To see the other types of publications on this topic, follow the link: Zinc phosphide.

Journal articles on the topic 'Zinc phosphide'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Zinc phosphide.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Doğan, Erdal, Abdulmenap Güzel, Taner Çiftçi, et al. "Zinc Phosphide Poisoning." Case Reports in Critical Care 2014 (2014): 1–3. http://dx.doi.org/10.1155/2014/589712.

Full text
Abstract:
Zinc phosphide has been used widely as a rodenticide. Upon ingestion, it gets converted to phosphine gas in the body, which is subsequently absorbed into the bloodstream through the stomach and the intestines and gets captured by the liver and the lungs. Phosphine gas produces various metabolic and nonmetabolic toxic effects. Clinical symptoms are circulatory collapse, hypotension, shock symptoms, myocarditis, pericarditis, acute pulmonary edema, and congestive heart failure. In this case presentation, we aim to present the intensive care process and treatment resistance of a patient who inges
APA, Harvard, Vancouver, ISO, and other styles
2

Fox, Jonathan H., Brian F. Porter, Leslie Easterwood, et al. "Acute hepatic steatosis: a helpful diagnostic feature in metallic phosphide–poisoned horses." Journal of Veterinary Diagnostic Investigation 30, no. 2 (2017): 280–85. http://dx.doi.org/10.1177/1040638717746707.

Full text
Abstract:
Metal phosphides, particularly zinc and aluminum phosphide, occasionally poison horses and other equids following their use as rodenticides and insecticides. Grain-based aluminum phosphide baits are used to control rodents such as prairie dogs. The clinical course in intoxicated horses is short (<24–48 h), and animals may be found dead. Hepatic lesions caused by phosphine poisoning are not well described. Laboratory confirmation depends on detecting phosphine gas in gastric contents. Eight horses and a mule were exposed to zinc phosphide used to control prairie dogs on a Wyoming ranch. Thre
APA, Harvard, Vancouver, ISO, and other styles
3

Jain, Piyush. "Zinc phosphide poisoning." Indian Journal of Medical Specialities 9, no. 3 (2018): 171–73. http://dx.doi.org/10.1016/j.injms.2018.06.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Jensen, William B. "Maigret’s zinc phosphide challenge." Analytical and Bioanalytical Chemistry 414, no. 24 (2022): 7001–2. http://dx.doi.org/10.1007/s00216-022-04195-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Murali, K. R., and B. S. V. Gopalam. "Preparation of zinc phosphide." Journal of Materials Science Letters 5, no. 10 (1986): 989–90. http://dx.doi.org/10.1007/bf01730258.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Keyal, Niraj, Hem Raj Paneru, Gentle Sundar Shrestha, and Roshana Amatya. "Transient leucopenia in acute zinc phosphide poisoning." Journal of Chitwan Medical College 7, no. 3 (2017): 55–56. http://dx.doi.org/10.3126/jcmc.v7i3.23695.

Full text
Abstract:
Zinc phosphide is easily available, cheap, and highly effective household rodenticide. Self poisoning with this rodenticide is commonly encountered in our clinical practice and causes lethal poisoning by liberation of phosphine which in turn causes inhibition of cytochrome oxidase C thereby leading to cellular hypoxia. We report a case of such poisoning which had an unusual presentation in the form of transient leucopenia.
APA, Harvard, Vancouver, ISO, and other styles
7

Jug, Karl, Igor P. Gloriozov, and Bettina Heidberg. "Miscibility of Zinc Sulfide and Zinc Phosphide." Journal of Physical Chemistry B 109, no. 46 (2005): 21922–27. http://dx.doi.org/10.1021/jp0541720.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zhao, Shunshun, Guangmeng Qu, Chenggang Wang, et al. "Towards advanced aqueous zinc battery by exploiting synergistic effects between crystalline phosphide and amorphous phosphate." Nanoscale 13, no. 44 (2021): 18586–95. http://dx.doi.org/10.1039/d1nr05903c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Munoz, V., D. Decroix, A. Chevy, and J. M. Besson. "Optical properties of zinc phosphide." Journal of Applied Physics 60, no. 9 (1986): 3282–88. http://dx.doi.org/10.1063/1.337719.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Suda, Toshikazu, Yoshitada Murata, and Shoichi Kurita. "Anodic Oxidation of Zinc Phosphide." Japanese Journal of Applied Physics 25, Part 2, No. 2 (1986): L162—L164. http://dx.doi.org/10.1143/jjap.25.l162.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Proudfoot, Alex T. "Aluminium and zinc phosphide poisoning." Clinical Toxicology 47, no. 2 (2009): 89–100. http://dx.doi.org/10.1080/15563650802520675.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Suda, Toshikazu, and Kazuhiko Kakishita. "Epitaxial growth of zinc phosphide." Journal of Applied Physics 71, no. 6 (1992): 3039–41. http://dx.doi.org/10.1063/1.350989.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Murali, K. R., and B. S. V. Gopalam. "Electrical conduction in zinc phosphide." Journal of Materials Science Letters 6, no. 2 (1987): 209–10. http://dx.doi.org/10.1007/bf01728988.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Kuhn, W. Kevin. "Zinc Germanium Phosphide by XPS." Surface Science Spectra 3, no. 2 (1994): 93–99. http://dx.doi.org/10.1116/1.1247781.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Subrahmanyam, A., K. R. Murali, B. S. V. Gopalam, and J. Sobhanadri. "Dielectric properties of zinc phosphide." physica status solidi (a) 88, no. 2 (1985): 681–86. http://dx.doi.org/10.1002/pssa.2210880235.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Xu, Jing, Ting Li, Jia Li, and Ye Zhu. "An artificial zinc phosphide interface toward stable zinc anodes." Colloids and Surfaces A: Physicochemical and Engineering Aspects 653 (November 2022): 129970. http://dx.doi.org/10.1016/j.colsurfa.2022.129970.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Lim, Teck Hock, Geok Bee Teh, and Richard David Tilley. "Synthesis and Characterization of Highly Crystalline Zinc Phosphide Nanoparticles." Key Engineering Materials 701 (July 2016): 3–7. http://dx.doi.org/10.4028/www.scientific.net/kem.701.3.

Full text
Abstract:
Nanoscale alpha zinc phosphide (α-Zn3P2) particles are a class of promising opto-electronic materials which have attracted worldwide attention. The synthetic protocols pertaining to α-Zn3P2 nanoparticles have been largely based on the use of costly, pyrophoric and toxic phosphines precursors. We reported here the results of our investigation into the viability of fabricating crystalline α-Zn3P2 nanoparticles using phosphorous pentabromide (PBr5) as precursor via an air-stable solid hydrogen phosphide (PH)x intermediate. HRTEM analysis revealed the best sample as spherical crystalline α-Zn3P2 n
APA, Harvard, Vancouver, ISO, and other styles
18

Byers, R. E., and D. H. Carbaugh. "Vole Population Shifts Related to Rodenticide Usage." HortScience 24, no. 5 (1989): 783–85. http://dx.doi.org/10.21273/hortsci.24.5.783.

Full text
Abstract:
Abstract Rodenticides applied in an apple orchard and containing zinc phosphide caused a shift in mixed pine (Microtus pinetorum) and meadow (M. pennyslvanicus) vole populations to more pine voles. The anticogulant, chlorophacinone (Rozol-pelleted formulation, CPN) caused a shift to more meadow voles. A lacquered wheat formulation of CPN was as effective as the Rozol-pelleted formulation when broadcast or hand-placed under shingles and appeared to weather better than Rozol. Cholecalciferol (Quintox-pelleted formulation) and one of the zinc phosphide (Ridall-pelleted formulation) formulations w
APA, Harvard, Vancouver, ISO, and other styles
19

van Gurp, G. J., P. R. Boudewijn, M. N. C. Kempeners, and D. L. A. Tjaden. "Zinc diffusion inn‐type indium phosphide." Journal of Applied Physics 61, no. 5 (1987): 1846–55. http://dx.doi.org/10.1063/1.338028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Jain, VV, OP Gupta, A. Jaikishen, and Jyoti Jain. "Transient hyperglycemia in zinc phosphide poisoning." Indian Journal of Endocrinology and Metabolism 16, no. 1 (2012): 145. http://dx.doi.org/10.4103/2230-8210.91213.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Shen, G. Z., Y. Bando, J. Q. Hu, and D. Golberg. "Single-crystalline trumpetlike zinc phosphide nanostructures." Applied Physics Letters 88, no. 14 (2006): 143105. http://dx.doi.org/10.1063/1.2192090.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

DROLET, R., SHEILA LAVERTY, W. E. BRASELTON, and NANCY LORD. "Zinc phosphide poisoning in a horse." Equine Veterinary Journal 28, no. 2 (1996): 161–62. http://dx.doi.org/10.1111/j.2042-3306.1996.tb01609.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Tickes, Barry R. "Zinc phosphide in subterranean burrow systems." Bulletin of Environmental Contamination and Toxicology 34, no. 1 (1985): 557–59. http://dx.doi.org/10.1007/bf01609775.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Oros, A. N., C. Catoi, A. F. Gal, et al. "Zinc Phosphide Poisoning in a Dog." Journal of Comparative Pathology 156, no. 1 (2017): 140. http://dx.doi.org/10.1016/j.jcpa.2016.11.262.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Hassanian-Moghaddam, Hossein, Makhtoom Shahnazi, Nasim Zamani, and Hooman Bahrami-Motlagh. "Abdominal imaging in zinc phosphide poisoning." Emergency Radiology 21, no. 3 (2014): 329–31. http://dx.doi.org/10.1007/s10140-014-1195-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Marashi, Sayed, Vahid Shakoori, Mahsa Agahi, and Maryam Vasheghani-Farahani. "Successful management of zinc phosphide poisoning." Indian Journal of Critical Care Medicine 20, no. 6 (2016): 368–70. http://dx.doi.org/10.4103/0972-5229.183907.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Byers, Ross E., and David H. Carbaugh. "Rodenticides for the Control of Pine and Meadow Voles in Orchards." Journal of Environmental Horticulture 9, no. 3 (1991): 167–72. http://dx.doi.org/10.24266/0738-2898-9.3.167.

Full text
Abstract:
Abstract Two new anticoagulants (bromadiolone—90% control) and (difethialone—87% control) gave excellent control of voles in field and laboratory tests. The older anticoagulants, chlorophacinone—84% control and diphacinone—75% control, and two zinc phosphide formulations (Bell Labs—84% control and Hopkins—79% control) also gave excellent field control of voles. The Ridall zinc phosphide formulation—61% control, and cholecalciferol (vitamin D3)—59% control did not perform as well as the other rodenticides previously mentioned. The antibiotic, oxytetracycline, killed from 40% to 80% of pine and
APA, Harvard, Vancouver, ISO, and other styles
28

Chen, Di, Zhe Liu, Xianfu Wang, et al. "Self-organized hierarchical zinc phosphide nanoribbon–zinc sulfide nanowire heterostructures." CrystEngComm 13, no. 24 (2011): 7305. http://dx.doi.org/10.1039/c1ce05666b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Beddoe, Samuel V. F., Samuel D. Cosham, Alexander N. Kulak, Andrew R. Jupp, Jose M. Goicoechea, and Geoffrey Hyett. "Phosphinecarboxamide as an unexpected phosphorus precursor in the chemical vapour deposition of zinc phosphide thin films." Dalton Transactions 47, no. 28 (2018): 9221–25. http://dx.doi.org/10.1039/c8dt00544c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Casey, M. Sean, Alan L. Fahrenbruch, and Richard H. Bube. "Properties of zinc‐phosphide junctions and interfaces." Journal of Applied Physics 61, no. 8 (1987): 2941–46. http://dx.doi.org/10.1063/1.337841.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Kato, Yoshimine, Shoichi Kurita, and Toshikazu Suda. "Photoenhanced chemical vapor deposition of zinc phosphide." Journal of Applied Physics 62, no. 9 (1987): 3733–39. http://dx.doi.org/10.1063/1.339257.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Ryan, M. A., Mark W. Peterson, D. L. Williamson, James S. Frey, Gary E. Maciel, and B. A. Parkinson. "Metal site disorder in zinc tin phosphide." Journal of Materials Research 2, no. 4 (1987): 528–37. http://dx.doi.org/10.1557/jmr.1987.0528.

Full text
Abstract:
The optoelectronic properties of the II-IV-V2 semiconductor ZnSnP2 are studied as a function of the cooling rate of the crystal growth melt. The structure of the material, as studied by x-ray diffraction, is seen to change from chalcopyrite to sphalerite as the cooling rate is increased. Photoelectrochemical measurements show that the bandgap of the material decreases from 1.64 eV for the chalcopyrite to 1.25 eV as the structure approaches sphalerite. The 119Sn Mössbauer spectroscopy shows both an isomer shift and a broadening of the 119Sn resonance as a result of new tin environments produced
APA, Harvard, Vancouver, ISO, and other styles
33

Mehrpour, Omid, Dan Keyler, and Shahin Shadnia. "Comment on Aluminum and zinc phosphide poisoning." Clinical Toxicology 47, no. 8 (2009): 838–39. http://dx.doi.org/10.1080/15563650903203684.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Sathyamoorthy, R., C. Sharmila, P. Sudhagar, S. Chandramohan, and S. Velumani. "Electrical conduction in zinc phosphide thin films." Materials Characterization 58, no. 8-9 (2007): 730–34. http://dx.doi.org/10.1016/j.matchar.2006.11.014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Bichat, Marie-Pierre, Jean-Louis Pascal, Frédéric Gillot, and Frédéric Favier. "Electrochemical lithium insertion in Zn3P2 zinc phosphide." Journal of Physics and Chemistry of Solids 67, no. 5-6 (2006): 1233–37. http://dx.doi.org/10.1016/j.jpcs.2006.01.052.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Fuke, Shunro, Yuuji Takatsuka, Kazuhiro Kuwahara, and Tetsuji Imai. "Growth and characterization of zinc phosphide crystals." Journal of Crystal Growth 87, no. 4 (1988): 567–70. http://dx.doi.org/10.1016/0022-0248(88)90106-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Benzaquen, M., B. Belache, C. Blaauw, and R. A. Bruce. "Electrical characteristics of zinc‐doped indium phosphide." Journal of Applied Physics 68, no. 4 (1990): 1694–701. http://dx.doi.org/10.1063/1.346624.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Hassanian-Moghaddam, Hossein, and Nasim Zamani. "RE: Successful management of zinc phosphide poisoning." Indian Journal of Critical Care Medicine 20, no. 8 (2016): 491–92. http://dx.doi.org/10.4103/0972-5229.188212.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Gunaratne, W. M. S. N., A. T. Wijeratne, S. D. Pilapitiya, and S. H. Siribaddana. "A case of severe zinc phosphide poisoning." Ceylon Medical Journal 61, no. 1 (2016): 42. http://dx.doi.org/10.4038/cmj.v61i1.8263.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Mushrush, Melissa, Manish Sharma, Steve Rozeveld, et al. "Interfaces of Zinc Phosphide Magnesium Schottky Diodes." IEEE Journal of Photovoltaics 4, no. 6 (2014): 1680–82. http://dx.doi.org/10.1109/jphotov.2014.2359139.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Suda, Toshikazu, and Akio Kuroyanagi. "Effect of Monatomie Hydrogen in Zinc Phosphide." Japanese Journal of Applied Physics 25, Part 2, No. 12 (1986): L993—L995. http://dx.doi.org/10.1143/jjap.25.l993.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Sarma, P. S., and J. Narula. "Acute pancreatitis due to zinc phosphide ingestion." Postgraduate Medical Journal 72, no. 846 (1996): 237–38. http://dx.doi.org/10.1136/pgmj.72.846.237.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Nekooghadam, Sayyedmojtaba, Hamidreza Haghighatkhah, Fateme Vaezi, Morteza Sanei Taheri, and Yashar Moharamzad. "Zinc phosphide poisoning with unusual radiologic findings." Clinical Case Reports 5, no. 3 (2017): 264–67. http://dx.doi.org/10.1002/ccr3.807.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Kakishita, Kazuhiko, Kunio Aihara, and Toshikazu Suda. "Zinc phosphide epitaxial growth by photo-MOCVD." Applied Surface Science 79-80 (May 1994): 281–86. http://dx.doi.org/10.1016/0169-4332(94)90423-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Byers, R. E., and D. H. Carbaugh. "Bait Shyness of Pine Voles to Zinc Phosphide and Anticoagulants Stored with Pesticides." HortScience 22, no. 2 (1987): 239–41. http://dx.doi.org/10.21273/hortsci.22.2.239.

Full text
Abstract:
Abstract Storage of brodifacoum (Volid) and chlorophacinone (Rozol) anticoagulant rodenticides with organic phosphate spray materials in a sealed container for more than 57 days slightly reduced Pine vole (Microtus pinetorum) mortality and bait acceptance of Volid, but did not affect Rozol efficacy. Storage of both materials with zinc phosphide bait did not affect acceptance or mortality of pine voles. Pine voles surviving a 3-day exposure to zinc phosphide surface-coated corn and oat bait (ZnP-grain) (2%, w/w) were much less susceptible to a subsequent 5-day exposure to ZnP-grain or ZP Rodent
APA, Harvard, Vancouver, ISO, and other styles
46

Avery, Michael L., John D. Eisemann, Kandy L. Keacher, and Peter J. Savarie. "Acetaminophen and zinc phosphide for lethal management of invasive lizards Ctenosaura similis." Current Zoology 57, no. 5 (2011): 625–29. http://dx.doi.org/10.1093/czoolo/57.5.625.

Full text
Abstract:
Abstract Reducing populations of invasive lizards through trapping and shooting is feasible in many cases but effective integrated management relies on a variety of tools, including toxicants. In Florida, using wild-caught non-native black spiny-tailed iguanas Ctenosaura similis, we screened acetaminophen and zinc phosphide to determine their suitability for effective population management of this prolific invasive species. Of the animals that received acetaminophen, none died except at the highest test dose, 240 mg per lizard, which is not practical for field use. Zinc phosphide produced 100%
APA, Harvard, Vancouver, ISO, and other styles
47

Yadav, Anita, Rajkumar Dahiya, Jagdish Ram Bhargav, Adarsh Kumar, Madhulika Sharma, and RK Sarin. "Aluminium Phosphide versus Zinc Phosphide Lethality – A Lurking Danger in Indian Rural Homes." Journal of Indian Society of Toxicology 14, no. 2 (2018): 42. http://dx.doi.org/10.31736/jist/v14.i2.2018.42-43.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Le, Kha Thuy Nhi, Van Hien Hoa, Huu Tuan Le, Duy Thanh Tran, Nam Hoon Kim, and Joong Hee Lee. "Multi-interfacial engineering of IrOx clusters coupled porous zinc Phosphide-Zinc phosphate heterostructure for efficient water splitting." Applied Surface Science 600 (October 2022): 154206. http://dx.doi.org/10.1016/j.apsusc.2022.154206.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Poppenga, Robert H., Andre F. Ziegler, Perry L. Habecker, Don L. Singletary, Mark K. Walter, and Paul G. Miller. "Zinc Phosphide Intoxication of Wild Turkeys (Meleagris gallopavo)." Journal of Wildlife Diseases 41, no. 1 (2005): 218–23. http://dx.doi.org/10.7589/0090-3558-41.1.218.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Abdel-Halim, Mohamed, Aziza El-Shafey, and Moshera Selem. "SOME BIOCHEMICAL STUDIES ON THE RODENTICIDE ZINC PHOSPHIDE." Zagazig Journal of Pharmaceutical Sciences 4, no. 1 (1995): 109–16. http://dx.doi.org/10.21608/zjps.1995.186365.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!