synthesis of stoichiometric nickel and nickel-zinc ferrite powders with Nicolson-Ross analysis of absorption coefficients." Journal of the Serbian Chemical Society 77, no. 4 (2012): 497–505. http://dx.doi.org/10.2298/jsc110302186j.

Full text
Abstract:
The interest in finding new methods for preparation of nickel ferrite (NiFe2O4) and nickel-zinc ferrite (NixZn1-xFe2O4) powders has recently increased, due to the fact that physical and chemical properties of these soft magnetic materials depend strongly on the preparation conditions. In this paper, powder samples of ferrites were obtained by: 1) classic sintering procedure (NixZn1-xFe2O4, x = 0.9) and 2) planetary mill synthesis (both NiFe2O4 and NixZn1-xFe2O4). Mechanochemical reaction leading to the formation of NixZn1-xFe2O4 (x = 1 and 0.9) spinel phase was monitored by SEM, TEM, and XRD. Values of the real and imaginary parts of permittivity and permeability were measured for the obtained nickel and nickel-zinc ferrite samples in the 7-12 GHz frequency range. Based on the obtained results, the EMR absorption coefficients were calculated for all three sample types. It has been concluded that the method of preparation and the final particle size influence the EMR absorption coefficient of nickel and nickel-zinc ferrites.
APA, Harvard, Vancouver, ISO, and other styles
7

Maklad, M. H., N. M. Shash, and H. K. Abdelsalam. "Synthesis, characterization and magnetic properties of nanocrystalline Ni1-xZnxFe2O4 spinels via coprecipitation precursor." International Journal of Modern Physics B 28, no. 25 (September 9, 2014): 1450165. http://dx.doi.org/10.1142/s0217979214501653.

Full text
Abstract:
Nanocrystalline Ni 1-x Zn x Fe 2 O 4 (0.0 ≤ x ≤ 1.0) spinels are synthesized with a crystallite size range 5–2.2 nm, using different annealing temperatures. The influence of zinc content as well as grain size of ferrite on the ferrite microstructure, therefore on the physical properties of ferrite, are investigated by means of X-ray diffraction (XRD), scanning electron microscope (SEM), atomic force microscope (AFM), thermal analysis (TG, DTG, DSC) and infrared microscopy (IR). XRD results confirm single phase spinel structure for ferrite with Zn content x = 0.1 whereas second phase appears in higher zinc content ferrites. Thermal analysis shows an endothermic peak at ~ 720°C–750°C reveals the removal of defective surface layer existed on the surface of ferrite grains, which leads to cation redistribution. This is supported by the shift observed in IR bands as a result of the increase in zinc content or calcination temperature. Ferrite with composition Ni 0.7 Zn 0.3 Fe 2 O 4 calcined at 1000°C has the maximum saturation magnetization Ms among various compositions at different calcination temperatures. The Ms and the coercivity Hc of the ferrites nanoparticles are different from their corresponding bulk, which attributes to a defective surface layer, controlling the ultrafine particle behavior.
APA, Harvard, Vancouver, ISO, and other styles
8

Leclerc, Nathalie, Eric Meux, and Jean-Marie Lecuire. "Hydrometallurgical extraction of zinc from zinc ferrites." Hydrometallurgy 70, no. 1-3 (July 2003): 175–83. http://dx.doi.org/10.1016/s0304-386x(03)00079-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ravinder, D., T. Seshagiri Rao, and Y. V. Ramana. "Elasticity of zinc and lithium-zinc ferrites." Journal of Materials Science Letters 10, no. 20 (1991): 1220–21. http://dx.doi.org/10.1007/bf00727910.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gatelyte, Aurelija, Darius Jasaitis, Aldona Beganskiene, and Aivaras Kareiva. "Sol-Gel Derived Ferrites: Synthesis and Characterization." Advanced Materials Research 222 (April 2011): 235–38. http://dx.doi.org/10.4028/www.scientific.net/amr.222.235.

Full text
Abstract:
In the present work, the sinterability and formation of nanosized yttrium iron garnet (Y3Fe5O12), yttrium perovskite ferrite (YFeO3), cobalt, nickel and zinc iron spinel (CoFe2O4, NiFe2O4 and ZnFe2O4, respectively) powders by an aqueous sol-gel processes are investigated. The phase purity of synthesized nano-compounds was characterized by powder X-ray diffraction analysis (XRD). The microstructural evolution and morphological features of obtained transition metal ferrites were studied by scanning electron microscopy (SEM). The possible application of these nanosized transition metal ferrites as ceramic pigments was demonstrated.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Zinc ferrites"

1

Okatan, Mahmut Baris. "Microstructure Development In Nickel Zinc Ferrites." Master's thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/3/12606924/index.pdf.

Full text
Abstract:
Nickel zinc ferrites (NZF) have been considered as one of the basic components in high frequency electromagnetic applications especially in the field of telecommunications. In the present study, the aim was to produce high quality nickel zinc ferrite ceramics at low soaking temperatures. For this purpose, conventional ceramic manufacturing method based on mixed oxide precursors was followed using calcium fluoride, CaF2, as sintering additive. During the sintering studies, it was noticed that both the microstructure and the electromagnetic properties of the NZF ceramics were modified to a great extent by CaF2. Therefore, material characterization studies involving microstructural, dielectric and magnetic properties were conducted with respect to CaF2 content of ceramics and soak duration. The results showed that due to the presence of CaF2 in ceramics, significant improvements were achieved not only in kinetics of sintering but also in the parameters
DC electrical resistivity, dielectric constant and dielectric loss factor. For example, 1.0 wt% CaF2 added NZF ceramic produced in this study had a DC electrical resistivity of 1011 &
#61527
-cm which was 100,000 times bigger than the one attained in pure NZF ceramic. On the other hand, the dielectric constant exhibited a flat behavior up to 40 MHz with a value around 16. In addition, no resonance peak was observed in dielectric loss factor spectra, and the typical values of dielectric loss factor lied below 0.01. Besides the achievements mentioned, the magnetic properties such as relative magnetic loss factor and hysteresis parameters were also improved.
APA, Harvard, Vancouver, ISO, and other styles
2

Souza, NatÃlia Dantas Gomes de. "Obtaining magnetic nanobiocompÃsitos consisting of galactomannan, glycerol and nickel ferrite and zinc." Universidade Federal do CearÃ, 2014. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=11766.

Full text
Abstract:
CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior
FundaÃÃo de Amparo à Pesquisa do Estado do CearÃ
Nos Ãltimos anos, um grande interesse na associaÃÃo de materiais magnÃticos e biolÃgicos tem sido relatado na literatura. A obtenÃÃo de novos compÃsitos constituÃdos de galactomanana (GM), nanopartÃculas magnÃticas (MNPs) de NiZn e glicerol (GL) foram produzidos em diferentes proporÃÃes com finalidade de potencializar as caracterÃsticas individuais de cada material para futuras aplicaÃÃes. Sendo assim, as propriedades estruturais, magnÃticas e dielÃtricas dos nanobiocompÃsitos foram investigadas por DifraÃÃo de Raios-X (DRX), Espectroscopia de AbsorÃÃo na RegiÃo de Infravermelho (FTIR), AnÃlise TÃrmica (TG), Calorimetria ExploratÃria Diferencial (DSC), Microscopia EletrÃnica de Varredura (MEV), Microscopia EletrÃnica de TransmissÃo (TEM), Medidas MagnÃticas e Medidas DielÃtricas. A estrutura de espinÃlio da ferrita de NiZn foi confirmada por DRX e TEM e a amostra GMGL apesar de ser um material amorfo apresentou em seus nanobiocompÃsitos picos caracteristicos da fase de NiZn. As bandas caracterÃsticas para as amostras foram confirmadas por FTIR. Estas por sua vez seguiram um perfil de degradaÃÃo de acordo com as quantidades de NiZn incorporados, confirmados nos termogramas de DSC. A caracterizaÃÃo por MEV foi importante para avaliaÃÃo da morfologia. Os resultados das medidas dielÃtricas apresentaram baixas perdas dielÃtricas e das medidas magnÃticas mostraram comportamento magnÃtico para todos os nanobiocompÃsitos. Portanto, os resultados da caracterizaÃÃo dos nanobiocompÃsitos foram satisfatÃrios para possÃveis aplicaÃÃes como biomaterias, dispositivos eletrÃnicos ou em Ãreas afins.
In recent years, a great interest in the association of magnetic and biological materials has been reported in the literature. New composite consisting of galactomannan (GM), magnetic nanoparticles (NPs) of NiZn and glycerol (GL) were produced in different proportions with the purpose of enhancing the individual characteristics of each material for future applications. Thus, the structural, magnetic and dielectric properties of nanobiocomposites were investigated by Absorption Spectroscopy in the Region of Infrared (FTIR), X-Ray Diffraction (XRD), Thermal Analysis (TG), Differential Scanning Calorimetry (DSC), Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Magnetic Measurements and Dielectric Measurements. The structure of spinel NiZn ferrite was confirmed by XRD and TEM. Sample GMGL despite being an amorphous material presented in their nanobiocomposites characteristic peaks of phase NiZn. The characteristic bands in the samples were confirmed by FTIR. These in turn followed a degradation profile in accordance with the amounts of NiZn incorporated, which was confirmed in the DSC thermograms. The characterization by SEM was important to assess the morphology. The results of dielectric measurements showed low dielectric loss and magnetic measurements showed magnetic behavior for all nanobiocomposites. Therefore, the results of the characterization of nanobiocomposites were satisfactory for potential applications as biomaterials, electronic devices or related areas.
APA, Harvard, Vancouver, ISO, and other styles
3

Verdier, Thomas. "Elaboration de poudres nanostructurées de ferrites de manganèse-zinc par mécanosynthèse : Influence des paramètres de broyage." Rouen, 2006. http://www.theses.fr/2006ROUES042.

Full text
Abstract:
Les ferrites mixtes de Mn-Zn ont un grand intérêt commercial du fait de leurs propriétés magnétiques à haute fréquence. Cette thèse présente l’influence des modes de broyage sur la synthèse de ferrites Mn-Zn à partir d’oxydes simples. La ferrite obtenue par mécanosynthèse présente une réorganisation de la distribution cationique au sein de la structure spinelle, ce qui peut améliorer les propriétés du matériau massif après mise en forme. Des broyages réalisés dans un matériel en acier ont permis de mettre en évidence la présence de Fe2+ provenant de réactions d’oxydo-réduction entre le fer et les oxydes. Des broyages réalisés dans des jarres en WC ont conduit à l’obtention de phases pures de ferrites de zinc et de manganèse-zinc exemptes d’ions Fe2+. Des expériences de spectrométrie Mössbauer sous champ magnétique ont permis de préciser la distribution cationique des ferrites synthétisés
Spinel ferrites compounds are widely used for their technological applications, which are essentially their magnetic and catalytic properties. Nanocrystalline Mn-Zn ferrites have been synthesized by high-energy ball milling in different media (tempered steel and WC) starting from simple oxides (α-Fe2O3, ZnO and MnO). This technique leads to a change in the distribution of cations in both sites, resulting in an increase of magnetic properties. X-ray diffraction, Mössbauer spectrometry and VSM are used to characterize the powders. This work shows that a redox reaction is observed between Fe11 and metalling iron during milling in steel medium, leading to a spinel phase containing some Fe11. The mechanism for the appearance of this phase is studied : ZnO seems to have a non negligeable influence on the synthesis, by creating an intermediate wüstite-type phase solid solution with FeO. Millings in WC medium permit to avoid the Fe11 contamination
APA, Harvard, Vancouver, ISO, and other styles
4

Recouvreur, Michel. "Contribution à l'étude des liants organiques pour ferrites étude de l'alcool polyvinylique dans le ferrite manganèse-zinc /." Grenoble 2 : ANRT, 1986. http://catalogue.bnf.fr/ark:/12148/cb37600681v.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Spiers, Hayley Ileana. "Time resolved x-ray diffraction and thermal imaging studies of magnesium zinc ferrites." Thesis, University College London (University of London), 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.415415.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Adair, Antony. "Observed super-spin class behavior in Ni₀.₅Zn₀.₅Fe₂O₄ nanoparticles." To access this resource online via ProQuest Dissertations and Theses @ UTEP, 2009. http://0-proquest.umi.com.lib.utep.edu/login?COPT=REJTPTU0YmImSU5UPTAmVkVSPTI=&clientId=2515.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hochepied, Jean-François. "Nanocristaux de ferrites mixtes de cobalt et de zinc : évolution des propriétés magnétiques en fonction de l'occupation des sites." Paris 6, 1999. http://www.theses.fr/1999PA066245.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sousa, Marcelo Henrique. "Propriétés magnétiques et magnéto-optiques de fluides magnétiques à base de nanoparticules de ferrites de nickel, de cuivre et de zinc." Paris 6, 2003. http://www.theses.fr/2003PA066591.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Abbali, Zineb. "Etude de la cristallisation de ferrites spinelles dans des verres borates." Grenoble 2 : ANRT, 1988. http://catalogue.bnf.fr/ark:/12148/cb376110731.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bonholzer, Michael. "Magnetic Tunnel Junctions based on spinel ZnxFe3-xO4." Doctoral thesis, Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-212756.

Full text
Abstract:
Die vorliegende Arbeit befasst sich mit magnetischen Tunnelkontakten (magnetic tunnel junctions, MTJs) auf Basis des Oxids Zinkferrit (ZnxFe3-xO4). Dabei soll das Potential dieses Materials durch die Demonstration des Tunnelmagnetowiderstandes (tunnel magnetoresistance, TMR) in zinkferritbasierten Tunnelkontakten gezeigt werden. Dazu wurde ein Probendesign für MTJs auf Basis der „pseudo spin valve“-Geometrie entwickelt. Die Basis für dieseStrukturen ist ein Dünnfilmstapel aus MgO (Substrat) / TiN / ZnxFe3-xO4 / MgO / Co. Dieser ist mittels gepulster Laserabscheidung (pulsed laser deposition, PLD) hergestellt. Im Rahmen dieser Arbeit wurden die strukturellen, elektrischen und magnetischen Eigenschaften der Dünnfilme untersucht. Des weiteren wurden die fertig prozessierten MTJ-Bauelemente an einem im Rahmen dieser Arbeit entwickeltem und aufgebautem TMR-Messplatz vermessen. Dabei ist es gelungen einen TMR-Effekt von 0.5% in ZnxFe3-xO4-basierten MTJs nachzuweisen. Das erste Kapitel der Arbeit gibt eine Einführung in die spintronischen Effekte Riesenmagnetowiderstand (giant magnetoresistance, GMR) und Tunnelmagnetowiderstand (TMR). Deren technologische Anwendungen sowie die grundlegenden physikalischen Effekte und Modelle werden diskutiert. Das zweite Kapitel gibt eine Übersicht über die Materialklasse der spinellartigen Ferrite. Der Fokus liegt auf den Materialien Magnetit (Fe3O4) sowie Zinkferrit (ZnxFe3-xO4). Die physikalischen Modelle zur Beschreibung der strukturellen, magnetischen und elektrischen Eigenschaften dieser Materialien werden dargelegt sowie ein Literaturüberblick über experimentelle und theoretische Arbeiten gegeben. Im dritten Kapitel werden die im Rahmen dieser Arbeit verwendeten Probenpräparations- und Charakterisierungsmethoden vorgestellt und technische Details sowie physikalische Grundlagen erläutert. Die Entwicklung eines neuen Probendesigns zum Nachweis des TMR-Effekts in ZnxFe3-xO4-basierten MTJs ist Gegenstand des vierten Kapitels. Die Entwicklung des Probenaufbaus sowie die daraus resultierende Probenprozessierung werden beschrieben. Die beiden letzten Kapitel befassen sich mit der strukturellen, elektrischen und magnetischen Charakterisierung der mittels PLD abgeschiedenen Dünnfilme sowie der Tunnelkontaktstrukturen.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Zinc ferrites"

1

Pigram, A. J. The use of novel fabrication routes for the production of manganese-zinc and nickel-zinc ferrites. Manchester: UMIST, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Nyirenda, Ralton Latoni. The reduction of zinc-rich ferrites and its implication for a caron-type process for carbon steelmaking dust: Proefschrift. [s.l: s.n.]., 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Miyoshi, Kazuhisa. Effect of abrasive grit size on wear of manganese-zinc ferrite under three-body abrasion. [Washington, DC: National Aeronautics and Space Administration, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Miyoshi, Kazuhisa. Abrasion and deformed layer formation of manganese-zinc ferrite in sliding contact with lapping tapes. [Cleveland, Ohio: National Aeronautics and Space Administration, Lewis Research Center, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kazuhisa, Miyoshi, and United States. National Aeronautics and Space Administration. Scientific and Technical Information Branch., eds. Humidity effects on adhesion of nickel-zinc ferrite in elastic contact with magnetic tape and itself. [Washington, D.C.]: National Aeronautics and Space Administration, Scientific and Technical Information Branch, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Zinc ferrites"

1

Pandey, B., and H. C. Verma. "Anomalous magnetic behaviour of zinc and chromium ferrites without any hyperfine splitting." In ICAME 2007, 189–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-78697-9_19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dosanjh, H. S., B. S. Randhawa, and Nitendar Kumar. "Mössbauer effect studies on mixed lithium–zinc ferrites prepared by solution combustion method." In ICAME 2007, 217–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-78697-9_23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wittenauer, M., P. Wang, P. Metcalf, Z. Ka̧kol, J. M. Honig, Bruce F. Collier, and J. E. Greedan. "Growth and Characterization of Single Crystals of Zinc Ferrites, Fe3-X Znx O4." In Inorganic Syntheses, 124–32. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470132616.ch27.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hyie, Koay Mei, I. H. S. C. Metselaar, and Iskandar Idris Yaacob. "Study on the Electromagnetic Properties of Various Compositions of Magnesium-Copper-Zinc Ferrites." In Fracture and Strength of Solids VI, 875–80. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-989-x.875.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Williamson, D. L., B. Morosin, E. L. Venturini, and R. A. Graham. "Mossbauer Study of Shock-Synthesized Zinc Ferrite." In Shock Waves in Condensed Matter, 809–14. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4613-2207-8_119.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Singh, Jitendra Pal, R. C. Srivastava, H. M. Agrawal, and R. P. S. Kushwaha. "57Fe Mössbauer spectroscopic study of nanostructured zinc ferrite." In ICAME 2007, 393–400. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-78697-9_49.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Morosin, B., E. L. Venturini, and R. A. Graham. "X-Ray Diffraction Studies of Shock-Synthesized Zinc Ferrite." In Shock Waves in Condensed Matter, 797–801. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4613-2207-8_117.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Graham, R. A., and M. J. Carr. "Analytical Electron Microscopy Study of Shock Synthesized Zinc Ferrite." In Shock Waves in Condensed Matter, 803–8. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4613-2207-8_118.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Xie, Zeqiang, Yufeng Guo, Tao Jiang, Feng Chen, and Lingzhi Yang. "The Extraction of Zinc from Zinc Ferrite by Calcified-Roasting and Ammonia-Leaching Process." In The Minerals, Metals & Materials Series, 485–93. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-51340-9_48.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Venturini, E. L., B. Morosin, and R. A. Graham. "Magnetic Properties of Shock-Synthesized and Furnace-Reacted Zinc Ferrite." In Shock Waves in Condensed Matter, 815–20. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4613-2207-8_120.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Zinc ferrites"

1

Dhiman, R. L., Virender Singh, S. P. Taneja, and Kailash Chandra. "Structural investigation of manganese zinc ferrites." In PROCEEDINGS OF THE NATIONAL CONFERENCE ON RECENT ADVANCES IN CONDENSED MATTER PHYSICS: RACMP-2018. Author(s), 2019. http://dx.doi.org/10.1063/1.5097089.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hamdeh, H. H., and S. A. Oliver. "Mossbauer Characterization Of Non-Equlilibrium Zinc Ferrites." In 1997 IEEE International Magnetics Conference (INTERMAG'97). IEEE, 1997. http://dx.doi.org/10.1109/intmag.1997.597703.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Soibam, Ibetombi, Sumitra Phanjoubam, HNK Sarma, Chandra Prakash, Amitabha Ghoshray, and Bilwadal Bandyopadhyay. "Synthesis And Characterization Of Ultra-fine Zinc Substituted Lithium Ferrites." In MAGNETIC MATERIALS: International Conference on Magnetic Materials (ICMM-2007). AIP, 2008. http://dx.doi.org/10.1063/1.2928920.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Raju, P., and S. R. Murthy. "Microstructure, frequency and temperature dependent dielectric properties of zinc ferrites." In DAE SOLID STATE PHYSICS SYMPOSIUM 2018. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5112952.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Vyzulin, S. A., E. L. Miroshnichenko, D. A. Kalikintseva, and V. Y. Buz'ko. "Investigation of microwave absorption properties of nanosized nickel-zinc ferrites powders." In 2017 Radiation and Scattering of Electromagnetic Waves (RSEMW). IEEE, 2017. http://dx.doi.org/10.1109/rsemw.2017.8103593.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lebourgeois, R. R., J. Ganne, and S. A. Duguey. "Influence of V2O5 on the Magnetic Properties of Nickel-Zinc-Copper Ferrites." In INTERMAG 2006 - IEEE International Magnetics Conference. IEEE, 2006. http://dx.doi.org/10.1109/intmag.2006.376472.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hua Su, Huaiwu Zhang, Xiaoli Tang, and Xubo Dai. "Effects of P/sub 2/O/sub 5/ addition on manganese zinc ferrites." In INTERMAG Asia 2005: Digest of the IEEE International Magnetics Conference. IEEE, 2005. http://dx.doi.org/10.1109/intmag.2005.1464176.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lamani, A. R., H. S. Jayanna, C. S. Naveen, M. P. Rajeeva, G. D. Prasanna, V. S. Chaturmukha, B. M. Harish, S. Suresh, and B. S. Avinash. "Temperature-dependent dielectric properties and line profile analysis of zinc-substituted copper ferrites." In DAE SOLID STATE PHYSICS SYMPOSIUM 2015. Author(s), 2016. http://dx.doi.org/10.1063/1.4947790.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ušák, Elemír, Mariana Ušáková, Eva Branická, and Ján Lokaj. "Structural and magnetic properties of nickel-zinc ferrites substituted by Terbium and Holmium." In APPLIED PHYSICS OF CONDENSED MATTER (APCOM 2019). AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5119501.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Surzhikov, Anatoly, Elena Lysenko, Vitaly Vlasov, and Elena Vasendina. "Solid-state synthesis of lithium-zinc ferrites by a high-energy electron beam heating." In 2012 7th International Forum on Strategic Technology (IFOST). IEEE, 2012. http://dx.doi.org/10.1109/ifost.2012.6357503.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Zinc ferrites"

1

Gangwal, S., S. Harkins, J. Stogner, and M. Woods. Multicycle testing of zinc ferrite. Office of Scientific and Technical Information (OSTI), October 1988. http://dx.doi.org/10.2172/6241967.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Jha, M. C., and M. H. Berggren. Two-stage regeneration of zinc ferrite desulfurization sorbent. Office of Scientific and Technical Information (OSTI), June 1988. http://dx.doi.org/10.2172/5066440.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Jha, M. C., and M. H. Berggren. Two-stage regeneration of zinc ferrite desulfurization sorbent. Office of Scientific and Technical Information (OSTI), June 1988. http://dx.doi.org/10.2172/10161196.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Grindley, T. Study of fluidized-bed desulfurization with zinc ferrite. Office of Scientific and Technical Information (OSTI), January 1991. http://dx.doi.org/10.2172/5877687.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Berggren, M. H., and M. C. Jha. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent. Office of Scientific and Technical Information (OSTI), October 1989. http://dx.doi.org/10.2172/5088398.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Jha, M. C., and M. H. Berggren. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent. Office of Scientific and Technical Information (OSTI), November 1988. http://dx.doi.org/10.2172/5100918.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Jha, M. C., L. K. Baltich, and M. H. Berggren. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent. Office of Scientific and Technical Information (OSTI), August 1987. http://dx.doi.org/10.2172/5100922.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Jha, M. C., and L. K. Baltich. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent. Office of Scientific and Technical Information (OSTI), February 1987. http://dx.doi.org/10.2172/5064658.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Jha, M. C., and M. H. Berggren. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent. Office of Scientific and Technical Information (OSTI), May 1989. http://dx.doi.org/10.2172/5064677.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Silaban, A., and D. P. Harrison. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent. Office of Scientific and Technical Information (OSTI), May 1989. http://dx.doi.org/10.2172/5064713.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography